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Abstract We consider the invariant ring for an indecomposable representation of
a cyclic group of order p? over a field F of characteristic p. We describe a set of
[F-algebra generators of this ring of invariants, and thus derive an upper bound for the
largest degree of an element in a minimal generating set for the ring of invariants. This
bound, as a polynomial in p, is of degree two.

0 Introduction
Let p : G — GL(n, F) be a faithful representation of a finite group G. Denote by
V = F" the n-dimensional vector space over F. Then G acts via p on V, which in

turn induces an action on the dual space V*. This extends to the symmetric algebra
S(V*) = F[V]. The algebra of invariant polynomials

F[V1¢ ={f e F[V]| g(f) = f.Vg € G} C F[V]

is a graded connected commutative Noetherian subalgebra of F[V], see [11] for a
general treatment of the subject. Let
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576 M. D. Neusel, M. Sezer

denote the smallest integer d such that F[V]¢ is generated as an F-algebra by homo-
geneous polynomials of degree at most d. In the nonmodular case, i.e., |G| € F*, we
have that

BFIVI%) < |G|,

see [11, Theorem 2.3.3] and the references there. This bound does not remain valid
in the modular case, i.e., when |G| = 0 € F. Indeed, Richmann constructed modular
representations V with arbitrarily large ﬁ(IF[V]G), see [12]. In other words, there
cannot be a degree bound for ,B(F[V]G) that depends only on the group, see [10] for
an overview in these matters.

In this paper we want to study rings of invariants of cyclic p-groups Z,- of order
p" over a field F of finite characteristic p. There are exactly p” indecomposable
Zpr-modules, which we denote by Vi, Va, ..., V,r, see [1, Chap. II], where V), has
dimension n as a vector space over F.

We note that Gobel’s bound gives, of course, a bound on the degrees of a generating
set of ]F[Vpr]ZP’ for any p and r, see [11, Corollary 3.4.4]. In this case we have

w2 <. ()]

This bound depends on the dimension of the representation which coincides in this
case with the order of the group.

If r = 1 and G = Z, is the cyclic group of prime order, then a general degree
bound for a minimal generating set of the ring of invariants for any Z ,-module V was
given in [5]. This bound is sharp, as the case of the regular representation of Z3z shows.

For the case r = 2 much less is known: In [9] we find an explicit description of the
ring of invariants IF[ V3]Z4 . This was generalized to F[ V), 1 | ]ZP2 in [13]. Furthermore, in
[8] we find an explicit description of the ring of invariants of the regular representation
of Z4.

We want to extend this study and find an upper bound for /S(IF[V,,]ZPZ) for any
indecomposable Z 2-module V. In Sect. 1 we derive an upper bound for the top
degree of the coinvariant ring. In Sect. 2 we describe a set of [F-algebra generators
for F[V,,]%*. This description yields an upper bound for ,B(IF[Vn]ZPZ). This bound
transpires to be quadratic in p. We postpone some technical calculations to Sect. 3.

For the remainder of the paper, we assume that G = Z > and that H = Z,, is the
non-trivial subgroup.

We choose a basis x1, .. ., x, for the dual space V,* and write

F[V,] E Flxy, ..., x.].

Next, we choose a generator o for the group G. Then

X1 fori = 1, and
oX; = .
xi+xj—q for2 <i<n.
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Invariants of modular indecomposable representations 577

Set A = o — 1. Then we have

0 fori =1, and
A(xj) = )
Xi—1 for2 <i <n.

The various transfer maps involved are given by the following formulae

21 p—1 p—1
¢ = Z o, TrH = ZG’P, and Trg = Za’.
i=0 i=0 i=0

We use the graded reverse lexicographic order with x; > x;_ fori =2, ..., n.

1 An upper bound for 8(F[V]g)

Since G is a finite group, the extension F[V]°¢ < F[V]is finite. Denote by (F[V]°) €
F[V] the Hilbert ideal, i.e., the ideal generated by the invariants of positive degree.
Then the coinvariants

F[Vlg = FIVI/(FIVI®)

form a finite-dimensional vector space over IF. Thus its Hilbert series is a polynomial.
In this section we want to derive an upper bound on its degree.

Note that the Hilbert series of the Hilbert ideal (F[V]S) C F[V] coincides with
the Hilbert series of the ideal I of leading terms of (F[V]9), see [2, Theorem 15.26].
Thus it suffices to find an upper degree bound for F[V]/I.

If n < p then V), is an indecomposable G/H = Z,-module and thus F[V,]1¢ =
F[V,19/H . Therefore we restrict our attention to the case n > p in what follows.

We need two somewhat technical constructions:

Let r be a positive integer with max{n —2p, 1} <r <n — p. Setd = max{l,r —
p + 1}. Then choose a monomial m € F[dy, ..., x,] of degree 2p — 2. We write

m = ujuy---uUyp-2

for suitable u; € {x4, ..., x,}. Without loss of generality we assume that the u;’s are
numbered such that

Uy <up < -+ <uUzp-3.

Thus xg <wuy <--- <wuzp—2 < x, < xn—p. Therefore, for u; = x;, there exist x; 11
and x4, which satisfy

A(xjp) =xj=u; and AP(xjy,) =x; = u;.
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578 M. D. Neusel, M. Sezer

Hence we can define w; o € {x4+1, ..., Xn} by

~_ JAwio) ifl <i<p-—1,and
"l arwig) ifp<i<2p-—2,
and set
wij=A(wp) 1<i<2p-—2,jeN.

Fora2p — 2-tuple @ = [a(1), &(2), ..., a(2p —2)] € N?>P~2 of natural numbers we
define

2p—2

wa = [ wrair
i=I

Thus we can write

2p—2

m=ujuy---uyp— Z—szIlep—woc’

wherea’(i) =1ifl <i<p—1landa’(i)=pifp <i <2p-—2.
LetS € {1,2,...,2p — 2} be a subset and set

Xg = Hw,',().

ieS
We consider the following polynomial
Tim= >  (HP¥IxgTr9Xy),
sC(l,...,.2p—2}
where S’ denotes the complement of Sin {1,2,...,2p —2}.

Proposition 1 The leading term of T{(m) is m.

Proof The proof of this result is postponed to Sect. 3. O

The polynomials T (m) are by construction in the Hilbert ideal (F[V]9) C F[V].
Thus the preceding result tells us that any monomial divisible by some m is in the
ideal I of leading terms of the Hilbert ideal.

We need another, similar, construction. Since n > p, the G-module V,* decomposes
into a direct sum of p indecomposable H-modules:

Vn* — Vn*,] ®---P Vn*,p'

Moreover, Vn*l. is generated as a H-module by x; fori =n—p+1,...,n.
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Invariants of modular indecomposable representations 579

Foreachi =n — p+1,...,n, we define the H-norms
NiH = H ox;.
oeH

Note that every NIH has degree p and coincides with the respective top orbit Chern
classes if i > p.
Choose a monomial

M= [] NIeF[N/ .. NZ]
I=j=p-1

of degree p—1 as a polynomial in these norms. For 1 < j < p—1define W; = ijIH.
Let S C {I,..., p — 1} be a subset and S’ its complement. Then similarly to the
contruction of T;(m) we set Xg = [] jes W;, and obtain a polynomial T,(M) as

follows

M= > (DPxgTrf(X).
Sl p—1)

Proposition 2 The leading monomial of To(M) is the leading monomial of M.
Proof The proof of this result is postponed to Sect. 3. O

As for T (m) the polynomials T (M) lie in the Hilbert ideal associated to F[V]C.
Thus the preceding result shows that any monomial divisible by the leading term of
some M is contained in the ideal I of leading terms of the Hilbert ideal.

This enables us to prove the desired result:

Theorem 3 Letn =tp+r > p, wherel <t < pand0 <r < p are integers. Then
the top degree of F[V,1g is bounded above by 3p* + (2t — 4)p — 3t.

Proof The Hilbert series of the Hilbert ideal (F[V]9) € F[V] coincides with the
Hilbert series of the ideal, I, of leading terms of (F[V]9). Thus in order to find a
bound on the degrees of the coinvariants it suffices to find a degree bound for F[V]/I.

To that end, let mlmzxfl be a monomial that is not in the lead term ideal of the
Hilbert ideal. Without loss of generality we assume that m; € F[xq, ..., x,—,] and
my € F[xn—p-Ha ey xn_l].

Let max{n — 2p,1} < r < n — p and m a monomial of degree 2p — 2 in
Flx4,...,x,], where d = max{l,r — p + 1}. Then Proposition 1 shows that m
appears as leading term of some T1(m). Since T (m) is contained in the Hilbert ideal
it follows that the degree of m is at most ¢t (2p — 3).

Similary, the polynomials T, (M) are in the Hilbert ideal and thus by Proposition 2,
m> is not divisible by the lead term of a product of p — 1 norms NlH ,whered <i <
n — 1. Therefore the degree of m, is at most (p —2)p + (p — 1)2.
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580 M. D. Neusel, M. Sezer

2
Finally x/ is the leading term of the norm N,? = [1,cg 0 xn. Therefore ! < p>—1.
Hence

deg (mimaxl) <tQp—3)+(p—2)p+(p— D>+ p*—1=3p*+2r—4)p—3t

as claimed. O

Corollary 4 Letn > p. Thenthe image of the transfer Im(Tr%) C F[V 1€ is generated
by forms of degree at most 3p* + (2t — 4)p — 3t.

Proof We write the ring of polynomials as a module over the ring of invariants as
follows

F[V] = ZF[V]%.

finite

We note that by construction the #;’s form a basis of F[V]s. Since |G| = p? =
mod p, we have that Tr® (F[V]%) = 0. Thus the image of the transfer is generated
by the Tr¢ (h;)’s, and the result follows from Theorem 3. O

2 Generators for rings of invariants

We apply the results found in the previous section to rings of invariants. We start with
an explicit calculation for the regular representation.

Example 5 Consider the regular representation of Z . Its ring of invariants is gener-
ated by forms of degree at most 5p> — 7p. This can be seen as follows:

By Theorem 3.3 in [4], IE‘[sz]G /ImTrC ~ F[V, 17 where the isomorphism scales
the degrees by %. It is shown in [5] that F[VP]H is generated by invariants of degree
2p — 3. Hence F[sz]G/IrnTrG is generated by classes of degree at most (2p — 3) p.

On the other hand, Corollary 4 tells us that Im(Tr%) is generated by invariants of
degree at most 5 p* —7p. Hence

BELV,21°) < max(2p —3)p.5p* = Tp} =5p* —Tp
as claimed.

We proceed to the general case. As in Sect. 1, letn > p and

Nn—p+1

be an H-module decomposition. Fori € {n — p+1, ..., n} we have that x; generates
V,. as H-module.

Lemma 6 The image of the relative transfer, ImTrfI, is generated by ImTr® and
G-invariants of degree at most 3p* — 3p.
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Invariants of modular indecomposable representations 581

Proof Let f € F[v,12. By Lemma 2.12 in [7] the ring F[V, 17 is generated as a
module over IF[N‘If ey Nf ] by invariants of degree at most p> — n and the image
of the transfer Tr”. Thus f can be written as

F=>0p (NN b gy (NN T )

for some polynomials p;, g; € F[Ngl, A Nf], H-invariants b; of degree at most
p* — n and suitable gj € F[V,]. Since

> a; (Ngl,...,N;’) TeH (g;) = Te (qu (Nf;’, ...,Nf) g,-)
we find that
Tc$ (qu (Ng’,..., Ng') TrH(gj)) — TxC (Zq,» (Ng’,..., N,f’) gj)

is in the image of the transfer Tr®. Thus we need to take care of the first summand
and assume without lost of generality that

f=>p (NN b ©)
We sort (o) by monomials in the norms and obtain
f=>_bNY,
J

where b; is a sum of suitable b;’s and thus is still an H-invariant of degree at most
2
p°—n.
We claim that the degree of N7 as a polynomial in N7 is at most p — 1. Otherwise
set U = (NX)”. Then

byNH byN4
T( N)ZNT( )
U U

can be written in terms of G-invariants of strictly smaller degree. On the other hand

LM (bJN? - bjgl? Nf) < LM (bJNI]'I). Therefore

G H G b N7 G % B2 N7 G
TI‘H(b]NI)ZTI'H b]NJ —TNn +Trg TNn
yields that Trf, (b J N7 ) can be eliminated from a generating set for ImTrf,.
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582 M. D. Neusel, M. Sezer

Similarly, we claim that the degree of the b, Nf ’s as a monomial in {NlH li =
d,...,n — 1} is strictly less than p — 1. Assume the contrary and let U; € {NiH|i =
d,....n—1}forl <j<p—1.SetU = ngjgp—l U,. Then we have

b;NH
Tr,(i,( ]UJ T2(U1~-~Up_1))

G bJN? S| G
i | =5 > DBIXTeG (Xs)
SCil,...p—1}

G G bJN? S|
Z r8 (X 5)Tr§ T(—1) Xg ).

Sc{l,...p—1}

byN# . . . .
Hence, Tr% ( T2 (Ur -+ Up-1)) can be written in terms of G-invariants of
byNH

smaller degree. By Proposition 2 we have that LM (b] N7 ——+T (U1 e U,,_l)) <
LM (b;N%). Therefore the equation

bNY

Trg (bJNIJ-I) = Tl'g (b/N7 -

T (0 ...Upl))

b,NH
+Trg( ’U’ T (U ...U,,l))

yields that Tr% (b;N*') can be eliminated from a generating set for ImTrY,.
Thus, for any multi-index J, the degree (in the x’s) of b 1N7 is bunded above by

pP—n+(p-2p+p(p—-1)=3p>-3p—n<3p*—3p
as claimed. O

Theorem 7 Let V,, be an indecomposable G-module. Let n = tp +r > p, where
1<t <pand0 <r < p are integers. Then

B(V,) <max{3p”> + (2t —4)p — 3t,3p> — 3p}.

Proof By the periodicity result of Theorem 1.2 in [14], F[V,] is modulo the FH-
projective submodules generated by Nf = [l,eg ox» and invariants of degree less
than p?. Thus F[V, 1€ is generated by the G-norm Nf, invariants of degree less than
p? and image ImTrg of the relative transfer, since the fixed pointed of projective
modules are in the image of the relative transfer.

By the previous lemma ImTrg is generated by invariants of degree at most 3 p> —3p
together with ImTr® . Therefore it follows from Corollary 4 that

B(Va) < max(3p* + (2t —4)p — 3t,3p*> — 3p},

as desired. |
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Invariants of modular indecomposable representations 583

Remark 8 We note that for n < p the representation
p:G— GL®»n, )

has kernel Z,. Thus F[V]¢ = F[V]¥. Hence this ring of invariants is generated by
forms of degree at most 2p — 3 by [5].

Remark 9 Furthermore, if n = p + 1 we find in [13] an explicit generating set of the
ring of invariants and we read off

BF[V,1116) <2p* —2p — 1.

For p = 3 the authors of [13] refer to a Magma calculation and for ,B(IF[V4]G) =0.
For p = 2 we find B(F[V3]¢) = 4 by [9]. We note that

p?<2p?—2p—1<3p>—3p <max{3p>+ 2t —4)p —3t,3p> — 3p}.

Note carefully that the degree bound given above is polynomial in p of degree 2.
We thus state the following problem.

Conjecture 10 Let V be an indecomposable Z,r-module. Then B (F[V]ZP’) is

bounded above by a polynomial in p of degree r.

3 The leading terms of T;(m) and T, (M)

In this section we want to identify the leading terms of the polynomials T;(m) and
T>(M) as described in Propositions 1 and 2. We start by identifying the coefficients
of monomials that appear in T{ (m).

Lemma 11 The coefficients of T1(m) = Zaesz—z CqWqy are given by

2p-2 I
o= 2 TI (o)
O<i<p?-1 i=l
Proof Since o' is an algebra automorphism we have that
2p-2
[]wio—c'wion=>  (D¥xg0'(xy). (%)
i=1 sc(l,...,2p—2}

Thus summing over 0 <[ < p2 — 1 yields

2p—2

Timy = > [] @io—o'@wio.

OSISPZ—I i=1
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584 M. D. Neusel, M. Sezer

Since we have!

l l I
(wio — o' (wi0)) = —lw;) — (2) w2 — (3) Wiz — - — (l) Wi/,

the desired equality follows. O
Lemma 12 Leta € N*P72 [fa(i) > 1 forsomel <i < p—1, thenwg < wy = m.

Proof Since uy < up < --- < upp_2, it suffices to show that

k
H Wi (i) < UTU2 ... UL
i=1

for some 1 < k < 2p — 2. Let j denote the smallest integer such that a(j) > 1.
Since j < p — 1, it follows that u; = w;; fori < j and w; () < u;. Therefore
H{:] Wi () < Uruz . ..u; and the result follows. O

Lemma 13 Lera € N>P72 Ifa(i) > 2p forsome 1 <i <2p—2, then wy < Wy = M.

Proof By Lemma 12 it is enough to show the result for i > p. Since u; = w; , €
Flxyr—p+1, .., x], it follows that w; o) € Flx1, ..., x,—p]. Therefore w, contains
a variable that is smaller than all variables that appear in m. O

Lemma 14 Let o, B be two elements in N*P~2 such that a(i) > BG) for 1 <i <
2p — 2. Then

1) we < wg, and
(2) wy = wg ifandonly ifoa = B.

Proof Since w; o) < w; g for1 <i <2p —2, we have

2p—2 2p—2

we = [ wiewy = [] wipo = ws-

i=1 i=1

! This equation can be easily verified by induction on/ > 0. If / = 0O the equation is trivial. For / = 1 we
have

w0 —ow; 0 = Aw; o = wj,1.
Assume that / > 1. Then by induction we obtain

lilwi,o) - UlflAwi,o

[ —1 [—1 —
—(l_l)wi,l_( ) )wi.2_"‘—(l_1)wi.l—l_gl "y
-1 -1 -1 -1
—U=Dwip =\, Jwiz ==\, i wia = Jwiz == L Wi
1 1 1
—lwj;1 — (2)wi,2 - (s)wm — (l)wi,l

as desired.

!
w0 — o wio=(wjo—o0
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Invariants of modular indecomposable representations 585

For the second assertion observe that if «(i) < B(i) for some 1 <i <2p — 2, then
Wi o) < Wi g(). Hence

2p-2 2p—2

we = [] wiew < [] wisar =wp
i=1 i=1

as desired. O

Lemma 15 The coefficient of ¢y of the monomial wy in T1(m) is 1.

-1
Proof By Lemma 11, we have co' = > gj< 2 lp_l(‘f,)p .For0 <1< p?>—1,
write l = Iy p + I, where 0 <[y, /> < p. Then we find

Z ll’—l(l)p_1 = Z (l1p—i—lz)p—l(l”')‘I'lz)p_1
)4

0<i<p?—1 p 0=<ly,lb=p-1

—~
—
—

—1,p—1
> BT mod p
0<ly,lb<p-1

—~
S}
~

1 mod p,

K ar\ (b
= d
()= (@) ) e @
(for any two integers 0 < 5,7 < p*> with s = a;p + by and t = arp + bo, where
0 < a;, b; < p), see [3], and (2) from

. -1 if p —1|c;
Z l‘z[ mod p if p | ¢ (o)

0<i=p—1 0 mod p otherwise,

where (1) follows from

(for any natural number c), see [6, Theorem 119]. |
We are now able to prove Proposition 1:
Proposition 16 The leading term of T1(m) is wy/, and thus LM(T(m)) = m = w,.

Proof The second statement follows from the first because ¢,» = 1 by Lemma 15. We
proceed by showing that w, < wg and ¢y # 0 implies ¢ = o’.

By Lemmas 12 and 13 we may assume «(i) = 1for1 <i < p—1landa(i) <2p
for p <i <2p — 2. From Lemma 11 we have

2p—2 2p—2

“s 2 H(ali)): 2 lp_l,g,(ali))'

0<i<p?—1 i=l 0<i<p?-1
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For p <i <2p —2writea(i) = a;jp+b; with0 < b; < pand0 < a; < 1. Set
l=Lp+1bhwith0 <l <p.

Ry Ay
_ 1 2
w= 3 a1 (7))
0<li,.Lb=p-1 i=p ap !
2p-2
-1 L\ [
= > ' 1I()0)
0<ly,h<p—1 i=p ' !

—1,p—2 2p-2 /I . .
_ 20511’1251’71 lé’ lf Hi:pp (hz,) ifa; = 1forall i,
= —1 2p-2 /I .
2 0<b<p-1 (lé7 Hi:pp (bz,-) (20511517—1 l’f)) =0 otherwise,
where the last equation follows since k an integer not divisible by p — 1. Thus we may
assume thata; = 1 for p < i < 2p — 2. It follows that «(i) = p + b; > p = /(i)

for p <i <2p—2.Moreover a(i) =a’(i) =1forl <i < p—1.Nowa = o
follows from Lemma 14. O

From this Proposition 2 can be easily derived, cf. [5, Lemmas 3.2, 3.3].
Proposition 17 The leading monomial of To(M) is the leading monomial of M.

Proof LetM = U ---Up_ for U; € {N¥, ... N¥_} Recall from Eq. (%) that

p—1
[Tw,=c'owmn=">  )¥xgo'(xXy).

j=1 SC{l,..., p—1}

Summing over 0 </ < p — 1 yields

p—1
> [lwi-d'wiy=" > DFXeTfXs).

0<i<p—1 j=1 Sc{l,...p—1}

The leading term of (W; — al(Wj)) is =/ - LM(U;). Thus the leading term of
Hj.’;ll(Wj — al(Wj)) is (=P~ . LM(U; - - - Up—1). Hence the result follows from
Eq. (o). |

Acknowledgment Miifit Sezer wishes to thank Jim Shank for bringing [4, Theorem 3.3] to his attention.
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