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bstract

Automated classification of proteins is indispensable for further in vivo investigation of excessive number of unknown sequences generated
y large scale molecular biology techniques. This study describes a discriminative system based on feature space mapping, called subsequence
rofile map (SPMap) for functional classification of protein sequences. SPMap takes into account the information coming from the subsequences
f a protein. A group of protein sequences that belong to the same level of classification is decomposed into fixed-length subsequences and they
re clustered to obtain a representative feature space mapping. Mapping is defined as the distribution of the subsequences of a protein sequence
ver these clusters. The resulting feature space representation is used to train discriminative classifiers for functional families. The aim of this
pproach is to incorporate information coming from important subregions that are conserved over a family of proteins while avoiding the difficult

ask of explicit motif identification. The performance of the method was assessed through tests on various protein classification tasks. Our results
howed that SPMap is capable of high accuracy classification in most of these tasks. Furthermore SPMap is fast and scalable enough to handle
arge datasets.

2007 Elsevier Ltd. All rights reserved.

ssifica

s
2
r
s
fi
s
a

b
t
m
I
o
e

eywords: Protein function prediction; Subsequence distribution; Function cla

. Introduction

Along with the recent advances in genome sequencing
echnologies, the number of protein sequences with missing
nnotations increases rapidly. Thus, computational classifica-
ion methods become valuable for providing a road map for
he biologist for further investigation of the excessive number
f unknown sequences in vivo. In general, in silico course of
ction for the classification of a new sequence is to find simi-
ar sequences whose functions are experimentally determined.
his is usually performed by searching public databases using

ocal alignment search tools such as BLAST or PSI-BLAST and
nnotations for the highest scoring hits are transferred onto the
ew sequence (Altschul et al., 1990, 1997). Although this sim-

le method performs well in many cases, it has some important
rawbacks such as excessive transfer of annotations, propaga-
ion of errors in the source database, threshold relativity and low
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ensitivity/specificity (Devos and Valencia, 2000; Gilks et al.,
005; Sasson et al., 2006; Friedberg, 2006). It has been shown
ecently that although inferring homology through sequence
imilarity generally holds for the 3D structure, it is far less justi-
ed for the function. Additional information than just pairwise
imilarity is needed to find more accurate annotations (Devos
nd Valencia, 2000).

Existing approaches to the computational classification
eyond simple homology-based transfer can be grouped into
hree classes: improved homology-based methods, feature-based
ethods, and subsequence-based methods (Pandey et al., 2006).

mproved homology-based approach still uses sequence homol-
gy, however it incorporates additional information (Andrade
t al., 1999; Riley et al., 2005; Martin et al., 2004), such as
ultiple sequence alignments or classifications of similarity

esults according to a hierarchical and structured organization
f functions like in Gene Ontology (GO) database (Ashburner

t al., 2000). On the other hand, both feature-based and
ubsequence-based approaches pursue discriminative method-
logy that explicitly models the differences between positive and
egative examples. Two approaches differ in the way how they
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xtract features from sequences. In the feature-based approach,
iologically meaningful properties of a protein such as fre-
uency of residues, molecular weight, secondary structure,
-gram frequencies, are extracted from the primary sequence.
hese properties are then arranged as feature vectors and used
s input to classification techniques such as artificial neural net-
orks (ANNs) or support vector machines (SVMs) (Duda et

l., 2000; King et al., 2000; Pasquier et al., 2001; Jensen et
l., 2002; Cai et al., 2003; Karchin et al., 2002; Cheng et al.,
005). On the other hand, conserved subsequences among a
lass of proteins are employed in subsequence-based methods.
he main idea is that, conserved subsequences among different
roteins are strong indicators of functional or structural sim-
larity because functionally important regions (catalytic sites,
inding sites, structural motifs) are conserved over much wider
axonomic distances than the sequences themselves. Thus, in
ubsequence-based approach feature vectors are constructed
ccording to the existence of specific motifs or domains in
he protein sequences. The critical step in this approach is the
xtraction and selection of motifs. One possibility is to use
otif information from protein databases (Ben-hur and Brutlag,

003; Wang et al., 2003) in which motifs are assumed to be
lready available for the family of proteins to be classified.
ost of the methods of subsequence-based approach attempt

o extract motifs explicitly for the given families (Hannenhalli
nd Russell, 2000; Wang et al., 2001; Liu and Califano, 2001;
unik et al., 2005; Blekas et al., 2005). Although motifs are
owerful discriminators even in low similarity (remote homol-
gy) situations, motif finding is a very difficult task, especially
or protein sequences since there are 20 different amino acids
nd many plausible mutations. Multiple sequence alignments
nd other computational pattern extraction algorithms are often
mployed for motif finding. Unfortunately, algorithms that can
nd optimal solutions in all of these methods have exponential

ime complexities, hence approximation or heuristic algorithms
re used instead. As a consequence, there is always the risk
f missing some relatively implicit motifs. Furthermore, classi-
al motif finding algorithms find a specified number of motifs
ven if there are not that many biological motifs in the family.
hese insignificant additional motifs might reduce the accuracy
f the classification. One other issue is that, depending on the
lassification task, proteins to be classified might not have a
ommon motif at all. As an example, in the problem of subcel-
ular localization, when discriminating cytosolic proteins, it is
ot possible to find motifs specific to this class. Methods that
onsider overall sequence similarity may perform better in such
ases.

In this study, we describe a feature space mapping, called
ubsequence profile map (SPMap), that takes into account the
nformation coming from the subsequences of a protein. Our
pproach incorporates the information coming from important
ubregions that are conserved over a family of proteins as well as
he overall sequence similarity. Instead of focusing on function

pecific motifs, SPMap considers all of the subsequences as a
istribution over a quantized space by discretizing and reduc-
ng the dimension of an otherwise huge space of all possible
ubsequences.

m
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t
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. Systems and Methods

The system described in this study is based on a discrimina-
ive method which requires positive and negative examples to
lassify and annotate proteins whose functions are not known.
nstead of looking for the overall similarity of protein sequences,
e make use of the distribution of short subsequences of
given protein over a subsequence profile map. We gener-

ted the profiles using all possible fixed-length subsequences
f the protein sequences in the positive training set. Similar
ubsequences were clustered together and clusters were repre-
ent as probabilistic profiles. The major reasoning behind this
pproach is that, subsequences extracted from the conserved
egions are more frequent than any other subsequence extracted
rom the positive training data. If the frequent subsequences
re represented as dimensions of feature vectors, discrimina-
ive methods can make use of this information. If there is a
onserved motif or a domain in the given sequences or there
s an overall similarity between sequences, they would pro-
uce similar distributions on the profile map. Classifiers such
s support vector machines (SVMs) may then identify these
imilar distributions and hence improve the classification accu-
acy.

In order to perform the classification, SVMs were used. We
onstructed fixed dimensional vectors that represent the subse-
uence distribution information. There are two critical steps in
PMap as shown in Fig. 1:

. subsequence profile map construction,

. feature vector generation and classification.

.1. Subsequence Profile Map Construction

In SPMap, feature space representation of a protein sequence
s the distribution of its subsequences over a map of generative

odels. General framework for finding this generative feature
ap is summarized as follows.

Subsequence Extraction Module: Extract all possible subse-
quences of a given length from positive training sequences.
Clustering Module: Cluster similar subsequences by an
appropriate clustering method.
Profile Construction Module: Build a model for each cluster.

The important step here is the clustering of subsequences.
ote that the space of all possible subsequences of length l is
f size 20l, since there are 20 possible amino acids. Instead
f working in this very high dimensional space, we quantized
his space using the clusters of subsequences that are actually
xisting in the positive training examples. One should note that,
s we clustered the subsequences, we were not actually look-
ng for underlying groupings. The aim here was to generate a
eaningful quantization of the subsequence space that espe-
ially represent groups of frequent and similar subsequences in
he positive training data. These subsequences might have been
onserved because of their importance for the function of that
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ig. 1. SPMap flow diagram. (A) Subsequence profile map construction: subseq
rofile map. (B) Classification: constructed profile map is utilized to find the fe

lass of proteins and we wanted our feature space to take them
nto account. Clustering algorithm is given in Algorithm 1. It
s similar to the average link hierarchical clustering, however
t can be implemented very efficiently without calculating all
he pairwise distances. Initially the number of clusters is set
o 0. Each subsequence is compared against all of the existing
lusters and average similarity to the elements of each cluster
s calculated. A subsequence is assigned to the cluster, Cmax,
hich gives the maximum average similarity value. If the simi-

arity to Cmax is less than a threshold, δ, a new cluster is created
nd the subsequence is assigned to the new cluster. Similar-
ty between two subsequences x and y was calculated by the
ormula

(x, y) =
l∑

i=1

M(x(i), y(i)) (1)

here l is the length of the subsequences and M(x(i), y(i))
s the value in the similarity matrix for the ith elements of

and y. For M, we used an amino acid similarity matrix,
ince it allows us to incorporate evolutionary information in
nding and representing important conserved regions of a fam-

ly of proteins. The final number of clusters depend on the

hreshold value δ. If it is set to a high value, clusters will be
maller only allowing very similar subsequences and the total
umber of clusters will be high. If it is set to a low value,
iologically unrelated subsequences might end up in the same
luster.

w
t
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a
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es of the proteins in positive training set are clustered to construct subsequence
space representation of the protein sequence to be classified.

lgorithm 1. Clustering Algorithm.

After the clustering step, we generated a probabilistic profile
or each cluster. A probabilistic profile PPk for cluster k, is an
× 20 matrix, where l is the length of a subsequence. Entry
k(i, j) of this matrix represents the probability of amino acid j

o occur at the ith position of the subsequence. Given a cluster
k, the profile for this cluster is calculated by the following
quation:

Pk(i, j) = log
φk(i, j) + κ

|Ck| (2)

here φk(i, j) represents the count of the amino acid j at posi-

ion i of the subsequences in Ck. We added a pseudo-count κ for
mino acids at each position to avoid over-fitting and zero prob-
bilities. Actually, we took the log of the profiles and worked
ith log-probabilities in the conversion step.
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Table 1
Average ROC scores and standard deviations for subcellular localization
predictions

Localization Data size Mean ROC S.D.

ER targeted 3115 0.97 0.006
Cytoplasmic 1789 0.95 0.005
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.2. Feature Vector Generation

Proteins were represented in the feature space as the distri-
ution of their subsequences over the generated subsequence
rofile map. All the subsequences of a protein were extracted
o construct a feature vector. Each subsequence x was com-
ared with each probabilistic profile PPk and a probability was
alculated as

(x|PPk) =
l∑

i=0

PPk(i, x(i)). (3)

The value for the kth dimension of the feature vector V is set
o

(k) = maxxi ∈ SP(xi|PPk), (4)

he probability of highest scoring subsequence of protein S on
robabilistic profile PPk. This algorithm is similar to the vector
eneration algorithm presented in Blekas et al. (2005) with the
ifference that we set V (k) to 0 if the probability is very small.

.3. Classification

Once the protein sequences are mapped onto the feature
pace, any numerical machine learning tool can be employed.
ur choice was to use SVMs since they are experimentally
roven to be successful for various problems (Cristianini and
hawe-Taylor, 2000). Radial basis function (RBF) was chosen
s the kernel for SVM. In all of the experiments, SVM param-
ter C and RBF kernel parameter γ were fixed to be 2 and
.05, respectively. SVM-light software was used for learning
nd classification steps (Joachims, 1999).

.4. Experimental Setup

In all of the experiments, BLOSUM62 matrix was employed
o calculate the similarity between subsequences (Henikoff and
enikoff, 1992) although it is possible to use different similarity
atrices depending on the sequence divergence or the taxo-

omic distance between the proteins to be classified (Atalay and
etin-Atalay, 2005; Tomii and Kanehisa, 1996). BLOSUM62

s shown to be useful for a wide range of problems and is the
efault selection for most of the alignment tools (Altschul et
l., 1990, 1997). Length of the subsequences was set to 5. Set-
ing the subsequence length to 5 did not mean that we sought
or motifs of 5 amino acid length. In SPMap, motifs were the
verall distribution of the subsequences over the profiles con-
tructed from resulting 5 length subsequence clusters. Hence
ubsequence length 5 allowed us to capture longer motifs as a
istribution over more than one profile. We tested the perfor-
ance of SPMap by changing the subsequence length in the

nterval [5,12] on selected sample sets of data. We observed that
lthough there were differences in the performance with respect

o the change in the subsequence length, 5 was the optimal in the
ense of performance versus computational complexity. Thresh-
ld similarity score δ in Algorithm 1 was fixed to 8 where
he expected similarity score of two random subsequences of

(
u
S
o

itochondrial 1148 0.96 0.006
uclear 2225 0.96 0.005

ength 5 using BLOSUM62 matrix is −5.325. Compared to the
xpected value, 8 is high enough to disallow random similari-
ies. Extensive tests with different threshold values showed that

performed better in most of the test cases and it was set as
efault in all of the experiments.

. Results

.1. Subcellular Localization

The idea of subsequence distribution was first proposed in
2SL (Atalay and Cetin-Atalay, 2005). However, we developed
ore robust, reliable and efficient method for this idea. In order

o be able to show the improvement, we first performed tests on
he subcellular localization dataset on which P2SL was trained
nd tested. Dataset was composed of four different classes,
amely ER targeted (ER), cytoplasmic (C), mitochondrial (M)
nd nuclear (N) (Atalay and Cetin-Atalay, 2005). ER targeted
nd mitochondrial proteins have signal peptides of length 25 and
5 amino acids, respectively, at the N-terminal of the proteins.
hile extracting subsequences for feature map construction we

sed first 30 amino acids for ER targeted proteins and first
0 amino acids for mitochondrial proteins. Two types of tests
ere performed. First, in a one-versus-all setting, ROC scores
ere calculated for each localization and results are given in
able 1.

In the second test case, classifiers for each localization were
ombined using the winner-take-all principle. Each test sam-
le was assigned to the location whose classifier produced the
ighest SVM score. The confusion matrix obtained by averag-
ng fourfold cross-validation tests and their comparison with
2SL results are given in Table 2 (Atalay and Cetin-Atalay,
005).

.2. G-protein-Coupled Receptor Subfamily Classification

Tests are subsequently carried on G-protein-coupled receptor
GPCR) subfamily classification problem that was extensively
tudied in the literature. Consequently, GPCR subfamily clas-
ification constitutes a good benchmark dataset for comparing
ith other methods. For GPCR subfamily classification, we
sed the dataset presented in Karchin et al. (2002) to compare
ith the results of various classifiers presented in Karchin et al.
2002) and Cheng et al. (2005). Same train and test splits were
sed for twofold cross validation for fairness of comparison.
PMap was tested on level I and level II subfamily classification
f GPCR proteins. In level I subfamily classification, there
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Table 2
Confusion matrix representing average percentage results of fourfold prediction
tests compared with P2SL results

Actual Predicted label

N (%) C (%) M (%) ER (%)

N
SPMap 89.83 7.5 1.1 1.58
P2SL 75.34 19.94 3.29 1.43

C
SPMap 7.14 89.05 1.8 2.02
P2SL 14.66 79.33 3.65 2.36

M
SPMap 2.09 5.4 89.29 3.22
P2SL 3.31 7.23 83.80 5.66

ER
SPMap 2.07 2.5 1.41 94.03
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Table 4
Comparison of success rates of various classifiers on six major enzyme classes
calculated with leave-one-out cross-validation

Classes Total Success (%)

Lu et al. Blast Psi-Blast SVM-Prot SPMap

Oxidoreductase 436 93.53 89.68 91.06 73.62 80.73
Transferase 832 93.63 88.46 87.98 82.45 66.23
Hydrolase 741 94.20 86.10 86.77 77.33 71.93
Lyase 170 75.29 75.29 70.59 68.82 94.12
Isomerase 114 74.56 73.68 73.68 68.42 96.49
L
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P2SL 4.89 6.19 3.29 85.63

ere 1269 sequences from 19 subfamilies within classes A
nd C in addition to 149 non-GPCR sequences. In level II
ubfamily classification, there were 1170 GPCR sequences
rom 70 different level II subfamilies. Some of the sequences
n level I subfamily classification have no level II subfamily
lassification and some of the level II subfamilies only have one
rotein so they are grouped as other sequences with non-GPCR
equences. Datasets and train and test splits are available at
ttp://www.soe.ucsc.edu/research/compbio/gpcr/subfamily seqs

The comparison of accuracy of various classifiers and SPMap
s presented in Table 3. Fisher-SVM, BLAST, SAM-T2K HMM,
nd kernNN methods were presented in Karchin et al. (2002)
nd Decision Tree and Naı̈ve Bayes methods were presented in
heng et al. (2005).

.3. Enzyme Class Classification

Finally we evaluated the performance of SPMap on enzyme
lass classification. Enzymes play a central role in many of
he biological functions in a cell. They are indispensable for
nderstanding the molecular systems in a cell and are important
rug targets. Hence accurate classification is very important in

nzyme research.

Dataset for enzyme classification is extracted from BRENDA
atabase (Schomburg et al., 2002). International Union of
iochemistry and Molecular Biology defines the numerical clas-

able 3
omparison of accuracy of various classifiers at GPCR levels I and II subfamily
lassification

lassifier Level I accuracy Level II accuracy

LAST 83.3 74.5
ecision Tree 77.3 70.8
isher-SVM 88.4 86.3
ernNN 64.0 51.0
aı̈ve Bayes 93.0 92.4
AM-T2K HMM 69.9 70.0
PMap 95.4 93.8
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igase 150 89.33 90.00 88.67 37.33 88.00

ification scheme for enzymes based on the chemical reactions
hey catalyze. Each enzyme is described by a sequence of four
umbers (EC numbers) resulting from a four-level hierarchy
here first number specifies the most general class and the

ast one specifies the most specific. At the highest level there
re six major classes of enzymes. Automated prediction meth-
ds are successfully applied to enzyme classification according
o the first (Lu et al., 2007) and second level of EC numbers
Cai et al., 2003). We also performed tests according to the
rst and second EC numbers. On the first level there are six
ajor classes of enzymes. Dataset used for this level is pre-

ented in Lu et al. (2007). Each class is filtered so that there
re no pair of proteins with more than 25% sequence iden-
ity. The success rates for various methods and SPMap for
ix classes with leave-one-out cross-validation is presented in
able 4.

We also classified proteins according to their first two EC
umbers, resulting in 56 classes. We omitted classes with very
ew members. Sensitivity and specificity values calculated over
ourfold cross validation are presented in Table 5. This classi-
er for 56 enzyme classes is available as an online service at
ttp://gen.ceng.metu.edu.tr/spmap/cgi-bin/enzyme.cgi.

. Discussion

.1. Computational Complexity

SPMap is composed of two main parts. First part is the sub-
equence profile map construction. It is only performed once
or a new classifier to be trained. Hence, its efficiency does
ot affect the performance during the classification of new
equences. The most expensive part of the map construction is
he clustering of subsequences. Most of the standard clustering
lgorithms require numerical vectors to work on. More specif-
cally, they require a metric to calculate the distance between
he cluster representations and data points and a method to
pdate these cluster representations throughout the course of
he algorithm. These methods usually perform O(nk) distance
alculations where n is the number of data points and k is the

umber of clusters. They require the number of clusters k to
e given at the start. There are also clustering algorithms that
se only pairwise distances between data points. They do not
equire the number of clusters k as a parameter but they have

http://www.soe.ucsc.edu/research/compbio/gpcr/subfamily_seqs
http://gen.ceng.metu.edu.tr/spmap/cgi-bin/enzyme.cgi
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Table 5
Sensitivity (TP/(TP + FN)) and specificity (TN/(TN + FP)) values for 56 enzyme class classifiers calculated over fourfold cross validation

Enzyme class Data size Sensitivity Specificity

EC 1.1 Acting on the CH–OH group of donors 8878 95.33 85.05
EC 1.2 Acting on the aldehyde or oxo group of donors 4099 91.63 97.17
EC 1.3 Acting on the CH–CH group of donors 2455 85.75 98.09
EC 1.4 Acting on the CH–NH2 group of donors 1573 88.64 99.74
EC 1.5 Acting on the CH–NH group of donors 1244 81.35 99.72
EC 1.6 Acting on NADH or NADPH 5572 94.54 95.85
EC 1.7 Acting on other nitrogenous compounds as donors 802 83.67 99.93
EC 1.8 Acting on a sulfur group of donors 1699 89.94 99.82
EC 1.9 Acting on a heme group of donors 1620 93.99 98.51
EC 1.10 Acting on diphenols and related substances as donors 813 86.86 99.98
EC 1.11 Acting on a peroxide as acceptor 1267 91.56 99.97
EC 1.12 Acting on hydrogen as donor 243 68.89 99.97
EC 1.13 Acting on single donors/with incorporation of molecular oxygen (oxygenases) 1048 87.66 99.97
EC 1.14 Acting on paired donors, with incorporation/or reduction of molecular oxygen 1909 83.3 98.42
EC 1.15 Acting on superoxide radicals as acceptor 935 93.56 99.99
EC 1.16 Oxidising metal ions 142 65.71 99.96
EC 1.17 Acting on CH or CH2 groups 1063 90.31 99.92
EC 1.18 Acting on iron–sulfur proteins as donors 745 91.94 99.97
EC 1.20 Acting on phosphorus or arsenic in donors 66 66.67 99.99
EC 1.21Acting on X–H and Y–H to form an X–Y bond 60 88.89 100
EC 1.97 Other oxidoreductases 169 80.95 99.99
EC 2.1 Transferring one-carbon groups 6061 92.28 90.97
EC 2.2 Transferring aldehyde or ketonic groups 1058 94.32 99.94
EC 2.3 Acyltransferases 6149 92.52 91.55
EC 2.4 Glycosyltransferases 6004 92.65 89.54
EC 2.5 Transferring alkyl or aryl groups, other than methyl groups 5188 93.94 96.73
EC 2.6 Transferring nitrogenous groups 2011 95.22 99.85
EC 2.7 Transferring phosphorus-containing groups 23424 89.78 91.08
EC 2.8 Transferring sulfur-containing groups 982 87.35 99.91
EC 2.9 Transferring selenium-containing groups 72 88.89 100
EC 3.1 Acting on ester bonds 9879 74.79 96.05
EC 3.2 Glycosylases 4789 93.76 91.98
EC 3.3 Acting on peptide bonds (peptidases) 5945 93.4 87.48
EC 3.5 Acting on carbon–nitrogen bonds, other than peptide bonds 5942 90.28 88.25
EC 3.6 Acting on acid anhydrides 7430 96.23 88.22
EC 3.7 Acting on carbon–carbon bonds 66 81.25 100
EC 3.8 Acting on halide bonds 101 49.33 99.98
EC 4.1 Carbon–carbon lyases 7606 93.77 87.95
EC 4.2 Carbon–oxygen lyases 7211 93.23 87.46
EC 4.3 Carbon–nitrogen lyases 1264 91.14 99.89
EC 4.4 Carbon–sulfur lyases 626 82.91 99.8
EC 4.6 Phosphorus–oxygen lyases 614 91.28 99.9
EC 4.99 Other lyases 297 90.99 99.98
EC 5.1 Racemases and epimerases 2030 92.18 99.66
EC 5.2 cis–trans-Isomerases 1232 92.86 99.92
EC 5.3 Intramolecular isomerases 2910 90.65 99.18
EC 5.4 Intramolecular transferases (mutases) 2195 88.57 99.37
EC 5.5 Intramolecular lyases 135 71.72 99.98
EC 5.99 Other isomerases 1418 95.57 99.96
EC 6.1 Forming carbon–oxygen bonds 6285 97.05 98.39
EC 6.2 Forming carbon–sulfur bonds 1112 93.17 99.91
EC 6.3 Forming carbon–nitrogen bonds 6784 94.53 95.25
EC 6.4 Forming carbon–carbon bonds 785 94.9 99.87
EC 6.5 Forming phosphoric ester bonds 433 89.2 99.97
E

t
b
N
e

C 6.6 Forming nitrogen-metal bonds
o perform O(n2) pairwise distance calculations and that might
e very inefficient in terms of time and memory for large n.
ote that n in this case is the total number of subsequences

xtracted from all of the positive training examples, which is

r
e
T
s

118 90.81 99.97
oughly the number of amino acids in the positive training
xamples. However, Algorithm 1 can be implemented in O(nk).
he critical step is the calculation of the average distance of
ubsequence xi to the cluster u given in the following equa-
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ion:

u =

∑

xj ∈ Cu

s(xi, xj)

|Cu| (5)

With this definition, Algorithm 1 requires n2 pairwise sub-
equence similarity calculations. Combining Eqs. (1) and (5)
nd rearranging the formula, su can be written as given in the
ollowing equation:

u =
l∑

t=1

20∑

j=1

f t
u(aj)M(xi(t), aj) (6)

here xi(t) denotes the amino acid appearing at the tth position
f the subsequence xi and M(xi(t), aj) is the entry of similarity
atrix for amino acids xi(t) and aj . f t

u(aj) represents the fre-
uency of amino acid aj at the tth position of subsequences in
luster u. The complexity of Algorithm 1 becomes O(nkl) where
is the length of the subsequences, k is the number of clusters,
nd n is the total length of all of the proteins in positive training
et. Since l, is an arbitrary but fixed parameter, it can be said that
t is O(nk) with respect to the size of the input sequences. k is
ependent on the threshold value δ given in Algorithm 1; but it
s around 1800 for the default δ value, 8. It is almost constant or
arying very slowly with the data size. The second part of the
resented method is construction of the feature vectors. Since
he probability of each subsequence of the protein against all
f the subsequence profiles must be calculated, it again can be
mplemented in O(nk)time. In this case, n represents the length
f the given protein to be mapped and k is the number of subse-
uence profiles. SPMap is linear in the size of the input data. It
s very efficient and scalable to handle large datasets.

.2. Performance Test Results

SPMap has a significant improvement over P2SL for sub-
ellular localization classification. The improvement is both in
erms of accuracy and computational efficiency. In order to dis-
retize the subsequence space, P2SL uses self-organizing maps
SOMs) which are hard to train because of the necessity of large
raining data and convergence problems. As a result different
uns on SOM might result in different feature spaces. P2SL is
rone to missing some important subsequences since it does not
onsider all possible subsequences. Since SOM requires numeri-
al vectors, P2SL encodes amino acids as 20 dimensional vectors
hich causes a 5 length subsequence to be represented as a
00 dimensional vector further complicating the SOM training.
PMap uses clusters of all possible subsequences for discretiza-

ion of subsequence space instead of SOM in P2SL. Similarity
etween subsequences are calculated using an amino acid simi-
arity matrix and standard string similarity calculation methods,
voiding high dimensional encoding of subsequences. One of

he advantages of SPMap is that it works well on wide range of
ifferent classification tasks with the default parameter values.
his makes it easier to use without expertise and optimization.
urthermore, our feature space mapping algorithm have only one

t

a
a
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arameter, the threshold value δ, which has a well performing
efault value in general.

We also investigated the performance of SPMap on functional
lassification tasks other than subcellular localization. In order
o assess and compare the capabilities of SPMap, we performed
ests on G-protein-coupled receptor subfamily level classifica-
ion. GPCRs are very important targets in drug design but known
o be hard to classify, because they have highly diverse family
t the sequence level (Moriyama and Kim, 2006). It can be seen
hat SPMap outperformed other classifiers in both level I and
evel II GPCR subfamily classification. To our knowledge, at
he time of writing this paper, Naı̈ve Bayes approach of Cheng
t al. (2005) was the best performing method on the benchmark
ataset presented in Karchin et al. (2002).

The application of SPMap on enzyme class classification
emonstrated that our method too generates comparable or better
esults to those obtained by previous studies. The dataset used for
he test on 6 major enzyme classes was filtered so that there are
o pair of proteins with more than 25% sequence identity. This
akes the classification task more difficult especially for the
ethods that only use sequence or subsequence similarity. Fur-

hermore, SPMap depends solely on the available training data
o generate the subsequence feature map, where the method pre-
ented in Lu et al. (2007) uses domains that are already available
n the databases. Nevertheless, results were interestingly com-
lementary. SPMap achieved very high accuracy when the other
ethods performed poorly and vice versa. For the second level

f enzyme hierarchy SPMap achieved high sensitivity in most
f the classes. We used all the available data in fourfold cross
alidation. As a result, a few classes with comparably large data
izes were biased towards false positives, hence relatively low
pecificity. Selecting a representative training subset for large
lasses might enhance the specificity of the classifier.

.3. Perspectives

Since supervised discriminative methods model the dif-
erences between families of positive and negative examples
xplicitly, they provide better solutions for most of the prob-
ems of function classification. Most widely used discriminative

ethod is the support vector machines (SVMs) combined with
n appropriate kernel or feature space mapping (Cristianini and
hawe-Taylor, 2000). The main issue in classification of pro-

eins according to their primary sequences is to find a kernel
r a feature mapping that captures the information hidden in
he important discriminative regions of the given sequences.
ince, functionally important regions (catalytic sites, binding
ites, structural motifs) are conserved over much wider tax-
nomic distances than the sequences themselves, conserved
ubsequences among different proteins are strong indicators of
unctional or structural similarity. Hence, SPMap pursued a new
pproach based on distribution of subsequences over a map
onstructed using the actual protein sequences in the positive

raining set.

The idea of constructing similarity graphs of subsequences
nd extracting motifs from the clusters of these graphs was
lready exploited for DNA sequences (Fratkin et al., 2006). In
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PMap, we did not try to identify the motifs explicitly. We just
et the classification algorithm learn which subsequence distri-
utions are in fact discriminative. One advantage of SPMap is
hat it allows further investigation of these constructed profiles
o identify motifs of positive training family. As a feature study,
onstructed profiles can be investigated to see how similar or dif-
erent they are, compared to the aligned regions resulting from
multiple sequence alignment of that family of proteins.

One further step may be identifying disordered regions and
xtracting subsequences from these regions. Most of the active
ites, catalytic sites, etc. lies along disordered regions (Dunker
t al., 2002; Wright and Dyson, 1999). This would reduce the
umber of unrelated subsequences hence the noise during the
eature map construction.

One reason the discriminative methods do not receive as
uch attention among the biologists compared to the standard

equence alignment methods is the requirement of handling
arge number of functional classes. It is almost prohibitive if one
ants to perform the classification in a one-versus-one scheme.

n this study we preferred to use one-versus-all classification. If
he number of classes is large, it would be infeasible to use all of
he proteins in the negative classes. One-class classifiers might
rovide a good solution for this problem.

The use of discriminative classifiers is confined to selecting
he correct function among a small set of functional classes. In
rder to develop a general annotation system with a discrimi-
ative approach, one might define a hierarchical classification
ystem over a function ontology structure. Examples of two such
nnotation systems are Gene Ontology (GO) and Mips Func-
ional Catalogue (FunCat) (Ashburner et al., 2000; Ruepp et al.,
004). Although GO is an intensively used annotation system,
mplementing such a discriminative framework over GO hier-
rchy might pose (present) some problems. First, GO describes
ene products with fine granularity resulting in thousands of
erms. As a result many terms have none or very few gene prod-
cts. One should carefully filter and generate relevant classes for
he classification system. Secondly, GO allows directed acyclic
raphs in its hierarchy, further complicating the selection of
erms to generate classes for the discriminative system. Being

tree hierarchy with especially relevant terms, FunCat might
rovide an easier framework to develop a general discriminative
nnotation framework. Once such a framework is established,
ach classifier might be extended to incorporate useful informa-
ion other than the primary sequence, such as structural motifs or
tructural alignments (Can and Wang, 2004; Sacan et al., 2007).

. Conclusion

We described a discriminative system for functional classifi-
ation of protein sequences. It uses a subsequence similarity
ased feature space mapping, SPMap, to convert protein
equences into vector representations. The main idea was to
onsider the distribution of the subsequences of a given protein

ver a set of subsequence profiles as its feature representa-
ion. SPMap outperformed P2SL tool in subcellular localization
nd various well known methods in GPCR subfamily classifi-
ation. In enzyme class classification SPMap produced better

H
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r at least comparable results to some of the existing meth-
ds.

Our results showed that using subsequence distributions over
quantized space as a feature space for classification of proteins

s an effective method in wide range of different classification
roblems. Furthermore, the proposed method is computationally
fficient and capable of handling large datasets.
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