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Abstract We consider the invariant ring for an indecomposable representation of
a cyclic group of order p2 over a field F of characteristic p. We describe a set of
F-algebra generators of this ring of invariants, and thus derive an upper bound for the
largest degree of an element in a minimal generating set for the ring of invariants. This
bound, as a polynomial in p, is of degree two.

0 Introduction

Let ρ : G ↪→ GL(n, F) be a faithful representation of a finite group G. Denote by
V = F

n the n-dimensional vector space over F. Then G acts via ρ on V , which in
turn induces an action on the dual space V ∗. This extends to the symmetric algebra
S(V ∗) = F[V ]. The algebra of invariant polynomials

F[V ]G = { f ∈ F[V ] | g( f ) = f,∀g ∈ G} ⊆ F[V ]

is a graded connected commutative Noetherian subalgebra of F[V ], see [11] for a
general treatment of the subject. Let

β(F[V ]G)
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576 M. D. Neusel, M. Sezer

denote the smallest integer d such that F[V ]G is generated as an F-algebra by homo-
geneous polynomials of degree at most d. In the nonmodular case, i.e., |G| ∈ F

×, we
have that

β(F[V ]G) ≤ |G|,

see [11, Theorem 2.3.3] and the references there. This bound does not remain valid
in the modular case, i.e., when |G| ≡ 0 ∈ F. Indeed, Richmann constructed modular
representations V with arbitrarily large β(F[V ]G), see [12]. In other words, there
cannot be a degree bound for β(F[V ]G) that depends only on the group, see [10] for
an overview in these matters.

In this paper we want to study rings of invariants of cyclic p-groups Zpr of order
pr over a field F of finite characteristic p. There are exactly pr indecomposable
Zpr -modules, which we denote by V1, V2, . . . , Vpr , see [1, Chap. II], where Vn has
dimension n as a vector space over F.

We note that Göbel’s bound gives, of course, a bound on the degrees of a generating
set of F[Vpr ]Zpr for any p and r , see [11, Corollary 3.4.4]. In this case we have

β
(
F[Vpr ]Zpr

) ≤ max

{
pr ,

(
pr

2

)}
.

This bound depends on the dimension of the representation which coincides in this
case with the order of the group.

If r = 1 and G = Zp is the cyclic group of prime order, then a general degree
bound for a minimal generating set of the ring of invariants for any Zp-module V was
given in [5]. This bound is sharp, as the case of the regular representation of Z3 shows.

For the case r = 2 much less is known: In [9] we find an explicit description of the

ring of invariants F[V3]Z4 . This was generalized to F[Vp+1]Zp2 in [13]. Furthermore, in
[8] we find an explicit description of the ring of invariants of the regular representation
of Z4.

We want to extend this study and find an upper bound for β
(
F[Vn]Zp2

)
for any

indecomposable Zp2 -module Vn . In Sect. 1 we derive an upper bound for the top
degree of the coinvariant ring. In Sect. 2 we describe a set of F-algebra generators

for F[Vn]Zp2 . This description yields an upper bound for β
(
F[Vn]Zp2

)
. This bound

transpires to be quadratic in p. We postpone some technical calculations to Sect. 3.
For the remainder of the paper, we assume that G ∼= Zp2 and that H ∼= Zp is the

non-trivial subgroup.
We choose a basis x1, . . . , xn for the dual space V ∗

n and write

F[Vn] ∼= F[x1, . . . , xn].

Next, we choose a generator σ for the group G. Then

σ xi =
{

x1 for i = 1, and

xi + xi−1 for 2 ≤ i ≤ n.
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Invariants of modular indecomposable representations 577

Set � = σ − 1. Then we have

�(xi ) =
{

0 for i = 1, and

xi−1 for 2 ≤ i ≤ n.

The various transfer maps involved are given by the following formulae

TrG =
p2−1∑

i=0

σ i , TrH =
p−1∑

i=0

σ i p, and TrG
H =

p−1∑

i=0

σ i .

We use the graded reverse lexicographic order with xi > xi−1 for i = 2, . . . , n.

1 An upper bound for β(F[V ]G)

Since G is a finite group, the extension F[V ]G ↪→ F[V ] is finite. Denote by (F[V ]G) ⊆
F[V ] the Hilbert ideal, i.e., the ideal generated by the invariants of positive degree.
Then the coinvariants

F[V ]G = F[V ]/(F[V ]G)

form a finite-dimensional vector space over F. Thus its Hilbert series is a polynomial.
In this section we want to derive an upper bound on its degree.

Note that the Hilbert series of the Hilbert ideal (F[V ]G) ⊆ F[V ] coincides with
the Hilbert series of the ideal I of leading terms of (F[V ]G), see [2, Theorem 15.26].
Thus it suffices to find an upper degree bound for F[V ]/I .

If n ≤ p then Vn is an indecomposable G/H ∼= Zp-module and thus F[Vn]G ∼=
F[Vn]G/H . Therefore we restrict our attention to the case n > p in what follows.

We need two somewhat technical constructions:
Let r be a positive integer with max{n − 2p, 1} ≤ r ≤ n − p. Set d = max{1, r −

p + 1}. Then choose a monomial m ∈ F[dd , . . . , xr ] of degree 2p − 2. We write

m = u1u2 · · · u2p−2

for suitable ui ∈ {xd , . . . , xr }. Without loss of generality we assume that the ui ’s are
numbered such that

u1 ≤ u2 ≤ · · · ≤ u2p−2.

Thus xd ≤ u1 ≤ · · · ≤ u2p−2 ≤ xr ≤ xn−p. Therefore, for ui = x j , there exist x j+1
and x j+p which satisfy

�(x j+1) = x j = ui and �p(x j+p) = x j = ui .

123



578 M. D. Neusel, M. Sezer

Hence we can define wi,0 ∈ {xd+1, . . . , xn} by

ui =
{

�(wi,0) if 1 ≤ i ≤ p − 1, and

�p(wi,0) if p ≤ i ≤ 2p − 2,

and set

wi, j = � j (wi,0) 1 ≤ i ≤ 2p − 2, j ∈ N0.

For a 2p − 2-tuple α = [α(1), α(2), . . . , α(2p − 2)] ∈ N
2p−2 of natural numbers we

define

wα =
2p−2∏

i=1

wi,α(i).

Thus we can write

m = u1u2 · · · u2p−2 =
p−1∏

i=1

wi,1

2p−2∏

i=p

wi,p = wα′ ,

where α′(i) = 1 if 1 ≤ i ≤ p − 1 and α′(i) = p if p ≤ i ≤ 2p − 2.
Let S ⊆ {1, 2, . . . , 2p − 2} be a subset and set

X S =
∏

i∈S

wi,0.

We consider the following polynomial

T1(m) =
∑

S⊆{1,...,2p−2}
(−1)|S| X S′TrG(X S),

where S′ denotes the complement of S in {1, 2, . . . , 2p − 2}.
Proposition 1 The leading term of T1(m) is m.

Proof The proof of this result is postponed to Sect. 3. 
�
The polynomials T1(m) are by construction in the Hilbert ideal (F[V ]G) ⊆ F[V ].

Thus the preceding result tells us that any monomial divisible by some m is in the
ideal I of leading terms of the Hilbert ideal.

We need another, similar, construction. Since n > p, the G-module V ∗
n decomposes

into a direct sum of p indecomposable H -modules:

V ∗
n = V ∗

n,1 ⊕ · · · ⊕ V ∗
n,p.

Moreover, V ∗
n,i is generated as a H -module by xi for i = n − p + 1, . . . , n.
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Invariants of modular indecomposable representations 579

For each i = n − p + 1, . . . , n, we define the H -norms

NH
i =

∏

σ∈H

σ xi .

Note that every NH
i has degree p and coincides with the respective top orbit Chern

classes if i ≥ p.
Choose a monomial

M =
∏

1≤ j≤p−1

NH
i j

∈ F
[
NH

d , . . . , NH
n−1

]

of degree p−1 as a polynomial in these norms. For 1 ≤ j ≤ p−1 define W j = NH
i j +1.

Let S ⊆ {1, . . . , p − 1} be a subset and S′ its complement. Then similarly to the
contruction of T1(m) we set X S = ∏

j∈S W j , and obtain a polynomial T2(M) as
follows

T2(M) =
∑

S⊆{1,...,p−1}
(−1)|S| X S′TrG

H (X S).

Proposition 2 The leading monomial of T2(M) is the leading monomial of M.

Proof The proof of this result is postponed to Sect. 3. 
�
As for T1(m) the polynomials T2(M) lie in the Hilbert ideal associated to F[V ]G .

Thus the preceding result shows that any monomial divisible by the leading term of
some M is contained in the ideal I of leading terms of the Hilbert ideal.

This enables us to prove the desired result:

Theorem 3 Let n = tp + r > p, where 1 ≤ t ≤ p and 0 ≤ r < p are integers. Then
the top degree of F[Vn]G is bounded above by 3p2 + (2t − 4)p − 3t .

Proof The Hilbert series of the Hilbert ideal (F[V ]G) ⊆ F[V ] coincides with the
Hilbert series of the ideal, I , of leading terms of (F[V ]G). Thus in order to find a
bound on the degrees of the coinvariants it suffices to find a degree bound for F[V ]/I .

To that end, let m1m2xl
n be a monomial that is not in the lead term ideal of the

Hilbert ideal. Without loss of generality we assume that m1 ∈ F[x1, . . . , xn−p] and
m2 ∈ F[xn−p+1, . . . , xn−1].

Let max{n − 2p, 1} ≤ r ≤ n − p and m a monomial of degree 2p − 2 in
F[xd , . . . , xr ], where d = max{1, r − p + 1}. Then Proposition 1 shows that m
appears as leading term of some T1(m). Since T1(m) is contained in the Hilbert ideal
it follows that the degree of m1 is at most t (2p − 3).

Similary, the polynomials T2(M) are in the Hilbert ideal and thus by Proposition 2,
m2 is not divisible by the lead term of a product of p − 1 norms NH

i , where d ≤ i ≤
n − 1. Therefore the degree of m2 is at most (p − 2)p + (p − 1)2.
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580 M. D. Neusel, M. Sezer

Finally x p2

n is the leading term of the norm NG
n = ∏

σ∈G σ xn . Therefore l ≤ p2−1.
Hence

deg
(
m1m2xl

n

) ≤ t (2p − 3) + (p − 2)p + (p − 1)2 + p2−1=3p2+(2t−4)p−3t

as claimed. 
�
Corollary 4 Letn > p. Then the image of the transfer Im(TrG) ⊆ F[V ]G is generated
by forms of degree at most 3p2 + (2t − 4)p − 3t .

Proof We write the ring of polynomials as a module over the ring of invariants as
follows

F[V ] =
∑

finite

F[V ]Ghi .

We note that by construction the hi ’s form a basis of F[V ]G . Since |G| = p2 ≡ 0
mod p, we have that TrG(F[V ]G) = 0. Thus the image of the transfer is generated
by the TrG(hi )’s, and the result follows from Theorem 3. 
�

2 Generators for rings of invariants

We apply the results found in the previous section to rings of invariants. We start with
an explicit calculation for the regular representation.

Example 5 Consider the regular representation of Zp2 . Its ring of invariants is gener-
ated by forms of degree at most 5p2 − 7p. This can be seen as follows:

By Theorem 3.3 in [4], F[Vp2 ]G/ImTrG � F[Vp]H , where the isomorphism scales

the degrees by 1
p . It is shown in [5] that F[Vp]H is generated by invariants of degree

2p − 3. Hence F[Vp2 ]G/ImTrG is generated by classes of degree at most (2p − 3)p.
On the other hand, Corollary 4 tells us that Im(TrG) is generated by invariants of
degree at most 5p2 − 7p. Hence

β(F[Vp2 ]G) ≤ max{(2p − 3)p, 5p2 − 7p} = 5p2 − 7p

as claimed.

We proceed to the general case. As in Sect. 1, let n > p and

V ∗
n = V ∗

nn−p+1
⊕ · · · ⊕ V ∗

nn

be an H -module decomposition. For i ∈ {n − p +1, . . . , n} we have that xi generates
V ∗

ni
as H -module.

Lemma 6 The image of the relative transfer, ImTrG
H , is generated by ImTrG and

G-invariants of degree at most 3p2 − 3p.
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Invariants of modular indecomposable representations 581

Proof Let f ∈ F[Vn]H . By Lemma 2.12 in [7] the ring F[Vn]H is generated as a
module over F

[
NH

d , . . . , NH
n

]
by invariants of degree at most p2 − n and the image

of the transfer TrH . Thus f can be written as

f =
∑

pi

(
NH

d , . . . , NH
n

)
bi +

∑
q j

(
NH

d , . . . , NH
n

)
TrH (g j )

for some polynomials pi , q j ∈ F
[
NH

d , . . . , NH
n

]
, H -invariants bi of degree at most

p2 − n and suitable g j ∈ F[Vn]. Since

∑
q j

(
NH

d , . . . , NH
n

)
TrH (g j ) = TrH

(∑
q j

(
NH

d , . . . , NH
n

)
g j

)

we find that

TrG
H

(∑
q j

(
NH

d , . . . , NH
n

)
TrH (g j )

)
= TrG

(∑
q j

(
NH

d , . . . , NH
n

)
g j

)

is in the image of the transfer TrG . Thus we need to take care of the first summand
and assume without lost of generality that

f =
∑

pi

(
NH

d , . . . , NH
n

)
bi . (◦)

We sort (◦) by monomials in the norms and obtain

f =
∑

J

bJ NH
J ,

where bJ is a sum of suitable bi ’s and thus is still an H -invariant of degree at most
p2 − n.

We claim that the degree of NH
J as a polynomial in NH

n is at most p − 1. Otherwise
set U = (

NH
n

)p. Then

TrG
H

(
bJ NH

J

U
NG

n

)

= NG
n TrG

H

(
bJ NH

J

U

)

can be written in terms of G-invariants of strictly smaller degree. On the other hand

LM
(
bJ NH

J − bJ NH
J

U NG
n

)
< LM

(
bJ NH

J

)
. Therefore

TrG
H

(
bJ NH

J

) = TrG
H

(

bJ NH
J − bJ NH

J

U
NG

n

)

+ TrG
H

(
bJ NH

J

U
NG

n

)

yields that TrG
H

(
bJ NH

J

)
can be eliminated from a generating set for ImTrG

H .
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582 M. D. Neusel, M. Sezer

Similarly, we claim that the degree of the bJ NH
J ’s as a monomial in {NH

i |i =
d, . . . , n − 1} is strictly less than p − 1. Assume the contrary and let U j ∈ {NH

i |i =
d, . . . , n − 1} for 1 ≤ j ≤ p − 1. Set U = ∏

1≤ j≤p−1 U j . Then we have

TrG
H

(
bJ NH

J

U
T2(U1 · · · Up−1)

)

= TrG
H

⎛

⎝bJ NH
J

U

∑

S⊆{1,...,p−1}
(−1)|S| X S′TrG

H (X S)

⎞

⎠

=
∑

S⊆{1,...,p−1}
TrG

H (X S)TrG
H

(
bJ NH

J

U
(−1)|S| X S′

)

.

Hence, TrG
H

( bJ NH
J

U T2
(
U1 · · · Up−1

))
can be written in terms of G-invariants of

smaller degree. By Proposition 2 we have that LM
(
bJ NH

J − bJ NH
J

U T2
(
U1 · · · Up−1

))
<

LM
(
bJ NH

J

)
. Therefore the equation

TrG
H

(
bJ NH

J

) = TrG
H

(

bJ NH
J − bJ NH

J

U
T2

(
U1 · · · Up−1

)
)

+TrG
H

(
bJ NH

J

U
T2

(
U1 · · · Up−1

)
)

yields that TrG
H

(
bJ NH

J

)
can be eliminated from a generating set for ImTrG

H .
Thus, for any multi-index J , the degree (in the x’s) of bJ NH

J is bunded above by

p2 − n + (p − 2)p + p(p − 1) = 3p2 − 3p − n < 3p2 − 3p

as claimed. 
�
Theorem 7 Let Vn be an indecomposable G-module. Let n = tp + r > p, where
1 ≤ t ≤ p and 0 ≤ r < p are integers. Then

β(Vn) ≤ max{3p2 + (2t − 4)p − 3t, 3p2 − 3p}.

Proof By the periodicity result of Theorem 1.2 in [14], F[Vn] is modulo the FH -
projective submodules generated by NG

n = ∏
σ∈G σ xn and invariants of degree less

than p2. Thus F[Vn]G is generated by the G-norm NG
n , invariants of degree less than

p2 and image ImTrG
H of the relative transfer, since the fixed pointed of projective

modules are in the image of the relative transfer.
By the previous lemma ImTrG

H is generated by invariants of degree at most 3p2−3p
together with ImTrG . Therefore it follows from Corollary 4 that

β(Vn) ≤ max{3p2 + (2t − 4)p − 3t, 3p2 − 3p},

as desired. 
�
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Invariants of modular indecomposable representations 583

Remark 8 We note that for n ≤ p the representation

ρ : G −→ GL(n, F)

has kernel Zp. Thus F[V ]G ∼= F[V ]H . Hence this ring of invariants is generated by
forms of degree at most 2p − 3 by [5].

Remark 9 Furthermore, if n = p + 1 we find in [13] an explicit generating set of the
ring of invariants and we read off

β(F[Vp+1]G) ≤ 2p2 − 2p − 1.

For p = 3 the authors of [13] refer to a Magma calculation and for β(F[V4]G) = 9.
For p = 2 we find β(F[V3]G) = 4 by [9]. We note that

p2 ≤ 2p2 − 2p − 1 ≤ 3p2 − 3p ≤ max{3p2 + (2t − 4)p − 3t, 3p2 − 3p}.

Note carefully that the degree bound given above is polynomial in p of degree 2.
We thus state the following problem.

Conjecture 10 Let V be an indecomposable Zpr -module. Then β
(
F[V ]Zpr

)
is

bounded above by a polynomial in p of degree r .

3 The leading terms of T1(m) and T2(M)

In this section we want to identify the leading terms of the polynomials T1(m) and
T2(M) as described in Propositions 1 and 2. We start by identifying the coefficients
of monomials that appear in T1(m).

Lemma 11 The coefficients of T1(m) = ∑
α∈N2p−2 cαwα are given by

cα =
∑

0≤l≤p2−1

2p−2∏

i=1

(
l

α(i)

)
.

Proof Since σ l is an algebra automorphism we have that

2p−2∏

i=1

(wi,0 − σ l(wi,0)) =
∑

S⊆{1,...,2p−2}
(−1)|S| X S′σ l(X S). (�)

Thus summing over 0 ≤ l ≤ p2 − 1 yields

T1(m) =
∑

0≤l≤p2−1

2p−2∏

i=1

(wi,0 − σ l(wi,0)).
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584 M. D. Neusel, M. Sezer

Since we have1

(wi,0 − σ l(wi,0)) = −lwi,1 −
(

l

2

)
wi,2 −

(
l

3

)
wi,3 − · · · −

(
l

l

)
wi,l ,

the desired equality follows. 
�
Lemma 12 Let α ∈ N

2p−2. If α(i) > 1 for some 1 ≤ i ≤ p−1, then wα < wα′ = m.

Proof Since u1 ≤ u2 ≤ · · · ≤ u2p−2, it suffices to show that

k∏

i=1

wi,α(i) < u1u2 . . . uk

for some 1 ≤ k ≤ 2p − 2. Let j denote the smallest integer such that α( j) > 1.
Since j ≤ p − 1, it follows that ui = wi,1 for i < j and w j,α( j) < u j . Therefore
∏ j

i=1 wi,α(i) < u1u2 . . . u j and the result follows. 
�
Lemma 13 Let α ∈ N

2p−2. If α(i) ≥ 2p for some 1≤ i ≤2p−2, then wα <wα′ = m.

Proof By Lemma 12 it is enough to show the result for i ≥ p. Since ui = wi,p ∈
F[xr−p+1, . . . , xr ], it follows that wi,α(i) ∈ F[x1, . . . , xr−p]. Therefore wα contains
a variable that is smaller than all variables that appear in m. 
�
Lemma 14 Let α, β be two elements in N

2p−2 such that α(i) ≥ β(i) for 1 ≤ i ≤
2p − 2. Then

(1) wα ≤ wβ , and
(2) wα = wβ if and only if α = β.

Proof Since wi,α(i) ≤ wi,β(i) for 1 ≤ i ≤ 2p − 2, we have

wα =
2p−2∏

i=1

wi,α(i) ≤
2p−2∏

i=1

wi,β(i) = wβ.

1 This equation can be easily verified by induction on l ≥ 0. If l = 0 the equation is trivial. For l = 1 we
have

wi,0 − σwi,0 = �wi,0 = wi,1.

Assume that l > 1. Then by induction we obtain

wi,0 − σ lwi,0 = (wi,0 − σ l−1wi,0) − σ l−1�wi,0

= −(l − 1)wi,1 −
(

l − 1

2

)
wi,2 − · · · −

(
l − 1

l − 1

)
wi,l−1 − σ l−1wi,1

= −(l − 1)wi,1 −
(

l − 1

2

)
wi,2 − · · · −

(
l − 1

l − 1

)
wi,l−1−wi,1−

(
l − 1

1

)
wi,2 − · · · −

(
l − 1

l − 1

)
wi,l

= −lwi,1 −
(

l

2

)
wi,2 −

(
l

3

)
wi,3 − · · · −

(
l

l

)
wi,l

as desired.
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Invariants of modular indecomposable representations 585

For the second assertion observe that if α(i) < β(i) for some 1 ≤ i ≤ 2p − 2, then
wi,α(i) < wi,β(i). Hence

wα =
2p−2∏

i=1

wi,α(i) <

2p−2∏

i=1

wi,β(i) = wβ

as desired. 
�
Lemma 15 The coefficient of cα′ of the monomial wα′ in T1(m) is 1.

Proof By Lemma 11, we have cα′ = ∑
0≤l≤p2−1 l p−1

( l
p

)p−1
. For 0 ≤ l ≤ p2 − 1,

write l = l1 p + l2, where 0 ≤ l1, l2 < p. Then we find

∑

0≤l≤p2−1

l p−1
(

l

p

)p−1

=
∑

0≤l1,l2≤p−1

(l1 p + l2)
p−1

(
l1 p + l2

p

)p−1

(1)≡
∑

0≤l1,l2≤p−1

l p−1
2 l p−1

1 mod p

(2)≡ 1 mod p,

where (1) follows from

(
s

t

)
≡

(
a1

a2

)(
b1

b2

)
mod p (�)

(for any two integers 0 ≤ s, t < p2 with s = a1 p + b1 and t = a2 p + b2, where
0 ≤ ai , bi < p), see [3], and (2) from

∑

0≤l≤p−1

lc ≡
{

−1 mod p if p − 1| c;
0 mod p otherwise,

(•)

(for any natural number c), see [6, Theorem 119]. 
�
We are now able to prove Proposition 1:

Proposition 16 The leading term of T1(m) is wα′ , and thus LM(T1(m)) = m = wα′ .

Proof The second statement follows from the first because cα′ = 1 by Lemma 15. We
proceed by showing that wα′ ≤ wα and cα �= 0 implies α = α′.

By Lemmas 12 and 13 we may assume α(i) = 1 for 1 ≤ i ≤ p − 1 and α(i) < 2p
for p ≤ i ≤ 2p − 2. From Lemma 11 we have

cα =
∑

0≤l≤p2−1

2p−2∏

i=1

(
l

α(i)

)
=

∑

0≤l≤p2−1

l p−1
2p−2∏

i=p

(
l

α(i)

)
.
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586 M. D. Neusel, M. Sezer

For p ≤ i ≤ 2p − 2 write α(i) = ai p + bi with 0 ≤ bi < p and 0 ≤ ai ≤ 1. Set
l = l1 p + l2 with 0 ≤ l1, l2 < p.

cα =
∑

0≤l1,l2≤p−1

(l1 p + l2)
p−1

2p−2∏

i=p

(
l1 p + l2
ai p + bi

)

≡
∑

0≤l1,l2≤p−1

l p−1
2

2p−2∏

i=p

(
l1
ai

)(
l2
bi

)

≡
{∑

0≤l1,l2≤p−1 l p−1
2 l p−2

1

∏2p−2
i=p

(l2
bi

)
if ai = 1 for all i,

∑
0≤l2≤p−1

(
l p−1
2

∏2p−2
i=p

(l2
bi

) (∑
0≤l1≤p−1 lk

1

))
≡ 0 otherwise,

where the last equation follows since k an integer not divisible by p −1. Thus we may
assume that ai = 1 for p ≤ i ≤ 2p − 2. It follows that α(i) = p + bi ≥ p = α′(i)
for p ≤ i ≤ 2p − 2. Moreover α(i) = α′(i) = 1 for 1 ≤ i ≤ p − 1. Now α = α′
follows from Lemma 14. 
�

From this Proposition 2 can be easily derived, cf. [5, Lemmas 3.2, 3.3].

Proposition 17 The leading monomial of T2(M) is the leading monomial of M.

Proof Let M = U1 · · · Up−1 for U j ∈ {NH
d , . . . , NH

n−1}. Recall from Eq. (�) that

p−1∏

j=1

(W j − σ l(W j )) =
∑

S⊆{1,...,p−1}
(−1)|S| X S′σ l(X S).

Summing over 0 ≤ l ≤ p − 1 yields

∑

0≤l≤p−1

p−1∏

j=1

(W j − σ l(W j )) =
∑

S⊆{1,...,p−1}
(−1)|S| X S′TrG

H (X S).

The leading term of (W j − σ l(W j )) is −l · LM(U j ). Thus the leading term of
∏p−1

j=1 (W j − σ l(W j )) is (−l)p−1 · LM(U1 · · · Up−1). Hence the result follows from
Eq. (•). 
�
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