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Abstract

The Zeeman splitting of the ground and the first excited level of a Gaussian GaAs quantum dot is studied in the presence of

electron–longitudinal-optical (LO)-phonon interaction incorporating the spin of the electron and is compared with the case of a

parabolic dot. It is shown that the Zeeman splitting is suppressed because of the polaronic interaction and becomes strongly size

dependent, but the parabolic confinement overestimates this Zeeman suppression. It is also shown that although the energy levels are

split because of the spin–field interaction, the cyclotron frequencies and the Zeeman lines are independent of the electron spin in the

dipole transition.

r 2008 Elsevier B.V. All rights reserved.
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The subject of quantum dots has remained in the focus of
attention for the last three decades or so for both academic
and practical reasons [1]. In this context, semiconductor
quantum dot structures have drawn particular attention for
their potential applications in nano-semiconducting and
optoelectronic devices like single electron transistors, quan-
tum dot lasers, ultra-fast computers and so on. Several early
experiments [2], and subsequent theoretical investigations [3]
have revealed that Kohn’s theorem [4] or more precisely a
generalization of it is valid in a quantum dot which suggested
that the confining potential would be parabolic in such
a system. Consequently, a large number of theoretical
investigations have been carried out in this area in the last
two decades taking the confinement potential as parabolic
e front matter r 2008 Elsevier B.V. All rights reserved.
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[5]. Since most of the quantum dot structures available today
are made of polar semiconductors, and the electron–phonon
interaction energy scale is almost comparable to the other
energy scales of the problem, there have also been several
investigations on the polaronic effects in parabolic semi-
conductor quantum dots and a good deal of literature [6] has
already piled up on this subject.
However, in recent years a few groups [7] have observed

that their experimental results do not support the validity
of the generalized Kohn theorem in quantum dots. Rather,
their observations suggest that the confining potential is
non-parabolic and should be in the form of a finite well.
This has provided a renewed impetus in the research of the
electronic energy spectra and the associated phenomena in
quantum dots. Using a three-dimensional (3D) spherical
rectangular potential well of finite depth, Szafran et al. [8]
and Bednarek et al. [9] have been able to successfully
describe, albeit qualitatively, the charging of quantum
dots. Subsequently, Szafran et al. [10] have quantitatively
explained the capacitance-spectroscopy data for self-
assembled quantum dots simulating the confining potential
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by a 3D cylindrical potential well. Recently, Adamowsky
et al. [11] have proposed an attractive Gaussian confining
potential for the investigation of the properties of excess
electrons in quantum dots. This potential has a finite depth
and in the neighbourhood of the dot centre would behave
like a parabolic potential and would also approximately
satisfy the generalized Kohn theorem. Furthermore, in
contrast to the rectangular potential well, it is continuous
at the dot boundaries and this makes it easier to handle
mathematically. Also, it has a central minimum as required
for a physical potential and the force experienced by the
particles within this potential well is non-zero which is
also a desirable feature. The other advantages with the
Gaussian confining potential vis-a-vis a parabolic potential
are that the former allows for, in addition to the ex-
citations, also the ionization (charging) and tunnelling
processes. We would like to mention in passing that the
Gaussian potential has been used in various branches of
physics and has been solved approximately for a single
particle problem by several authors [12].

As already mentioned, a large number of investigations
have been carried out to study the polaronic effects in
parabolic quantum dots (PQDs) and in quantum dots with
square and spherical well confining potentials [6], but there
has not been much investigation, to our knowledge, with a
Gaussian confinement. Since, it has been recently shown
[11] that the parabolic potential is only a poor approxima-
tion of the more realistic Gaussian potential, it would
indeed be important to study the polaronic effects in a
quantum dot with a Gaussian confinement. Another
important issue to ponder about in this context is whether
polaronic interactions can have observable effects in a
quantum dot. These effects, if present, deserve to be
incorporated in the calculation of the transport and optical
properties of a quantum dot because they will be important
from the point of view of device applications. It is therefore
very important, in this context, to calculate polaronic
effects that can be measured experimentally and thus the
existence or otherwise of these effects can be substantiated
unambiguously. There had been some studies in the past
dealing with this aspect but those investigations were either
incomplete or were not close enough to real systems [13].
The purpose of the present work is to make a more realistic
investigation. In particular, we shall calculate the low-lying
electronic energy levels in a GaAs quantum dot in the
presence of an external magnetic field and the electro-
n–longitudinal-optical (LO)-phonon interaction for both
Gaussian and parabolic potentials incorporating the spin
of the electron and study the effect of confinement and
polaronic interaction on the Zeeman splitting. Since the
Zeeman lines can be experimentally observed, the present
study can be decisive in predicting the nature of the
confining potential and also the existence or otherwise
of polarons in the polar quantum dots.

The Hamiltonian for an electron of Bloch mass m�

moving in a two-dimensional (2D) Gaussian potential V 0

and interacting with the LO phonons of dispersionless
frequency o0 of the system in the presence of an external
magnetic field B0 may be written by modifying the Fröhlich
Hamiltonian [14,15], as

H 0 ¼
~p0

2

2m�
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1
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where all vectors are 2D. ~r0ðx0; y0Þ refers to the position
vector of the electron, ~p0 is the corresponding linear
momentum operator, Lz0 is the z-component of the
angular momentum, o0c is the bare cyclotron frequency
given by o0c ¼ eB0=ðm�Þc, B0 being the magnetic field
applied in the z-direction, b�~q0 ðb~q0 Þ is the creation (annihila-
tion) operator for an LO phonon of wave vector ~q0 with
frequency o0 and x0~q0 is the electron–phonon interaction
coefficient and V 0ð~r0Þ is the confining potential which we
take as

V 0ð~r0Þ ¼ �V 00e
�r02=2R0

2

. (2)

We shall work in the Feynman units [16] in which the
energy is scaled by _o0, length by the weak-coupling
polaron radius, r0 ¼ ð_=m�o0Þ

1=2 and the wave vector by
q0 ¼ 1=r0. This is equivalent to putting _ ¼ m� ¼ o0 ¼ 1.
In these units, the dimensionless Hamiltonian reads
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where everything is dimensionless; H ¼ H 0=_o0, ~r ¼ ~r
0=r0,

~q ¼ ~q0=q0, ~p ¼ ~p0=_q0, V 0 ¼ V 00=_o0, R ¼ R0=r0, and
x~q ¼ x0~q0=_o0, where V0 is the depth of the confining
potential in dimensionless unit, R is the range of the
potential giving some kind of a measure of the effective
confinement length or the size of the quantum dot and x~q is
given by jx~qj

2 ¼ ð
ffiffiffi
2
p

pa=vqÞ, where a is the dimensionless
electron–phonon coupling constant and v represents the
volume of the 2D dot. It may be noted that we have also
added in the above Hamiltonian the spin–field interaction
where B is the dimensionless magnetic field, mB is the Bohr
magneton, sz is the z-component of the spin angular
momentum of the electron, and gs is the effective Lande-g
factor corresponding to the electron spin.
We assume that the deviation of the Gaussian confining

potential from the parabolic potential is small enough so
that it can be treated as a parabolic potential plus a
perturbation. This is a reasonable assumption for small r

and since in a quantum dot, r will be generally small, it can
be considered as a fairly good approximation. So we
rewrite the Hamiltonian (3) as

H ¼ H0 þH1 þH2, (4)
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where

H0 ¼
~p2
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where ~o2
h ¼ V 0=R2, ~o2 ¼ ~o2

h þ o2
c=4 and l ¼ 0 for a PQD

and l ¼ 1 for a Gaussian quantum dot (GQD). We assume
that the sole effect of H1 is to renormalize the frequency ~o.
So we treat H1 by the first-order perturbation theory at the
mean field level. More specifically we write H1 as
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where hr2i is the expectation value of r2 with respect to
ground state wave function of the harmonic oscillator
of frequency ~o. The GQD problem now essentially reduces
to an effective PQD problem described by Hamiltonian
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The effective unperturbed problem now satisfies the
Schödinger equation

Hunp½Fn;mð~rÞwsðzÞCph�

¼ ðE0
n;m;s þ �phÞ½Fn;mð~rÞwsðzÞCph�, (11)

where Fn;mð~rÞ is the unperturbed electronic wave function
given by the Fock–Darwin states
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jwsi is the eigenstate of the operator, sz ¼
1
2

sz and
corresponds to an up or a down-spin state and jCphi is
the eigenstate of the free phonon Hamiltonian

P
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~qb~q and
can be written as
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with the corresponding energy, �ph ¼
P

~q n~q, where n~q
is the number of phonons in the state ~q. E0
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where s ¼ �1. The second-order perturbative correction
DEð2Þ due to H2 can be written as
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The summation over the phonon states and s0 can be per-
formed easily and that over n0;m0 consists in calculating the
Green function of the unperturbed problem which can be
obtained using the Slater sum rule. We finally obtain for
the first few low-lying states
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The dipole selection rules allow the following transitions:

oðþÞc ¼ ½E0;1;1 � E0;0;1� ¼ ½E0;1;�1 � E0;0;�1�, (19)

oð�Þc ¼ ½E0;�1;�1 � E0;0;�1� ¼ ½E0;�1;1 � E0;0;1�. (20)

In the present work, we have considered a GaAs quantum
dot but the calculation can be applied to any quantum
dot in general. We have of course neglected the spin–
orbit interaction and as a result we have obtained only
two Zeeman lines with the energy splitting equal to
ðoðþÞc � oð�Þc Þ. Inclusion of spin–orbit interaction will
obviously cause additional splitting giving rise to a few
more Zeeman lines.
In Fig. 1, we show the behaviour of a few low-lying

energy levels for a GaAs quantum dot as a function of the
range of the potential R for a certain value of V 0 and
the magnetic field. We have plotted results for Gaussian
confinement as well as for parabolic confinement for the
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Fig. 1. The total energy of a single-electron GaAs quantum dot in a

magnetic field in the presence of electron–phonon interaction as a function

of the range of the confining potential, R for V 00 ¼ 36:7MeV both for

Gaussian and parabolic confining potentials.
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sake of comparison. As R decreases, the total energy
increases, and this increase becomes more and more rapid
for smaller values of R. This behaviour arises from the
most dominant term of the Gaussian potential which is
proportional to V0=R2. In the case of the parabolic
potential this is of course the only term. As R decreases,
this frequency increases rapidly leading to an increase in
the total energy. It is evident that the parabolic potential in
general gives a higher value for the total energy. This is
easy to understand because the additional infinite terms in
the Gaussian potential contribute negative energy pushing
the total energy down. For large R, the difference is,
however, rather small between the two potentials, but as R

decreases, the gap widens up so much so that a crossing of
energy levels occurs at some value of R. In Fig. 2, we plot
the total energy as a function of the magnetic field again for
both parabolic and Gaussian confining potentials for V 00 ¼

36:7meV and R0 ¼ 12:5 nm. The Zeeman splitting of the
energy levels is clearly visible in Fig. 2. The ground state
is split into two levels, one of which increases with
the magnetic field while the other one decreases with the
magnetic field. The first excited state splits into four levels,
two of which increase with the magnetic field while the
other two decrease, so that the splitting increases mono-
tonically with the magnetic field. The two levels in the
upper branch and as many in the lower one are the
spin–split levels. If the spin is ignored one would get only
single levels in the upper and lower branches of the excited
states while for the ground state there will be no splitting
at all. Dipole selection rules, however, allow only two
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transitions in the present case leading to two cyclotron
frequencies, oþc and o�c . In Fig. 3 we show the variation
of these two frequencies for a GaAs quantum dot as a
function of the magnetic field for both Gaussian and
parabolic confining potentials. We also plot the corre-
sponding curves for a ¼ 0 for the sake of comparison. One
can immediately observe that the parabolic potential
overestimates the cyclotron frequencies oþc and o�c both
for a ¼ 0:068 (GaAs) and a ¼ 0. For both a values, with
increasing magnetic field oþc increases while o�c decreases.
Another important thing is that the cyclotron frequencies
turn out to be independent of the spin. This of course will
not be true in the presence of the spin–orbit interaction,
when the selection rules will be governed by the total
angular momentum quantum number, j and the spin s

instead of just m and s. It is also evident that the inclusion
of the electron–phonon interaction reduces the cyclotron
frequencies for both parabolic and Gaussian potentials,
slightly more for the parabolic potential and furthermore,
it also makes the variation of the cyclotron frequencies
with the magnetic field a little slower. In quantum dots with
higher values of a, the effect of electron–phonon interac-
tion is expected to be even larger. All these suggest that
electron–phonon interaction cannot be ignored in a polar
quantum dot. The reason for the reduction in the cyclotron
frequencies in the presence of electron–phonon interaction
may be traced as follows. The electron in a quantum dot
with an embedded dynamical lattice is neither a bare
electron, nor just a Bloch electron, but a complex quasi-
particle with a heavier mass because of the formation of a
low-energy bound state called a polaron. Thus in the
present case, the cyclotron mass is nothing but the polaron
mass. Since the effective mass comes in the denominator of
the cyclotron frequency, the effective cyclotron frequency is
naturally expected to decrease in the presence of the
electron–phonon coupling and this is precisely what is
happening here. One can also study the variation of the
cyclotron mass with R. We believe that the values of the
cyclotron masses will diminish with increasing effective size
of the quantum dot. At this point it may be interesting to
look at the polaronic correction to the electron energy. In
Fig. 4 we show the variation of the polaron self-energy as a
function of R for a GaAs quantum dot for both Gaussian
and parabolic potentials. One may note that polaronic
effects become strongly pronounced as the size of the
quantum dot decreases. As the size increases, the polaronic
correction decreases and ultimately saturates to a constant
value giving the bulk limit. The polaronic correction,
however, as expected, does not depend on the spin state of
the electron. We also observe that the parabolic potential
overestimates the polaronic effect, more so for smaller
values of R. Thus we may conclude that parabolic potential
is a poor approximation for the Gaussian potential which,
as we have already argued, is a more realistic confining
potential. As already promised, our major goal is to
calculate a quantity that can be measured in the laboratory
so that the existence or otherwise of the polaronic effect
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can be tested experimentally. One such quantity is the
Zeeman splitting which is the difference between the two
cyclotron frequencies mentioned above. In Fig. 5 we plot
the Zeeman splitting as a function of a. We find that the
Zeeman splitting decreases with the increase of the
electron–phonon coupling. This is of course an interesting
result. One can of course guess this result from Fig. 3,
where we have seen that the cyclotron frequencies are
reduced by the electron–phonon coupling and their
variations are slower for a GaAs dot than in a dot with
a ¼ 0, other parameters remaining the same. This beha-
viour can be physically understood in the following way.
When an unperturbed excited level of the confining
potential in a zero magnetic field lies one LO-phonon
energy above the ground level, there is a strong mixing
of the excited level with the ground state resulting in
devaluation of the magnetic quantum number of the
excited level. The magnetic quantum number being
responsible for the Zeeman effect, one would then
naturally expect a suppression in the Zeeman splitting in
the presence of the electron–phonon interaction and this
suppression should be more and more as the electro-
n–phonon coupling is increased. Though this observation
is a clear manifestation of the presence of polaronic
interaction in a GaAs dot, it would be in a way impossible
to realize it in the laboratory since it is not possible to tune
the electron–phonon coupling parameter continuously in a
particular system. We would therefore like to study the
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Fig. 6. Zeeman splitting in a GaAs quantum dot as a function of R for

both parabolic and Gaussian confining potentials. The case for a ¼ 0 is

also shown for the sake of comparison.
variation of the Zeeman splitting as a function of R. The
results are shown in Fig. 6. One can easily see that in the
absence of the electron–phonon interaction, the Zeeman
splitting is independent of the size of the quantum dot both
for parabolic and the Gaussian potentials. For a ¼ 0:068,
i.e., in GaAs, there is, however, a strong suppression of the
Zeeman splitting, particularly as the size of the quantum
dot is reduced. The suppression is more in a parabolic dot
than in a Gaussian dot. The results are again not difficult
to understand. As we have already mentioned, the
electron–phonon interaction reduces the Zeeman splitting
and this is because of the enhancement in the effective
cyclotron mass caused by the polaron formation. With the
decrease in the quantum dot size, the polaronic effects
become more and more pronounced and as a result the
cyclotron mass becomes larger and larger leading to a
strongly size-dependent suppression of the Zeeman split-
ting. Since this effect can be observed experimentally, the
existence or otherwise of the polaronic effect in a GaAs
quantum dot can be verified experimentally. From the
magnitude of the suppression one can also hopefully find
out the nature of the confining potential. If observable, this
effect can also be utilized to have a desired resonant
absorption by tuning the size of the quantum dot using the
gate voltage and the lateral confinement.
In conclusion, we have shown that the total energy of a

half-spin electron in a GaAs quantum dot in the presence
of an external magnetic field and electron–phonon inter-
action increases with decreasing R, because of the con-
comitant increase in the frequency of the effective oscillator
potential. We have also shown that a Gaussian potential
generally yields a lower energy than a parabolic potential
because it contains infinite additional terms over and above
the parabolic potential that altogether makes an overall
negative contribution to the total energy. We have
furthermore shown that the magnetic field splits the energy
levels of the quantum dot which can be termed as a
Zeeman effect. In other words, in the presence of a
confining potential and the electron–phonon interaction,
the energy levels of a spin-half electron can be considered
as modified Landau levels. we find that for low-energy
processes, the dipole selection rules allow only two distinct
transitions between these Landau levels giving rise to two
cyclotron frequencies one of which increases with the
magnetic field while the other one decreases. It is also
observed that inclusion of spin does not affect the
cyclotron frequencies at all, though it does influence the
splitting of the individual energy levels. However, even in
the present case, the effect of the spin is expected to show
up in the thermodynamic quantities which require the
actual energy spectrum for their calculation. Of course, the
situation will certainly change if the spin–orbit coupling is
introduced. It turns out that a parabolic confining potential
overestimates the cyclotron energies. But the more
important observation, in our opinion, is the reduction in
the cyclotron frequencies due to the electron–phonon
interaction. This result can be attributed to the polaronic
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effect. Because of the polaron formation in a GaAs
quantum dot, the effective cyclotron mass undergoes an
enhancement leading to a devaluation of the cyclotron
frequencies. The polaron self-energies for the first few low-
lying states suggest that the polaronic effects become quite
significant if the quantum dot size is reduced below a few
nanometers. We have observed that the Zeeman splitting
decreases almost linearly with the increasing value of the
phonon coupling and the parabolic potential overestimates
this suppression as compared to a Gaussian potential.
Finally we have shown that the suppression of the Zeeman
splitting is strongly size dependent below a certain size
of the quantum dot and here again this suppression is
found to be overestimated by the parabolic potential. Thus,
we may conclude that a parabolic potential leads to sizable
deviations in the results vis-a-vis a Gaussian potential and
so it would be more practical to use the Gaussian potential
as a confining potential instead of a parabolic potential for
theoretical calculations. We claim that the size-dependence
of the Zeeman suppression should be observable in the
laboratory through infrared magneto-optical experiments
and would give an unambiguous experimental evidence
of the existence or otherwise of the polaronic effects in a
GaAs quantum dot. The size-dependent Zeeman suppres-
sion is also a clear manifestation of the quantum size effect
and can be usefully exploited to obtain a desired Zeeman
splitting just by tuning the confining potentials and the gate
voltage to achieve resonant absorption. This effect can also
be useful in quantum dot lasers.
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