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This paper investigates stable suboptimal H1 controllers for a class of single-input
single-output time-delay systems. For a given plant and weighting functions, the optimal

controller minimizing the mixed sensitivity (and the central suboptimal controller) may be
unstable with finitely or infinitely many poles in Cþ. For each of these cases, search
algorithms are proposed to find stable suboptimal H1 controllers. These design methods
are illustrated with examples.

1. Introduction

In a feedback system, stable stabilizing controllers (also

called strongly stabilizing controllers) are desired for

many practical reasons (Vidyasagar 1985). It is shown

(Youla et al. 1974, Abedor and Poolla 1989) that such

controllers can be designed if and only if the plant

satisfies the parity interlacing property. A design

method for finding strongly stabilizing controllers for

SISO plants with input–output (I/O) time delays

is given in Suyama (1991) where a stable controller

is constructed by finding a unit (an outer function

whose inverse is proper) satisfying certain interpolation

conditions.
In the literature, stable controllers satisfying a

performance requirement are also studied. For example,

design methods are given forH1 strong stabilization for

finite dimensional plants, see, e.g., Sideris and Safonov

(1985), Ganesh and Pearson (1986), Jacobus et al.

(1990), Ito et al. (1993), Barabonov (1996), Zeren and

Özbay (1999, 2000), Choi and Chung (2001), Campos-

Delgado and Zhou (2001), Lee and Soh (2002),

Campos-Delgado and Zhou (2003), Chou et al. (2003),

Zeren and Özbay (2000) and their references. For time

delay systems,H1-based strong stabilization is also con-

sidered. Optimal stable H1 controller design for a class

of SISO time-delay systems within the framework of the

weighted sensitivity minimization problem is studied

in Gumussoy and Özbay (2006a). It is known that H1

controllers for time-delay systems with finite unstable

poles can be designed by the methods in Foias et al.

(1986), Zhou and Khargonekar (1987), Toker and

Özbay (1995), Gumussoy and Özbay (2006b). For this

class of plants, a weighted sensitivity problem may

result in an optimal H1 controller with infinitely

unstable modes, Flamm and Mitter (1987), Lenz

(1995). For the mixed sensitivity minimization

problem, an indirect approach to design a stable

controller achieving a desired H1 performance level

for finite dimensional SISO plants with I/O delays

is proposed in Gumussoy and Özbay (2002). This

approach is based on stabilization of the unstable

optimal, or central suboptimal, H1 controller by

another H1 controller in the feedback loop. In

Gumussoy and Özbay (2002), stabilization is achieved

and the sensitivity deviation is minimized under certain

sufficient conditions. There are two main drawbacks of

this method. First, the solution of sensitivity deviation

brings conservatism because of finite dimensional

approximation of the infinite dimensional weight.

Second, the stability of overall sensitivity function is

not guaranteed.Corresponding author. Email: hitay@bilkent.edu.tr
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In Gumussoy and Özbay (2004) we focused on strong
stabilization problem for SISO plants with I/O delays
such that the stable controller achieves the pre-specified
suboptimal H1 performance level in the mixed
sensitivity minimization problem. When the optimal
controller is unstable (with infinitely or finitely many
unstable poles), two methods are given based on a
search algorithm to find a stable suboptimal controller.
However, both methods are conservative. In other
words, there may be a stable suboptimal controller
achieving a smaller performance level. In Gumussoy
and Özbay (2004) necessary conditions for stability of
optimal and suboptimal controllers are also given.
In this paper, the results of Gumussoy and Özbay

(2004) are extended for general SISO time-delay systems
in the form

PðsÞ ¼
rpðsÞ

tpðsÞ
¼

Pn
i¼1 rp, iðsÞe

�hisPm
j¼1 tp, jðsÞe

��js
ð1Þ

satisfying the assumptions

A.1 (a) rp, iðsÞ and tp, jðsÞ are polynomials with real
coefficients;

(b) fhig
n
i¼1 and f�ig

m
i¼1 are two sets of strictly

increasing non-negative rational numbers
with h1 � �1;

(c) define the polynomials rp, imax
and tp, jmax

with
largest polynomial degree in rp,i and tp,j
respectively (the smallest index if there is
more than one), then, degfrp, imax

ðsÞg �
degftp, jmax

ðsÞg and himax
� �jmax

where degf:g
denotes the degree of the polynomial;

A.2 P has no imaginary axis zeros or poles;
A.3 P has finitely many unstable poles, or equivalently

tpðsÞ has finitely many zeros in Cþ;
A.4 P can be written in the form of

PðsÞ ¼
mnðsÞNoðsÞ

mdðsÞ
; ð2Þ

where mn, md are inner, infinite and finite
dimensional, respectively; No is outer, possibly
infinite dimensional as in Toker and Özbay (1995).

Conditions stated in A.1 are not restrictive, and in most
cases A.2 can be removed if the weights are chosen in a
special manner. The conditions A.3–A.4 come from the
restrictions of the Skew-Toeplitz approach to H1-con-
trol of infinite dimensional systems. It is not easy to
check assumptions A.3–A.4, unless a quasi-polynomial
root finding algorithm is used. In x 2, we will give
a necessary and sufficient condition to check the
assumption A.3.

The optimal H1 controller, Copt, stabilizes the
feedback system and achieves the minimum H1

cost, �opt:

�opt ¼
W1ð1þ PCoptÞ

�1

W2PCoptð1þ PCoptÞ
�1

2
4

3
5

������
������
1

¼ inf
C stab: P

W1ð1þ PCÞ�1

W2PCð1þ PCÞ�1

2
4

3
5

������
������
1

; ð3Þ

where W1 and W2 are finite dimensional weights for this
mixed sensitivity minimization problem.

In x 2, conditions are given to check assumptions A.3
and A.4, and an algorithm is derived for the plant
factorization (2). Section 3 discusses the structure
of optimal and suboptimal H1 controllers. Stable
suboptimal H1 controller design methods for the cases
where the optimal controller has infinitely or finitely
many unstable poles are discussed in xx 4 and 5

respectively. Examples can be found in x 6, and
concluding remarks are made in x 7.

Definition: A function F(s) defined on the right half of
complex plane is called proper (respectively strictly
proper) if

lim
jsj!1

jFðsÞj <1 respectively lim
jsj!1

jFðsÞj ¼ 0

� �
:

The function is called biproper if the limit converges to
a non-zero value.

2. Assumptions and factorization of plant

Note that by multiplying and dividing (1) by a stable
polynomial, it is always possible to put the plant in
the form

PðsÞ ¼
RðsÞ

TðsÞ
¼

Pn
i¼1 RiðsÞe

�hisPm
j¼1 TjðsÞe��js

; ð4Þ

where Ri and Tj are finite dimensional, stable, proper
transfer functions. In this section, we study conditions
to verify assumptions A.3 and A.4.

Lemma 1 (Gumussoy and Özbay 2006b): Assume that
R(s) in (4) has no imaginary axis zeros and poles, then
the system, R, has finitely many unstable zeros
if and only if all the roots of the polynomial,

Stable H1 controller design for time-delay systems 547



’ðrÞ ¼ 1þ
Pn

i¼2 �ir
~hi� ~h1 has magnitude greater than 1

where

�i ¼ lim
!!1

Rið j!ÞR
�1
1 ð j!Þ 8i ¼ 2, . . . , n,

hi ¼
~hi
N
, N, ~hi 2 Zþ, 8i ¼ 1, . . . , n:

We define the conjugate of RðsÞ ¼
Pn

i¼1 RiðsÞe
�his in (4)

as �RðsÞ :¼ e�hnsRð�sÞMCðsÞ where MC is inner, finite

dimensional whose poles are the poles of R. If the time

delay system R has finitely many Cþ zeros it is called

an F-system. It is clear that R is an F-system if it satisfies

Lemma 1. If the time delay system �R has finitely many

Cþ zeros then R is said to be an I-system.

Corollary 1 (Gumussoy and Özbay 2006b): The plant

P ¼ R=T in (4) satisfies A3�A4 if one of the following

conditions hold: (i) R is I-system and T is F-system,

or (ii) R and T are F-systems with h1>�1.

In Gumussoy and Özbay (2006b), it is shown that the

plant factorization (4) can be done as (2) when

(i) R is an I-system and T is an F-system,

mn ¼ e�ðh1��1ÞsM �R

ðeh1sRÞ

�R
,

md ¼MT,

No ¼
�R

M �R

MT

ðe�1sT Þ
,

9>>>>>>=
>>>>>>;

ð5Þ

(ii) R and T are F-systems with h1>�1,

mn ¼ e�ðh1��1ÞsMR,

md ¼MT,

No ¼
R

MR

MT

ðe�1sT Þ
;

9>>>>=
>>>>;

ð6Þ

where MR and M �R are inner functions whose zeros
are the Cþ zeros of R and �R respectively. When R

is an I-system, conjugate of R has finitely many

unstable zeros, so M �R is well-defined. Similarly,

zeros of MT are unstable zeros of T. Note that mn

and md are inner functions, infinite and finite

dimensional respectively. The function No is outer.

By (6), one can see that the condition h1>�1 is

necessary for mn to be a causal and infinite

dimensional system. For further details, see Gumussoy

and Özbay (2006b).

3. Structure of H1 controllers

Assume that the problem data in (3) satisfies that W1

is non-constant function and ðW2NoÞ, ðW2NoÞ
�1
2H1,

then the optimal H1 controller can be written as,
Toker and Özbay (1995),

Copt ¼ E�optmd

N�1o F�optL

1þmnF�optL
; ð7Þ

where E� ¼ ððW1ð�sÞW1ðsÞ=�
2Þ � 1Þ, and for the

definition of the other terms, let the right half plane
zeros of E� be �i, i ¼ 1, . . . , n1, the right half plane
poles of P be �i, i ¼ 1, . . . , ‘ and that of W1ð�sÞ be �i
for i ¼ 1, . . . , n1. Then, F�ðsÞ ¼ G�ðsÞ

Qn1
i¼1 ðs� �iÞ=

ðsþ �iÞ where

G�ðsÞG�ð�sÞ ¼ 1�
W2ð�sÞW2ðsÞ

�2
� 1

� �
E�

� ��1
ð8Þ

and G� 2 H
1 is outer function. The rational function

L ¼ L2=L1 , L1 and L2 are polynomials with degrees
less than or equal to ðn1 þ ‘� 1Þ and they are
determined by the following interpolation conditions,

0 ¼ L1ð�iÞ þmnð�iÞF�ð�iÞL2ð�iÞ,

0 ¼ L1ð�kÞ þmnð�kÞF�ð�kÞL2ð�kÞ,

0 ¼ L2ð��iÞ þmnð�iÞF�ð�iÞL1ð��iÞ,

0 ¼ L2ð��kÞ þmnð�kÞF�ð�kÞL1ð��kÞ

9>>>=
>>>;

ð9Þ

for i ¼ 1, . . . , n1 and k ¼ 1, . . . , ‘. The optimal
performance level, �opt, is the largest � value such that
spectral factorization (8) exists and interpolation
conditions (9) are satisfied.

Similarly, all suboptimal controllers achieving the
performance level �>�opt can be written as, Toker
and Özbay (1995),

Csubopt ¼ E�md
N�1o F�LU

1þmnF�LU
ð10Þ

where � > �opt and LUðsÞ ¼ ðL2U=L1UÞ ¼

ðL2ðsÞ þ L1ð�sÞUðsÞÞ=ðL1ðsÞ þ L2ð�sÞUðsÞÞ with U2H1;
kUk1 � 1. The polynomials, L1 and L2, have degrees
less than or equal to n1 þ ‘. Same interpolation
conditions (9) are valid with � replacing �. Moreover,
there are two additional conditions on L1 and L2

0 ¼ L2ð�aÞ þ ðE�ðaÞ þ 1ÞF�ðaÞmnðaÞL1ð�aÞ

0 6¼ L1ð�aÞ

where a 2 Rþ is arbitrary.
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Note that the Cþ zeros of E�opt and md are always
cancelled by the denominator in (7). Therefore, Copt is
stable if and only if the denominator in (7) has
no zeros in Cþ except the zeros of E�opt and md in Cþ

(multiplicities considered). The same conclusion is
valid for the suboptimal case.

Lemma 2: Let the plant (4) satisfy A1�A4. The
optimal controller for the mixed sensitivity problem (3),
and respectively a suboptimal controller with finite
dimensional U, have infinitely many poles in Cþ if and
only if the following inequalities hold respectively,

lim
!!1
jF�opt ð j!ÞLoptð j!Þj � 1

lim
!!1
jF�ð j!ÞLUðj!Þj � 1:

9=
; ð11Þ

Proof: The optimal (respectively suboptimal)
controller has infinitely many poles in Cþ if and only
if the equations

1þmnðsÞF�opt ðsÞLoptðsÞ ¼ 0 respectively,

1þmnðsÞF�ðsÞLUðsÞ ¼ 0

)
ð12Þ

have infinitely many roots in Cþ. Assume that the
Nyquist contour in right-half plane is chosen such that
the Cþ zeros of E�opt (resp. E�) and md are excluded.
The unstable poles of the term (12) are the unstable
poles of Lopt (resp. LU) which are finitely many (note
that L2, L1 and U are finite dimensional). Using
Nyquist theorem, we can conclude that the term (12)
has infinitely many zeros in Cþ if and only if Nyquist
plot of mnF�optLopt (resp. mnF�LU) encircles �1
infinitely many times. This is equivalent to the following
conditions:

lim
!!1
jF�opt ð j!ÞLoptð j!Þj � 1 respectively,

lim
!!1
jF�ð j!ÞLUð j!Þj � 1

and mn encircles the origin infinitely many times. When
R is an I-system and T is an F-system, mn has infinitely
many zeros in Cþ and no poles in Cþ, so it encircles
the origin infinitely many times. On the other hand,
when R and T are F-systems with h1 > �1, we have
mn ¼ e�ðh1��1ÞsMR (where MR is finite dimensional), so
mn encircles the origin infinitely times due to the delay
term. Therefore, the inequalities are necessary and
sufficient conditions for controller to have infinitely
many unstable poles. œ

The following result gives a necessary and sufficient
condition for a suboptimal controller to have finitely
many unstable poles.

Corollary 2: Let the plant (4) satisfy A1�A4. Assume

that the optimal controller of mixed sensitivity problem

(3) has infinitely many unstable poles. When U is finite

dimensional, the suboptimal controller has finitely many

unstable poles if and only if

lim
!!1
jF�ð j!ÞLUð j!Þj < 1 ð13Þ

When the optimal controller has infinitely many
unstable poles, a stable suboptimal controller may

be found by proper selection of the free parameter U.

In x 4, this case is considered.
When F�opt is strictly proper, then the optimal and

suboptimal controllers always have finitely many

unstable poles. Existence condition for strictly proper

F�opt and stable suboptimal H1 controller design for

this case is given in x 5.

4. Stable suboptimal H1 controller design when the

optimal controller has infinitely many poles in Cþ

Corollary 2 gives a condition on the problem data

so that the suboptimal H1 controller (which is uniquely

determined by U) has finitely many poles in Cþ.

This condition will be used to determine a parameter

range of U. Assume that U(s) is finite dimensional and

bi-proper, and define

f1 :¼ lim
!!1
jF�ð j!Þj > 0,

u1 :¼ lim
!!1

Uð j!Þ and u1 2 ½�1, 1�,

k :¼ lim
!!1

L2ð j!Þ

L1ð j!Þ
:

Lemma 3: Consider the set of suboptimal controllers for
the plant (4) with a given H1 performance level �>�opt.
This set contains an element with finitely many poles

in Cþ if and only if one of the following conditions is

satisfied: (i) jkj<1, or (ii) jkj�1 and f1<1. The

corresponding intervals for u1 resulting a suboptimal

controller with finitely many Cþ poles are

(i) ð�1Þn1þ‘u1 2 �1, 1½ �
T
�ð1þ f1kÞ=ð f1 þ kÞ,ð

ð1� f1kÞ=ðj f1 � kjÞÞ, when jkj<1,
(ii) ð�1Þn1þ‘u1 2 ½�1, � ðð1þ f1kÞ=ð f1 þ kÞÞÞ

S
ðð1� f1kÞ=ðj f1 � kjÞ, 1� when jkj>1 and f1<1

and u1 2 ½�1, 1� when jkj ¼ 1 and f1<1,

where n1 is the dimension of the sensitivity weight W1 and

‘ is the number of Cþ poles of the plant (2).

Stable H1 controller design for time-delay systems 549



Proof: Using Lemma 2, there exists suboptimal
controller with finitely many unstable poles if and only
if the following inequality is satisfied,

�
1

f1
<

kþ ~u1
1þ k ~u1

<
1

f1
,

where ~u1 ¼ ð�1Þ
n1þ‘u1 and ~u1 2 ½�1, 1�. After

algebraic manipulations, one can see that the admissible
~u1 intervals are

(i) ~u1 2 ð�ð1þ f1kÞ=ð f1 þ kÞ, ð1� f1kÞ=ðj f1 � kjÞÞ
when f1� 1 and jkj<1,

(ii) ~u1 2 ½�1, 1� when f1<1 and jkj<1,
(iii) ~u1 2 ½�1, � ðð1þ f1kÞ=ð f1 þ kÞÞÞ

S
ðð1� f1kÞ=ðj f1 � kjÞ, 1� when jkj>1 and f1<1,

(iv) ~u1 2 ½�1, 1� when jkj ¼ 1 and f1<1.

The intervals for admissible u1 in ðiÞ and ðiiÞ are the
results of (a–b) and (c–d) respectively. This result is a
generalized version of a similar result we presented in
Gumussoy and Özbay (2004). œ

Note that u1 is a design parameter and a valid range
to have a stable H1 controller can be calculated by f1
and k.

Theorem 1: Let the plant (4) satisfy A1�A4.
Assume that the optimal and the central suboptimal ( for
�>�opt) controllers determined from the mixed sensitivity
problem have infinitely many unstable poles. If there exists
U 2 H1, kUk1 < 1 such that L1U has no Cþ zeros and

jLUð j!ÞF�ð j!Þj < 1, 8! 2 ½0,1Þ, ð14Þ

then the suboptimal controller is stable.

Proof: Assume that there exists U satisfying the condi-
tions of the theorem. By maximum modulus theorem,

j1þmnðsoÞF�ðsoÞLUðsoÞj > 1� jF�ð j!ÞLUð j!Þj > 0,

therefore, there is no unstable zero, so ¼ � þ j! with
�>0. The suboptimal controller has no unstable
poles. œ

Note that Theorem 1 is a conservative result and the
level of conservatism can be analyzed case by case
with examples. Although the inequality (14) is not
satisfied, the term ð1þmnF�LUÞ

�1 can stabilize. It is
difficult to characterize all U which makes
ð1þmnF�LUÞ

�1 stable. Therefore, the following
algorithm tries to find stable controllers even if the
inequality is not satisfied by choosing suitable !max

and �max.
The theorem does not give a systematic method for

calculating U which results in a stable H1 controller.

In order to address this issue, at least partially, we will
consider the use of first order bi-proper U. Define

!max ¼ maxf! : jLUð j!ÞF�ð j!Þj ¼ 1g,

�max ¼ max
!2½0,1Þ

jLUð j!ÞF�ð j!Þj:

Clearly, the choice of U should be such that !max and
�max are as small as possible. The design method given
below searches for a suitable first order U.

Algorithm: Define UðsÞ ¼ u1ððuz þ sÞ=ðup þ sÞÞ such
that u1, up, uz 2 R, ju1j � 1, up>0 and up � ju1uzj,

(i) Fix �>�opt,
(ii) Calculate f1 and k,
(iii) Calculate admissible values of u1 by using

Lemma 3, if no admissible value exists, increase �
and go back to step 2,

(iv) Search admissible values for (u1, up, uz) such that
L1UðsÞ is stable, if no admissible value exists,
increase � and go back to step 2,

(v) Find the triplet, ðuo1, u
o
z , u

o
pÞ minimizing !max and

�max for all admissible ðu1, up, uzÞ.
(vi) Take a Nyquist contour including the region
D ¼ fs 2 Cþ : jmnðsÞF�ðsÞLUðsÞj > 1g (excluding
the singularities on imaginary axis). Obtain
Nyquist plot of mnF�LU. If the number of
encirclement of �1 is equal to unstable zeros of
E� and md (except the zeros on imaginary axis),
the H1 controller is stable for UðsÞ ¼
uo1ððsþ uozÞ=ðsþ uopÞÞ. Otherwise, increase � and go
back to step 2.

When the central suboptimal controller has infinitely
many Cþ poles, it is not possible to obtain a stable
suboptimal controller by using a strictly proper or
inner U. Once we find U from the above algorithm,
the resulting suboptimal stable H1 controller can
be represented as cascade and feedback connections
containing finite impulse response filter that does
not have unstable pole-zero cancellations in the
controller, as explained in Gumussoy Özbay (2006b).
This rearrangement eliminates unstable pole-zero
cancellations in the controller and makes the a practical
implementation of the controller feasible.

5. Stable suboptimal H1 controller design when the

optimal controller has finitely many poles in C1

In this section, we will give a condition for H1 control-
lers to have finitely many unstable poles. A sufficient
condition for the existence of stable suboptimal H1

controllers is given, and a design method is proposed.

550 S. Gumussoy and H. Özbay



The optimal and suboptimal controllers have

infinitely many unstable poles if and only if the

inequalities (11) are satisfied. On the other hand, the

H1 controllers have always finitely many unstable

poles regardless of problem data if F�opt and F� are strictly

proper. The following Lemma gives a necessary and suf-

ficient condition when F�opt and F� are strictly proper.

Lemma 4: TheH1 controller has finitely many unstable
poles if the plant is strictly proper and W1 is proper (in the
sensitivity minimization problem) and, W1 is proper and
W2 is improper (in the mixed sensitivity minimization
problem).
Proof: Transfer function F(s) can be written as ratio of
two polynomials, NF and DF, with degrees m and n
respectively. We can define relative degree function, 	, as

	ðFðsÞÞ ¼ 	
NFðsÞ

DFðsÞ

� �
¼ n�m:

Note that 	ðF1ðsÞF2ðsÞÞ ¼ 	ðF1ðsÞÞ þ 	ðF2ðsÞÞ and
	ðFðsÞFð�sÞÞ ¼ 2	ðFðsÞÞ.
The optimal controller has finitely many unstable poles

if F�opt is strictly proper, i.e., 	ðF�opt ðsÞÞ > 0. To show this,
we can write by using definition of F�opt and (8),

	ðF�opt ðsÞÞ ¼ 	ðG�opt ðsÞÞ,

¼
1

2
	
��
W1ðsÞW1ð�sÞ þW2ðsÞW2ð�sÞ

� ��2optW1ðsÞW1ð�sÞW2ðsÞW2ð�sÞ
��1�

,

¼ �
1

2
	
��
W1ðsÞW1ð�sÞ þW2ðsÞW2ð�sÞ

� ��2optW1ðsÞW1ð�sÞW2ðsÞW2ð�sÞ
��
,

¼ �
1

2
min

�
	ðW1ðsÞW1ð�sÞÞ,	ðW2ðsÞW2ð�sÞÞ,

	ðW1ðsÞW1ð�sÞW2ðsÞW2ð�sÞÞ
�
,

¼ �min
�
	ðW1ðsÞÞ,	ðW2ðsÞÞ,	ðW1ðsÞÞ

þ 	ðW2ðsÞÞ
�
:

Strictly properness of F�opt implies,

min 	ðW1ðsÞÞ,	ðW2ðsÞÞ,	ðW1ðsÞÞþ	ðW2ðsÞÞ
� �

< 0: ð15Þ

We know that 	ðW1ðsÞÞ � 0 and 	ðW2ðsÞÞ � 0, Foias
et al. (1996). Therefore, the inequality (15) is satisfied
if and only if 	ðW1ðsÞÞ � 0 and 	ðW2ðsÞÞ < 0 are valid
which means thatW1(s) is proper andW2(s) is improper.

Since we have ðW2NoÞ
�1
2 RH1 Foias et al. (1996),

we can conclude that the plant is strictly proper.

The same proof is valid for the suboptimal case. œ

We know that the suboptimal H1 controllers are

written as (10). It is possible to rewrite the suboptimal

controllers as,

where

P1ðsÞ ¼
L1ðsÞ þ L2ðsÞmnðsÞF�ðsÞ

nE�ðsÞnmdðsÞ
,

P2ðsÞ ¼
L2ð�sÞ þ L1ð�sÞmnðsÞF�ðsÞ

nE�ðsÞnmdðsÞ
,

9>>>=
>>>;

ð16Þ

and nE�, dE� and nmd, dmd are minimal order coprime
numerator and denominator polynomials of
E� ¼ ðnE�=dE�Þ and md ¼ ðnmd=dmdÞ.

The unstable poles of Csubopt are the Cþ zeros of
P1 þ P2U. If there exists a U 2 RH1 with kUk1 < 1,
such that P1 þ P2U has no unstable zeros, then the
corresponding suboptimal controller is stable.

Assume that F� is strictly proper which implies P1 and
P2 has finitely many unstable zeros. The suboptimal
controller is stable if and only if SU :¼ ð1þ ~PUÞ�1 is
stable where ~P ¼ ðP2=P1Þ. Note that since P1 and P2

has finitely many unstable zeros, we can write ~P as,

~P ¼
~M

~Md

~No

where ~M and ~Md are inner, finite dimensional and ~No

is outer and infinite dimensional. Finding stable
SU with U 2 H1 is considered as sensitivity
minimization problem with stable controller,
Ganesh and Pearson (1986). However, U has a norm
restriction as kUk1 � 1 in our problem. Note that U
can be written as,

UðsÞ ¼
1� SUðsÞ

SUðsÞ

� �
P1ðsÞ

P2ðsÞ

� �
:

Define 
opt as,


opt ¼ inf
U2H1

kSUk1 ¼ inf
U2H1

kð1þ ~PUÞ�1k1:

If we fix 
 as 
>
opt, then there exists a free parameter
Q with kQk1�1 which parameterizes all functions
stabilizing SU and achieving performance level 
.

CsuboptðsÞ ¼
N�1o ðsÞF�ðsÞ=dE�ðsÞdmdðsÞ
� �

ðL2ðsÞ þ L1ð�sÞmnðsÞF�ðsÞÞ

P1ðsÞ þ P2ðsÞUðsÞ
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The notation for the sensitivity function achieving
performance level 
 is SU,
ðQÞ.

Lemma 5: Assume that the weights in mixed sensitivity
minimization problem (3), W1 and W2, are proper and
improper respectively and 
o>
opt. If there exists Qo

with kQok1�1 satisfying

1� SU,
o
ðQoð j!ÞÞ

SU,
o
ðQoð j!ÞÞ

� �
P1ð j!Þ

P2ð j!Þ

� �����
���� � 1, ð17Þ

then the suboptimal H1 controller, Csubopt, is stable
and achieves the performance level � by selecting the
parameter U as

UðsÞ ¼
1� SU,
o

ðQoðsÞÞðsÞ

SU,
o
ðQoðsÞÞ

� �
P1ðsÞ

P2ðsÞ

� �
: ð18Þ

Proof: The result of Lemma is immediate. Since
Qo satisfies the norm condition of U and makes
SU,
ðQoÞ stable, the suboptimal controller has no right
half plane poles by selection of U as shown in
theorem. œ

There is no need to search for 
opt, since U has always
an essential singularity at infinity for the optimal case,
see Ganesh and Pearson (1986). By a numerical search,
we can find Qo satisfying the norm condition for U.
Instead of finding U resulting in a suboptimal stable
controller, the problem is transformed into finding Qo

satisfying the norm condition. The first problem needs
to check whether a quasi-polynomial has unstable
zeros. By Lemma 5, this problem is reduced into stable
function search with infinity norm less than 1 and a
norm condition for U. Conservatively, the search
algorithm for Qo can be done for first order bi-proper
functions such that QoðsÞ ¼ u1ððsþ zuÞ=ðsþ puÞÞ
where pu>0, zu 2 R, and ju1j � max f1, ðpu=jzujÞg. The
algorithm for this approach is explained below.

Algorithm: Assume that the optimal and central
suboptimal controllers have finitely many unstable
poles. We can design a stable suboptimal H1 controller
by the following algorithm.

(i) Fix �>�opt,
(ii) Obtain P1 and P2. If P1 has no unstable zero, then

suboptimal controller is stable for U¼ 0. If not,
go to step 3.

(iii) Define the right half plane zeros of P1 and P2 as
fpig

np
i¼1 and fsig

ns
i¼1 respectively. Define ~MdðsÞ and

~MðsÞ as

~MdðsÞ ¼
Ynp
i¼1

s� pi
sþ pi

, ~MðsÞ ¼
Yns
i¼1

s� si
sþ si

ð19Þ

and calculate

wi ¼ ~MdðsiÞ
� ��1

, zi ¼
si� a

siþ a
, i¼ 1, . . . ,ns where a> 0:

ð20Þ

(iv) Search for minimum 
 which makes the Pick
matrix positive semi-definite,

Q

Pði, kÞ
¼

lnð
2=wi �wkÞ þ j2�ðnk � niÞ

1� zi �zk
ð21Þ

where Q 2 C
ns�ns and n½:� is integer. Note that most

of the integers will not result in positive
semi-definite Pick matrix. Therefore, for each
integer set, we can find the smallest 
 and 
opt

will be the minimum of these values. For details,
see Ganesh and Pearson (1986).

(v) Fix 
 such that 
>
opt. For all possible
integer set, obtain gðzÞ 2 H1 with interpolation
conditions,

gðziÞ ¼ � ln
wi



� j2�ni: ð22Þ

Note that since g(z) has a free parameter q(z)
with kqk1 � 1, we can write the function as gq(z).
Then, search for parameters (u1, zu, pu) satisfying

max
!2½0,1Þ

ð1� SU,
ð j!ÞÞ

ðSU,
ð j!ÞP2ð j!ÞÞ=ðP1ð j!ÞÞ

����
���� � 1, ð23Þ

where

SU,
ðsÞ ¼ 
 ~MdðsÞe
�GQðsÞ,

GQðsÞ ¼ gq
s� a

sþ a

� �
9>=
>; ð24Þ

and QðsÞ ¼ u1ððsþ zuÞ=ðsþ puÞÞ as defined before.
If one of the parameter set satisfies the inequality,
then Qo ¼ u1, oððsþ zu, oÞ=ðsþ pu, oÞÞ and corre-
sponding U results in a stable suboptimal H1

controller, stop. If no parameter set satisfies the
inequality, repeat the procedure for sufficiently

high 
, until a pre-specified maximum is reached,
go to the next step.

(vi) Increase �, go to step 2, if a maximum pre-specified
� is reached, stop. This method fails to provide a
stable H1 controller.

An illustrative example is presented in x 6.2.
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6. Examples

Two examples will be given in this section. In the first
example, the optimal and central suboptimal controllers
have infinitely many unstable poles. By using the design
method in x 4, we show that there exists a stable
suboptimal controller even the magnitude condition in
(14) is violated for low frequencies. In other words,
the example illustrates that the conditions in
Theorem 1 are only sufficient.
The second example explains the design method for

suboptimal stable H1 controller when central controller
has finitely many unstable poles. The algorithm
is applied step by step as given in x 5.

6.1 Example with infinitely many unstable poles

Let the weight functions in mixed sensitivity problem (3)
be W1ðsÞ ¼ ð1þ 0:1sÞ=ð0:4þ sÞ and W2 ¼ 0:5, and
consider the plant

PðsÞ ¼
rpðsÞ

tpðsÞ
¼

P2
i¼1 rp, iðsÞe

�hisP3
i¼1 tp, iðsÞe

��is

¼
ðsþ 3Þ þ 2ðs� 1Þe�0:4s

s2 þ se�0:2s þ 5e�0:5s
: ð25Þ

The denominator of the plant, tp(s) has finitely many Cþ

zeros at 0:4672� 1:8890j, whereas rp(s) has infinitely
many Cþ zeros converging to 1:7329� jð5kþ 2:5Þ�
as k!1, k 2 Zþ. The plant satisfies assumptions
A.1–A.2. We can rewrite the plant P in the form (4)
where n¼ 2, m¼ 3,

RiðsÞ ¼
rp, iðsÞ

ðsþ 1Þ2
, and TjðsÞ ¼

tp, jðsÞ

ðsþ 1Þ2
:

One can see that R is an I-system whose conjugate
�R ¼ �ðð2ðsþ 1Þ þ ðs� 3Þe�0:4sÞ=ðsþ 1Þ2Þ has only one
Cþ zero, 0.247 and T is an F-system with two Cþ

zeros, 0:465� 1:890j. Therefore, assumptions A.3–A.4
are satisfied by Corollary 1 and the plant P can be
factorized as (2) using (5)

mn ¼M�R

R

�R
¼

s� 0:247

sþ 0:247

� �
ððsþ 3Þ þ 2ðs� 1Þe�0:4sÞ=ðsþ 1Þ2
� �
ð2ðsþ 1Þ þ ðs� 3Þe�0:4sÞ=ðsþ 1Þ2
� � ,

md ¼MT ¼
s2 � 0:93sþ 3:79

s2 þ 0:93sþ 3:79

� �
,

No ¼
�R

M �R

MT

T

9>>>>>>>>>>=
>>>>>>>>>>;

ð26Þ

where T ¼ ððs2 þ se�0:2s þ 5e�0:5sÞ=ðsþ 1Þ2Þ, No is outer,
mn, md are inner functions, infinite and finite
dimensional respectively. For details, see Gumussoy
and Özbay (2006b).

From Foias et al. (1996), the optimal performance
level is �opt ¼ 0:57. The optimal controller has infinitely
many Cþ poles converging to s ¼ 0:99� jð5kþ 2:5Þ�
as k!1, k 2 Zþ. If central suboptimal controller
(i.e., U¼ 0) is calculated for �¼ 0.67, it has infinitely
many Cþ poles converging to s ¼ 0:37� jð5kþ 2:5Þ�
as k!1, k 2 Zþ. The suboptimal controllers can be
written as (10) where

E� ¼
0:93þ 0:44s2

0:45ð0:16� s2Þ
,

F� ¼ 0:67
0:4� s

0:70þ 0:50s

� �
,

L2 ¼ 0:79s3 þ 2:51s2 þ 2:84sþ 3:43,

L1 ¼ s3 þ 1:49s2 þ 1:86sþ 0:65:

We will use the design method of x 4 to find a stable
suboptimal controller by search for U such that
kUk1 � 1. For simplicity, the algorithm is tried for the
case, UðsÞ ¼ u1.

(i) Fix � ¼ 0:67 > �opt ¼ 0:57,
(ii) k¼ 0.79 and f1 ¼ 1:33 are calculated.
(iii) n1¼ 1, ‘¼ 2, n1 þ ‘ is odd and jkj < 1. By using

Lemma 3, the admissible interval for u1 is
ð0:095, 0:96Þ.

(iv) L1UðsÞ is stable for u1 2 ð�0:19, 0:46Þ.
(v) Overall admissible values for U are u1 2
ð0:095, 0:46Þ. The values of !max and �max for all
admissible u1 range can be seen in figure 1.
One can minimize both !max and �max by finding
the intersection of two curves, i.e.,

uo1 ¼ argmin
u1

maxf!max, �maxg ¼ 0:35:

(vi) One can see that Nyquist plot in clockwise
direction of mnF�LU encircles �1 twice in clockwise
direction. Note that the unstable zeros of E�ðsÞ and
md are �1:45j, 0:47� 1:89j, respectively. Since the
zeros on the imaginary axis are excluded from
Nyquist plot, there are no unstable zeros of
1þmnF�LU.

Therefore, we can conclude that the suboptimal control-
ler is stable for UðsÞ ¼ 0:35 and achieves the H1 norm
�¼ 0.67. For practical implementation, the suboptimal
controller found can be represented as cascade and
feedback connections containing finite impulse response
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filter that does not have unstable pole-zero cancellations
in the controller, as explained in Gumussoy and Özbay
(2006b).

6.2 Example with finitely many unstable poles

For the plant (25) and weights W1ðsÞ ¼
ðð1þ 0:1sÞ=ð0:4þ sÞÞ and W2ðsÞ ¼ ð0:01sþ 0:5Þ, we find
the optimal performance level as �opt ¼ 0:59. The
corresponding optimal H1 controller can be written as
(7) which has unstable poles at 0:67� 14:09j,
0:11� 28:33j. Note that all suboptimal H1 controllers
for finite dimensional U will have finitely many unstable
poles by Corollary 2. Therefore we can apply the
algorithm in x 5.

(i) Fix � ¼ 0:60 > �opt ¼ 0:59,
(ii) The suboptimal controllers can be written as in (10)

where mn is given in (26) and

E� ¼
0:94þ 0:35s2

0:36ð0:16� s2Þ
,

F� ¼
0:36ð0:4� sÞ

0:0059s2 þ 0:31sþ 0:35
,

L2 ¼ 0:98s3 þ 2:45s2 þ 1:91sþ 2:10,

L1 ¼ s3 þ 1:64s2 þ 0:45sþ 1:61,

and U is a free parameter such that U 2 H1,
kUk1 � 1. We can obtain P1 and P2 from (16).
Note that P1 has Cþ zeros at
p1, 2 ¼ 0:64� 14:064j, p3, 4 ¼ 0:081� 28:314j and
P2 has Cþ zeros at s1, 2 ¼ 0:29� 28:31j,

s3, 4 ¼ 0:90� 14:035j and s5 ¼ 2:43. Therefore, the
central controller (when U¼ 0) for the chosen
performance level, �¼ 0.6, is unstable.

(iii) Note that Cþ zeros of P1 and P2 are defined in the
previous step. Then, ~Md and ~M can be defined as
(19) where ns¼ 4 and np¼ 5. By (20), wi and zi
can be calculated where conformal mapping
parameter, a, is chosen as 1.

(iv) For all possible integers sets, the minimum 

resulting in positive semi-definite Pick matrix
(21), is 
opt ¼ 6:15 in which all integers are
equal to 0.

(v) Fix 
¼ 100. The interpolation conditions for
g(z) can be written as in (22) where all integers,

ni, are zero. By the Nevanlinna–Pick interpolation,

(see, e.g., Foias and Özbay (1996), Zeren and

Özbay (1998)), gq(z) is obtained. By

transformation, GQ(s) can be calculated where

Q(s) is a parameterization term such that Q 2 H1

and kQk1 � 1. We will search for Q satisfying

the inequality (23) in the form of QðsÞ ¼ u1 with

ju1j � 1. Note that we choose zu ¼ pu ¼ 0 and all

functions in (24) and P1, P2 are defined before.

The search shows that (23) is satisfied for

u1 2 ½0:23, 0:33�. The magnitude of U( j!)
is shown for u1 ¼ 0:3 in figure 2. Note that

kUk1 � 1. As a result, stable H1 controller

achieves the performance level, �¼ 0.6. By

a numerical search, we can find many u1 values

for different 
 resulting in stable H1 controller

at �¼ 0.6 provided that U satisfies the norm

condition for chosen Q ¼ u1. The various u1
values resulting stable H1 controller can be seen
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Figure 2. jUð j!Þj for 
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in figure 3. We observe that as 
 is increased, the

range of u1 stabilizing the controller decreases.

7. Conclusions

In this paper, stability of H1 controllers are investi-
gated for general time-delay systems. Conditions on

the problem data (plant and the weights) are derived

that make the optimal and central suboptimal control-

lers unstable, with finitely or infinitely many Cþ poles.

A search method is proposed for finding stable

suboptimal controllers by properly selecting the free
design parameter U appearing in the parameterization

of all suboptimal H1 controllers for the class of time

delay systems considered. When the optimal and

central suboptimal controllers have finitely many Cþ

poles the search algorithm uses the Nevanlinna–Pick
interpolation to derive feasible parameters of the first

order U. When the optimal and central suboptimal

controllers have infinitely many poles in Cþ,

the search algorithm uses a Nyquist argument at

each step.
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