Journal of
Control

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Taylor & Francis

Taylor & Francis Group

Stable controller design for time-delay systems

S. Gumussoy & H. Ozbay

To cite this article: S. Gumussoy & H. Ozbay (2008) Stable controller design for time-delay
systems, International Journal of Control, 81:4, 546-556, DOI: 10.1080/00207170701426977

To link to this article: https://doi.org/10.1080/00207170701426977

ﬁ Published online: 01 Apr 2008.

N
CJ/ Submit your article to this journal &

||I| Article views: 161

A
h View related articles &'

@ Citing articles: 14 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcon20


https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207170701426977
https://doi.org/10.1080/00207170701426977
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207170701426977
https://www.tandfonline.com/doi/mlt/10.1080/00207170701426977
https://www.tandfonline.com/doi/citedby/10.1080/00207170701426977#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207170701426977#tabModule

International Journal of Control
Vol. 81, No. 4, April 2008, 546-556

Taylor & Francis
Taylor & Francis Group

Stable H°° controller design for time-delay systems

S. GUMUSSOY+ and H. OZBAY *}

tMIKES Inc., Akyurt, Ankara TR-06750, Turkey
iDept. of Electrical and Electronics Eng., Bilkent University,
Bilkent, Ankara TR-06800, Turkey

(Received 14 August 2006, in final form 30 April 2007)

This paper investigates stable suboptimal H* controllers for a class of single-input
single-output time-delay systems. For a given plant and weighting functions, the optimal
controller minimizing the mixed sensitivity (and the central suboptimal controller) may be
unstable with finitely or infinitely many poles in C,. For each of these cases, search
algorithms are proposed to find stable suboptimal H* controllers. These design methods

are illustrated with examples.

1. Introduction

In a feedback system, stable stabilizing controllers (also
called strongly stabilizing controllers) are desired for
many practical reasons (Vidyasagar 1985). It is shown
(Youla et al. 1974, Abedor and Poolla 1989) that such
controllers can be designed if and only if the plant
satisfies the parity interlacing property. A design
method for finding strongly stabilizing controllers for
SISO plants with input—output (I/O) time delays
is given in Suyama (1991) where a stable controller
is constructed by finding a unit (an outer function
whose inverse is proper) satisfying certain interpolation
conditions.

In the literature, stable controllers satisfying a
performance requirement are also studied. For example,
design methods are given for H™ strong stabilization for
finite dimensional plants, see, e.g., Sideris and Safonov
(1985), Ganesh and Pearson (1986), Jacobus et al.
(1990), Ito et al. (1993), Barabonov (1996), Zeren and
Ozbay (1999, 2000), Choi and Chung (2001), Campos-
Delgado and Zhou (2001), Lee and Soh (2002),
Campos-Delgado and Zhou (2003), Chou et al. (2003),
Zeren and Ozbay (2000) and their references. For time
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delay systems, H*-based strong stabilization is also con-
sidered. Optimal stable H* controller design for a class
of SISO time-delay systems within the framework of the
weighted sensitivity minimization problem is studied
in Gumussoy and Ozbay (2006a). It is known that H>
controllers for time-delay systems with finite unstable
poles can be designed by the methods in Foias et al.
(1986), Zhou and Khargonekar (1987), Toker and
Ozbay (1995), Gumussoy and Ozbay (2006b). For this
class of plants, a weighted sensitivity problem may
result in an optimal H* controller with infinitely
unstable modes, Flamm and Mitter (1987), Lenz
(1995). For the mixed sensitivity minimization
problem, an indirect approach to design a stable
controller achieving a desired H*™ performance level
for finite dimensional SISO plants with I/O delays
is proposed in Gumussoy and Ozbay (2002). This
approach is based on stabilization of the unstable
optimal, or central suboptimal, H™ controller by
another H* controller in the feedback loop. In
Gumussoy and Ozbay (2002), stabilization is achieved
and the sensitivity deviation is minimized under certain
sufficient conditions. There are two main drawbacks of
this method. First, the solution of sensitivity deviation
brings conservatism because of finite dimensional
approximation of the infinite dimensional weight.
Second, the stability of overall sensitivity function is
not guaranteed.
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In Gumussoy and Ozbay (2004) we focused on strong
stabilization problem for SISO plants with I/O delays
such that the stable controller achieves the pre-specified
suboptimal H* performance level in the mixed
sensitivity minimization problem. When the optimal
controller is unstable (with infinitely or finitely many
unstable poles), two methods are given based on a
search algorithm to find a stable suboptimal controller.
However, both methods are conservative. In other
words, there may be a stable suboptimal controller
achieving a smaller performance level. In Gumussoy
and Ozbay (2004) necessary conditions for stability of
optimal and suboptimal controllers are also given.

In this paper, the results of Gumussoy and Ozbay
(2004) are extended for general SISO time-delay systems
in the form

_rpls) p ”p,i(s)eih'w

P(s) = =
(S) lp(S) Z;?; : tp,j(s)eff/s

satisfying the assumptions

Al (a) r,(s) and 1,;(s) are polynomials with real
coeflicients;

(b) {#}L, and {z;}, are two sets of strictly
increasing non-negative rational numbers
with iy > 7y

(c) define the polynomials r,; . and ¢, . with
largest polynomial degree in r,; and 17,
respectively (the smallest index if there is
more than one), then, deg{r,;  (5)} <
deglty ()} and k>, where deg{}
denotes the degree of the polynomial;

A.2 P has no imaginary axis zeros or poles;
A.3 P has finitely many unstable poles, or equivalently

1y(s) has finitely many zeros in C,;

A.4 P can be written in the form of

= M S) Nl ©)

where m,, my are inner, infinite and finite
dimensional, respectively; N, is outer, possibly
infinite dimensional as in Toker and Ozbay (1995).

Conditions stated in A.l are not restrictive, and in most
cases A.2 can be removed if the weights are chosen in a
special manner. The conditions A.3-A.4 come from the
restrictions of the Skew-Toeplitz approach to H*°-con-
trol of infinite dimensional systems. It is not easy to
check assumptions A.3—A.4, unless a quasi-polynomial
root finding algorithm is used. In §2, we will give
a necessary and sufficient condition to check the
assumption A.3.

The optimal H> controller, C,p, stabilizes the
feedback system and achieves the minimum H™
COSt, Yopt:

Wi(l 4 PCop) ™!

Yopt = |
WZPCOpt(l + PCopt)_ 00
w1 + PC)™!
= inf NG
C stab. P WQPC(I + PC)fl 1l

where W7 and W, are finite dimensional weights for this
mixed sensitivity minimization problem.

In §2, conditions are given to check assumptions A.3
and A.4, and an algorithm is derived for the plant
factorization (2). Section 3 discusses the structure
of optimal and suboptimal H* controllers. Stable
suboptimal H* controller design methods for the cases
where the optimal controller has infinitely or finitely
many unstable poles are discussed in §§4 and 5
respectively. Examples can be found in §6, and
concluding remarks are made in §7.

Definition: A function F(s) defined on the right half of
complex plane is called proper (respectively strictly
proper) if

lim |F(s)| < o0 <respective1y lim |F(s)| = O).
|s|—00 |s|]—o00

The function is called biproper if the limit converges to
a non-zero value.

2. Assumptions and factorization of plant

Note that by multiplying and dividing (1) by a stable
polynomial, it is always possible to put the plant in
the form

_Re) _ YL Ri(s)e™

T T T

4)

where R; and 7; are finite dimensional, stable, proper
transfer functions. In this section, we study conditions
to verify assumptions A.3 and A.4.

Lemma 1 (Gumussoy and Ozbay 2006b):  Assume that
R(s) in (4) has no imaginary axis zeros and poles, then
the system, R, has finitely many unstable zeros
if and only if all the roots of the polynomial,
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o) =1+, Erhi=h has magnitude greater than 1
where

g = lim R(jo)R;'(jo) Vi=2,...,n,

hi

hi = N
We define the conjugate of R(s) = Y7, Ri(s)e™"* in (4)
as R(s) := e ™ R(—s)M¢(s) where M is inner, finite
dimensional whose poles are the poles of R. If the time
delay system R has finitely many C, zeros it is called
an F-system. It is clear that R is an F-system if it satisfies

Lemma 1. If the time delay system R has finitely many
C. zeros then R is said to be an /-system.

Corollary 1 (Gumussoy and Ozbay 2006b): The plant
P =R/T in (4) satisfies A3—A4 if one of the following
conditions hold. (i) R is I-system and T is F-system,
or (if) R and T are F-systems with h) > T;.

In Gumussoy and Ozbay (2006b), it is shown that the
plant factorization (4) can be done as (2) when

(1) R is an I-system and 7 is an F-system,

hys
O —1)s " R)
m, = e~ " ‘)‘MR( 7
my = Mr, Q)
R My

N() 5, )
MR (emsT)

(i) R and T are F-systems with A > 1y,

my = ei(hliﬁ)XMRa

mg = MT» (6)
R My
T Mg (ensT)’

where My and My are inner functions whose zeros
are the C, zeros of R and R respectively. When R
is an [-system, conjugate of R has finitely many
unstable zeros, so My is well-defined. Similarly,
zeros of My are unstable zeros of 7. Note that m,
and my, are inner functions, infinite and finite
dimensional respectively. The function N, is outer.
By (6), one can see that the condition /;>1; is
necessary for m, to be a causal and infinite
dimensional system. For further details, see Gumussoy
and Ozbay (2006b).

3. Structure of > controllers

Assume that the problem data in (3) satisfies that W,
is non-constant function and (W,N,),(W>N,) ' e H*>,
then the optimal H™ controller can be written as,
Toker and Ozbay (1995),

N;leop!L
Cont = Ern T p T @

Yopt
where E, = (Wi(—s)Wi(s)/¥*) — 1), and for the
definition of the other terms, let the right half plane
zeros of E, be B;, i=1,...,n, the right half plane
poles of P be a;, i=1,...,¢ and that of W (—s) be n;
for i=1,...,n. Then, F,(s)=G, ()] (s—m)/
(s + n;) where

: -1
Gy(5)G,(—s) = (1 - (W— 1)1;;) (8)

and G, € H™ is outer function. The rational function
L=1,/L,, L, and L, are polynomials with degrees
less than or equal to (n;+¢—1) and they are
determined by the following interpolation conditions,

0 = Li(B) + mu(B)F,(Bi) La(By),
0 = Li(ay) + my(ou) Fy(a) La(owk),

9
0 = Ly(—B;) + mu(B)F,(Bi) L1 (—PBi), ©
0 = Ly(—ax) + my(og) Fy (o) L1 (—atk)
for i=1,...,n; and k=1,...,¢. The optimal

performance level, yop, is the largest y value such that
spectral factorization (8) exists and interpolation
conditions (9) are satisfied.

Similarly, all suboptimal controllers achieving the
performance level p> yop can be written as, Toker
and Ozbay (1995),

N;'F,Ly

— £ 10
1 +m,F,Ly (10)

Csubopt = Epmd

where P > Yopt and Ly(s) = (Lav/Liv) =
(La(s) + Li(=5)U(5)) /(L1 (s) + Lo(—9)U(s)) with Ue H™,
IUllo < 1. The polynomials, L; and L,, have degrees
less than or equal to n;+¢. Same interpolation
conditions (9) are valid with p replacing y. Moreover,
there are two additional conditions on L; and L,

0= Ly(—a) + (Ey(a) + DFp(@)my(a)Li(—a)
0# Li(—a)

where a € R, is arbitrary.
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Note that the C; zeros of E,  and m, are always
cancelled by the denominator in (7). Therefore, Coyp is
stable if and only if the denominator in (7) has
no zeros in C; except the zeros of E,  and m,in Cy
(multiplicities considered). The same conclusion is

valid for the suboptimal case.

Lemma 2: Let the plant (4) satisfy Al—A4. The
optimal controller for the mixed sensitivity problem (3),
and respectively a suboptimal controller with finite
dimensional U, have infinitely many poles in Cy if and
only if the following inequalities hold respectively,

lim |Fy, (o) Lop(je)] = 1

: (11)
lim |F,(jo)Ly(jow)| > 1.
w— 00
Proof: The optimal (respectively  suboptimal)

controller has infinitely many poles in C, if and only
if the equations

1+ my(s)Fy,, (s)Lopt(s) = 0 respectively,
1 4+ m,(s)Fo(s)Ly(s) =0

(12)

have infinitely many roots in C,. Assume that the
Nyquist contour in right-half plane is chosen such that
the C, zeros of E,  (resp. E,) and m, are excluded.
The unstable poles of the term (12) are the unstable
poles of Loy (resp. Ly) which are finitely many (note
that L,, L; and U are finite dimensional). Using
Nyquist theorem, we can conclude that the term (12)
has infinitely many zeros in C, if and only if Nyquist
plot of m,F, Loy (resp. m,FpLy) encircles —1
infinitely many times. This is equivalent to the following
conditions:

lim |F,  (jo)Lop(jw)| > 1 respectively,

Jim | Fp(jo)Ly(jw)l = 1

and m,, encircles the origin infinitely many times. When
R is an [-system and T is an F-system, m, has infinitely
many zeros in C; and no poles in C,, so it encircles
the origin infinitely many times. On the other hand,
when R and T are F-systems with /; > 7y, we have
m, = e =T My (where My is finite dimensional), so
m,, encircles the origin infinitely times due to the delay
term. Therefore, the inequalities are necessary and
sufficient conditions for controller to have infinitely
many unstable poles. U

The following result gives a necessary and sufficient
condition for a suboptimal controller to have finitely
many unstable poles.

Corollary 2: Let the plant (4) satisfy A1—A4. Assume
that the optimal controller of mixed sensitivity problem
(3) has infinitely many unstable poles. When U is finite
dimensional, the suboptimal controller has finitely many
unstable poles if and only if

lim |F,(je)Lu(j)] <1 (13)

When the optimal controller has infinitely many
unstable poles, a stable suboptimal controller may
be found by proper selection of the free parameter U.
In §4, this case is considered.

When F,  is strictly proper, then the optimal and
suboptimal controllers always have finitely many
unstable poles. Existence condition for strictly proper
F,,, and stable suboptimal H> controller design for
this case is given in §5.

4. Stable suboptimal 7H>° controller design when the
optimal controller has infinitely many poles in C

Corollary 2 gives a condition on the problem data
so that the suboptimal H> controller (which is uniquely
determined by U) has finitely many poles in C,.
This condition will be used to determine a parameter
range of U. Assume that U(s) is finite dimensional and
bi-proper, and define

S

lim |F,(jw)| > 0,
w—> 00

Uso a}grolo U(jw) and wuy €[—1,1],

— lim Lz(/iw)_
w00 L (jw)

Lemma 3: Consider the set of suboptimal controllers for
the plant (4) with a given H™ performance level p> yqp.
This set contains an element with finitely many poles
in Cy if and only if one of the following conditions is
satisfied: (i) |k|<1, or (i) |k|>1 and fs<1. The
corresponding intervals for us, resulting a suboptimal
controller with finitely many C, poles are

() (=1 us € [-L 1] N (=1 + fock)/(foo + .
(1 _fook)/(lfoo - k|)), when |k| < la

(i) (=1 us € [=1, — (1 +fok)/(foo + KU
(1 = fook)/(Ifoc — k1), 1] when |k]>1 and fo <1
and uy € [—1,1] when |k| =1 and foo <1,

where ny is the dimension of the sensitivity weight W, and
£ is the number of Cy poles of the plant (2).
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Proof: Using Lemma 2, there exists suboptimal
controller with finitely many unstable poles if and only
if the following inequality is satisfied,

1 k + iy 1
—_— <,
Joo I+ kiloo  foo

where iioo = (—1)"us  and  fie € [—1,1].  After
algebraic manipulations, one can see that the admissible
s Intervals are

(i) tiso € (—(1 + fock)/(foo + 1K), (1 = fock) /(| foo — K1)
when fo>1 and |k| <1,
(i) e €[—1,1] when foo <1 and |k| <1,
(i) too € [=1, = ((1 +/sk)/(foo +E U
(1 = fook) /(I foo — KI), 1] when |k|>1 and foo <1,
(iv) #ie € [—1,1] when |k| = 1 and fn, < 1.

The intervals for admissible u, in (i) and (ii) are the
results of (a—b) and (c—d) respectively. This result is a
generalized version of a similar result we presented in
Gumussoy and Ozbay (2004). ]

Note that u., is a design parameter and a valid range
to have a stable H* controller can be calculated by fo
and k.

Theorem 1: Let the plant (4) satisfy Al—A4.
Assume that the optimal and the central suboptimal ( for
0> Yopt) controllers determined from the mixed sensitivity
problem have infinitely many unstable poles. If there exists
UeH®, |U|ls < 1 such that Ly has no C, zeros and

|LU(]w)FP(]w)I < 19 Vo € [09 OO), (14)

then the suboptimal controller is stable.

Proof: Assume that there exists U satisfying the condi-
tions of the theorem. By maximum modulus theorem,

|1 + mn(so)Fp(S(l)LU(So)l >1 - |Fp(]w)LU(]w)| > Oa

therefore, there is no unstable zero, s, = o + jo with
o > 0. The suboptimal controller has no unstable
poles. O

Note that Theorem 1 is a conservative result and the
level of conservatism can be analyzed case by case
with examples. Although the inequality (14) is not
satisfied, the term (1 +m,,FpLU)*l can stabilize. It is
difficult to characterize all U which makes
(1 ~|—m,,FpLU)_1 stable. Therefore, the following
algorithm tries to find stable controllers even if the
inequality is not satisfied by choosing suitable wgax
and Nmax-

The theorem does not give a systematic method for
calculating U which results in a stable H* controller.

In order to address this issue, at least partially, we will
consider the use of first order bi-proper U. Define

®max = Max{w : |LU(]w)Fp(]a))| =1},

Nmax = Max |LU(](1))F,0(]C‘))|
wel0, 00)

Clearly, the choice of U should be such that wp,, and
Nmax are as small as possible. The design method given
below searches for a suitable first order U.

Algorithm: Define U(s) = uqo((u- + 5)/(up +5)) such
that ueo, tp, u: € R, Juoo| < 1, up, > 0 and u, > |usou:|,

() Fix p> yopts

(i1) Calculate f and k,

(iii) Calculate admissible values of u, by using
Lemma 3, if no admissible value exists, increase p
and go back to step 2,

(iv) Search admissible values for (ioo, ), u-) such that
Liy(s) is stable, if no admissible value exists,
increase p and go back to step 2,

(v) Find the triplet, (12 ,u?,u9) minimizing wmax and
Nmax for all admissible (ueo, 1), 1-).

(vi) Take a Nyquist contour including the region
D ={s e Ci : |muy(s)F,(s)Ly(s)| > 1} (excluding
the singularities on imaginary axis). Obtain
Nyquist plot of m,F,Ly. If the number of
encirclement of —1 is equal to unstable zeros of
E, and my, (except the zeros on imaginary axis),
the H™ controller is stable for U(s)=
us,((s + u2)/(s + uy)). Otherwise, increase p and go
back to step 2.

When the central suboptimal controller has infinitely
many C, poles, it is not possible to obtain a stable
suboptimal controller by using a strictly proper or
inner U. Once we find U from the above algorithm,
the resulting suboptimal stable H* controller can
be represented as cascade and feedback connections
containing finite impulse response filter that does
not have unstable pole-zero cancellations in the
controller, as explained in Gumussoy Ozbay (2006b).
This rearrangement ecliminates unstable pole-zero
cancellations in the controller and makes the a practical
implementation of the controller feasible.

5. Stable suboptimal H> controller design when the
optimal controller has finitely many poles in C.

In this section, we will give a condition for H* control-
lers to have finitely many unstable poles. A sufficient
condition for the existence of stable suboptimal H*
controllers is given, and a design method is proposed.
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The optimal and suboptimal controllers have
infinitely many unstable poles if and only if the
inequalities (11) are satisfied. On the other hand, the
‘H™ controllers have always finitely many unstable
poles regardless of problem data if F, , and F, are strictly
proper. The following Lemma gives a necessary and suf-
ficient condition when F,,  and F, are strictly proper.

Since we have (W)N,)"! € RH® Foias et al. (1996),
we can conclude that the plant is strictly proper.
The same proof is valid for the suboptimal case. [l

We know that the suboptimal H™ controllers are
written as (10). It is possible to rewrite the suboptimal
controllers as,

(N . Y($)F,(s)/dE o (s)dmd(s)) (La(s) + Li(—=s)myu(s)F,(s))

Csubopt (S ) =

Lemma 4: The H™ controller has finitely many unstable
poles if the plant is strictly proper and W is proper (in the
sensitivity minimization problem) and, W, is proper and
W, is improper (in the mixed sensitivity minimization
problem).

Proof: Transfer function F(s) can be written as ratio of
two polynomials, Np and Dy, with degrees m and n
respectively. We can define relative degree function, ¢, as

S(F(s)) = ¢(N F(S)) —n—m.

Di(s)

Note that  @(Fi(s)F2(s)) = ¢(Fi(s)) + ¢p(F2(s))  and
P(F(5)F(—5)) = 2¢(F(5)).

The optimal controller has finitely many unstable poles
if I, is strictly proper, i.e., ¢(F,, (s)) > 0. To show this,

Vopl opt
we can write by using definition of F,  and (8),

BFy (5) = DG (),
= SO((Wi W)+ W) Wa(—s)
— Vo WS WA (=) W) Wa(—5)) ).
= —30((MOWi (=) + W Wa(—)
— Vo Wi Wi(=5) Wa(s) Wa(—s)))
= — Jmin {6V ()W (~9)), 9OV () (),

PW (W 1(—=) Wa(s) Wa(—9))},
= —min {¢(W1(s)), p(Wa(s)), p(W1(s))
+ p(W1(5))}.

Strictly properness of F,

opt

implies,
min { (W1 (s)), p(W(5)), (W1 () + ¢(Wa(s)) | <0. (15)

We know that ¢(Wi(s)) > 0 and ¢(Wa(s)) <0, Foias
et al. (1996). Therefore, the inequality (15) is satisfied
if and only if ¢(W1(s)) > 0 and ¢p(W>(s)) < 0 are valid
which means that WW(s) is proper and W5(s) is improper.

Pi(s) + Pa(s)U(s)

where

_ Li(s) + Lo(s)my(s)Fy(s)

Pis) = nE,(s)nmgy(s) 16)
prts) = 29+ LEIM(E
2= nE,(s)nmy(s) ’

and nkE,, dE, and nm,, dm, are minimal order coprime
numerator and  denominator  polynomials  of
E,=nE,/dE,) and my = (nmg/dmy).

The unstable poles of Cgypope are the C, zeros of
Py + P,U. If there exists a U € RH™ with |U|, < 1,
such that P; 4+ P,U has no unstable zeros, then the
corresponding suboptimal controller is stable.

Assume that F, is strictly proper which implies P, and
P, has finitely many unstable zeros. The suboptimal
controller is stable if and only if Sy := (14 PU)"" is
stable where P = (P»/P;). Note that since P, and P,
has finitely many unstable zeros, we can write P as,

R v
P="20N,
d

<

where M and M, are inner, finite dimensional and N,
is outer and infinite dimensional. Finding stable
Sy with UeH*® is considered as sensitivity
minimization  problem  with  stable controller,
Ganesh and Pearson (1986). However, U has a norm
restriction as ||Ull, <1 in our problem. Note that U
can be written as,

1= Su@\ (i)
U(°)‘< S00) )(Pz<s))‘

Define piop as,

= inf |Sulle = inf [|(1 4 PU)7'|...
Mopt UIEI%-("O 1Sulleo UIEI}-{"O I(1+ PU) lloo

If we fix @ as > popt, then there exists a free parameter
O with ||Q|lo <1 which parameterizes all functions
stabilizing Sy and achieving performance level pu.
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The notation for the sensitivity function achieving
performance level p is Sy, ,(Q).

Lemma 5: Assume that the weights in mixed sensitivity
minimization problem (3), W, and W,, are proper and
improper respectively and [L,> popt. If there exists Q,
with ||Q,lleo <1 satisfying

1— SUJJ.“(QD(ja))) Pl(ja))
'( SU.1,(Qo(j)) )(Pz( jw))‘ =L an

then the suboptimal H> controller, Cgypopt, is stable
and achieves the performance level p by selecting the
parameter U as

(1= S, (Qo ) [ Pr(s)
U(S)_< S0 (0(5) )(Pz(s>>' (18)

Proof: The result of Lemma is immediate. Since
0, satisfies the norm condition of U and makes
Sv,u(Q,) stable, the suboptimal controller has no right
half plane poles by selection of U as shown in
theorem. Ll

There is no need to search for pop, since U has always
an essential singularity at infinity for the optimal case,
see Ganesh and Pearson (1986). By a numerical search,
we can find Q, satisfying the norm condition for U.
Instead of finding U resulting in a suboptimal stable
controller, the problem is transformed into finding Q,
satisfying the norm condition. The first problem needs
to check whether a quasi-polynomial has unstable
zeros. By Lemma 35, this problem is reduced into stable
function search with infinity norm less than 1 and a
norm condition for U. Conservatively, the search
algorithm for Q, can be done for first order bi-proper
functions such that  Q,(s) = uso((s + z,) /(s + pu))
where p,>0, z, € R, and |us| < max{l, (p,/|z,])}. The
algorithm for this approach is explained below.

Algorithm: Assume that the optimal and central
suboptimal controllers have finitely many unstable
poles. We can design a stable suboptimal H> controller
by the following algorithm.

(i) Fix o> Yopt,
(i) Obtain Py and P,. If Py has no unstable zero, then
suboptimal controller is stable for U=0. If not,
go to step 3.
(iii) Define the right half plane zeros of P; and P, as
{pi}, and {s;), respectively. Define M,(s) and
M(s) as

np ny

~ - S —Ppi ~ _ S —S;
M =[15, o=I1

i=1

and calculate

i=1,...,n;, wherea>0.

~ -1 Si—a
wi = (Mu(s))) . Zi:si-+a’

(20)

(iv) Search for minimum g which makes the Pick
matrix positive semi-definite,

w In@u?/wine) + j2m(ng — ny)
Py —

21

1 - ZiEk

where 0 € C"™™ and ny; is integer. Note that most
of the integers will not result in positive
semi-definite Pick matrix. Therefore, for each
integer set, we can find the smallest p and pop
will be the minimum of these values. For details,
see Ganesh and Pearson (1986).

(v) Fix p such that u>pen. For all possible
integer set, obtain g(z) € H* with interpolation
conditions,

g(z))=— lnﬁ — j2mn;. (22)
i

Note that since g(z) has a free parameter ¢(z)
with |lgll,, <1, we can write the function as g,(2).
Then, search for parameters (uso, z,, p.) satisfying

(I = Su.u(jw))

w‘ﬁﬁo‘?‘é‘w‘(SU,M(jw)Pz(jw»/(Pl(jw)) =h @
where
Su.u(s) = pMy(s)e= %2,
Got) =, 14) .

and Q(s) = uso((s + z,)/(s + p,)) as defined before.
If one of the parameter set satisfies the inequality,
then  Qp = ttoe, o((5 + 24.0)/(s + pu.s)) and  corre-
sponding U results in a stable suboptimal H*
controller, stop. If no parameter set satisfies the
inequality, repeat the procedure for sufficiently
high w, until a pre-specified maximum is reached,
go to the next step.

(vi) Increase p, go to step 2, if a maximum pre-specified
p is reached, stop. This method fails to provide a
stable H* controller.

An illustrative example is presented in §6.2.
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6. Examples

Two examples will be given in this section. In the first
example, the optimal and central suboptimal controllers
have infinitely many unstable poles. By using the design
method in §4, we show that there exists a stable
suboptimal controller even the magnitude condition in
(14) is violated for low frequencies. In other words,
the example illustrates that the conditions in
Theorem 1 are only sufficient.

The second example explains the design method for
suboptimal stable H* controller when central controller
has finitely many unstable poles. The algorithm
is applied step by step as given in §5.

6.1 Example with infinitely many unstable poles

Let the weight functions in mixed sensitivity problem (3)
be Wi(s)=(1+40.15)/(0.4+5s) and W, =0.5, and
consider the plant

_ rp(s) _ Z?:l "p,i(s)eih"s
() 3t (s)e
(5 +3)+2s — 1)e04s

= . 2
S2 +S€70'2‘Y+5€70'5S ( 5)

P(s)

The denominator of the plant, 7,(s) has finitely many C,
zeros at 0.4672 4 1.88905, whereas r,(s) has infinitely
many C, zeros converging to 1.7329 + j(5k + 2.5)7
as k— oo, ke Z,;. The plant satisfies assumptions
A.1-A.2. We can rewrite the plant P in the form (4)
where n=2, m=3,

l‘p,j(S)
(s+ 1>

rp,i(s)
(s+ 1

Ri(s) = and Ty(s) =

One can see that R is an /-system whose conjugate
R=—(Q2(s+ 1+ (s—3)e"*)/(s+ 1)*) has only one
C, zero, 0.247 and T is an F-system with two C,
zeros, 0.465 £ 1.890j. Therefore, assumptions A.3-A.4
are satisfied by Corollary 1 and the plant P can be
factorized as (2) using (5)

o R (s — 0.247) (((s+3)+2(s — De™ ") /(s + 1))
TTURR T\ +0247) (s + D)+ (5 — 3)e04) /(s + 1))
52 —0.935 +3.79
ma = Mz = (s2 +0.935+ 3.79)’
R My
No=3r"1

(26)

where T = ((s* + se~ %% + 5¢705) /(s + 1)?), N, is outer,
m,, my are inner functions, infinite and finite
dimensional respectively. For details, see Gumussoy
and Ozbay (2006b).

From Foias ef al. (1996), the optimal performance
level is yopt = 0.57. The optimal controller has infinitely
many C, poles converging to s = 0.99 + j(5k + 2.5)7
as k — oo, ke Z,. If central suboptimal controller
(i.e., U=0) is calculated for p=0.67, it has infinitely
many C, poles converging to s = 0.37 +j(5k 4+ 2.5)7
as k — oo, k € Z,. The suboptimal controllers can be
written as (10) where

0.93+0.4457
’ 7 0.450.16 — 52)

04—
F,=0. _
o =067 (0.70 - o.sos)’
L, =0.795% 4+ 2.515% + 2.84s + 3.43,

Ly =5 + 1.495° + 1.865 + 0.65.

We will use the design method of §4 to find a stable
suboptimal controller by search for U such that
IU|loo < 1. For simplicity, the algorithm is tried for the
case, U(s) = uno-

(i) Fix p=0.67 > yop = 0.57,

(1)) £=0.79 and f, = 1.33 are calculated.

@iii)) ny=1, £=2, ny + € is odd and |k| < 1. By using
Lemma 3, the admissible interval for wu., 1S
(0.095,0.96).

(iv) Liy(s) is stable for uy € (—0.19,0.46).

(v) Overall admissible values for U are uq €
(0.095,0.46). The values of wmax and nmax for all
admissible u,, range can be seen in figure 1.
One can minimize both wmax and nmax by finding
the intersection of two curves, i.e.,

v .
u,, = arg nl}m max{wmax, Nmax} = 0.35.
00

(vi) One can see that Nyquist plot in clockwise
direction of m, F,Ly encircles —1 twice in clockwise
direction. Note that the unstable zeros of E,(s) and
my are +1.45j, 0.47 4+ 1.89j, respectively. Since the
zeros on the imaginary axis are excluded from
Nyquist plot, there are no unstable zeros of
1 —+ WlanLu.

Therefore, we can conclude that the suboptimal control-
ler is stable for U(s) = 0.35 and achieves the H* norm
p=0.67. For practical implementation, the suboptimal
controller found can be represented as cascade and
feedback connections containing finite impulse response
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filter that does not have unstable pole-zero cancellations
in the controller, as explained in Gumussoy and Ozbay
(2006b).

6.2 Example with finitely many unstable poles

For the plant (25) and weights W(s) =
((1 +0.15)/(0.4 + 5)) and W>(s) = (0.01s 4 0.5), we find
the optimal performance level as yop = 0.59. The
corresponding optimal H* controller can be written as
(7) which has unstable poles at 0.67+ 14.09j,
0.11 £ 28.33/. Note that all suboptimal H* controllers
for finite dimensional U will have finitely many unstable
poles by Corollary 2. Therefore we can apply the
algorithm in § 5.

(i) Fix p=10.60 > yop = 0.59,
(i1) The suboptimal controllers can be written as in (10)
where m,, is given in (26) and

~0.9440.355
?70.36(0.16 — 52)°
ro 0.36(0.4 — s)
?770.0059s2 + 0.315 + 0.35’
L, = 0.985° 4+ 2.455* + 1.91s + 2.10,

L =5 + 1.64s*> +0.455 + 1.61,

and U is a free parameter such that U e H™,
U]l < 1. We can obtain P, and P, from (16).
Note that P, has C, ZeT0S at
P12 = 0.64 £14.064), ps 4 =0.081 £28.314j and
P, has C,; zeros at s1,=0.29+28.31lj,

160 [

ol | —

120 S . SRR RN R S
100.; ....... ...... ....... ...... ....... ......
80|
ol . S o L ;__:'_

0.1 0.15 02 025 03 0.35 0.4 045

Figure 1. wpy,c and ny,. versus ug,.

53.4 = 0.90 £ 14.035j and s5 = 2.43. Therefore, the
central controller (when U=0) for the chosen
performance level, p=0.6, is unstable.

(iii) Note that C,. zeros of P; and P, are defined in the
previous step. Then, M, and M can be defined as
(19) where ny=4 and n,=5. By (20), w; and z;
can be calculated where conformal mapping
parameter, «, is chosen as 1.

(iv) For all possible integers sets, the minimum u
resulting in positive semi-definite Pick matrix
(21), is popt = 6.15 in which all integers are
equal to 0.

(v) Fix w=100. The interpolation conditions for
g(z) can be written as in (22) where all integers,
n;, are zero. By the Nevanlinna—Pick interpolation,
(see, e.g., Foias and Ozbay (1996), Zeren and
Ozbay  (1998)), g,z) is obtained. By
transformation, Gy(s) can be calculated where
Q(s) is a parameterization term such that Q € H*®
and ||Qll < 1. We will search for Q satisfying
the inequality (23) in the form of Q(s) = uy with
lux| < 1. Note that we choose z, = p, = 0 and all
functions in (24) and P;, P, are defined before.
The search shows that (23) is satisfied for
Us €10.23,0.33]. The magnitude of U(jw)
is shown for wu,, =0.3 in figure 2. Note that
IUlloc < 1. As a result, stable H* controller
achieves the performance level, p=0.6. By
a numerical search, we can find many u., values
for different p resulting in stable H* controller
at p=0.6 provided that U satisfies the norm
condition for chosen Q = uy. The various uy,
values resulting stable H* controller can be seen

Magnitude plot of U(jw)

09}

08}
07}
=06}
%
So05f
04}
03}
02}
01}

100 10! 102 10
Frequency

Figure 2. |U(jw)| for u =100 u,, = 0.3.
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H* norm of U vs. u_,
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Figure 3. Feasible values of u,.

in figure 3. We observe that as u is increased, the
range of u., stabilizing the controller decreases.

7. Conclusions

In this paper, stability of H® controllers are investi-
gated for general time-delay systems. Conditions on
the problem data (plant and the weights) are derived
that make the optimal and central suboptimal control-
lers unstable, with finitely or infinitely many C; poles.
A search method is proposed for finding stable
suboptimal controllers by properly selecting the free
design parameter U appearing in the parameterization
of all suboptimal H* controllers for the class of time
delay systems considered. When the optimal and
central suboptimal controllers have finitely many C,
poles the search algorithm uses the Nevanlinna—Pick
interpolation to derive feasible parameters of the first
order U. When the optimal and central suboptimal
controllers have infinitely many poles in C,,
the search algorithm wuses a Nyquist argument at
each step.
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