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Main memories can consume a significant portion of overall energy in many data-intensive embed-

ded applications. One way of reducing this energy consumption is banking, that is, dividing avail-

able memory space into multiple banks and placing unused (idle) memory banks into low-power

operating modes. Prior work investigated code-restructuring- and data-layout-reorganization-

based approaches for increasing the energy benefits that could be obtained from a banked memory

architecture. This article explores different techniques that can potentially coexist within the same

optimization framework for maximizing benefits of low-power operating modes. These techniques

include employing nonuniform bank sizes, data migration, data compression, and data replica-

tion. By using these techniques, we try to increase the chances for utilizing low-power operating

modes in a more effective manner, and achieve further energy savings over what could be achieved

by exploiting low-power modes alone. Specifically, nonuniform banking tries to match bank sizes

with application-data access patterns. The goal of data migration is to cluster data with similar

access patterns in the same set of banks. Data compression reduces the size of the data used by

an application, and thus helps reduce the number of memory banks occupied by data. Finally, data

replication increases bank idleness by duplicating select read-only data blocks across banks. We

formulate each of these techniques as an ILP (integer linear programming) problem, and solve

them using a commercial solver. Our experimental analysis using several benchmarks indicates

that all the techniques presented in this framework are successful in reducing memory energy

consumption. Based on our experience with these techniques, we recommend to compiler writers

for banked memories to consider data compression, replication, and migration.
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1. INTRODUCTION

Main memories can consume a significant portion of overall energy in embedded
applications [Catthoor et al. 1998; Farkas et al. 2000]. This is particularly true
for the class of embedded systems that execute data-intensive applications such
as multimedia processing, which manipulates multidimensional arrays of sig-
nals using a series of nested loops. Numerous techniques have been proposed in
the past for reducing memory energy consumption, including circuit-level tech-
niques and high-level approaches. While circuit-level techniques [Azizi et al.
2003; Moon et al. 2002] targeting energy efficiency are extremely important,
high-level approaches [Cao et al. 2002; Sudarsanam and Malik 2000; Saghir
et al. 1996; Panda 1999] at the architectural and software levels can also play
a major role in shaping the overall memory energy behavior and optimizing it.

Recently, banking has been used as a popular method for reducing memory
energy consumption. In banking, memory space is divided into multiple banks,
each of which can be controlled independently of the others. Experiments per-
formed by several research groups [Fan et al. 2002; Delaluz et al. 2003, 2001;
Lebeck et al. 2000; Farrahi et al. 1998] reported significant reductions in mem-
ory energy due to banking. Memory banking can be useful from the energy con-
sumption perspective in two ways. First, each access in a banked architecture
is to a single bank, and consequently experiences a smaller load capacitance as
compared to an access to a large monolithic (unbanked) memory architecture.
Therefore, even if no special optimization is incorporated, using a banked mem-
ory itself reduces memory energy consumption. Second, when available, low-
power operating modes and accompanying code- and data transformations can
be used to further increase memory energy-savings. Prior research considered
both hardware-based [Delaluz et al. 2001] and software-based [Lebeck et al.
2000; Delaluz et al. 2003] low-power operating-mode management schemes.

Focusing on a banked DRAM-based architecture, this article studies several
techniques for reducing memory energy in a banked system beyond what could
be achieved through low-power modes alone. In this work, we try to answer the
following questions.

—How does the data assignment to memory banks affect the energy consump-
tion?

—Is it sufficient to have uniform memory banks for maximum energy-savings,
that is, could nonuniform banking bring any benefits over uniform banking?

—Can data migration reduce energy consumption further?
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—How much additional energy savings can data compression bring?

—How can we use data replication to reduce energy consumption further, with-
out excessively increasing memory-space requirements?

Our main goal in this article is to present ILP (integer linear programming) for-
mulations for these problems, and to quantify their impact in saving memory en-
ergy using a set of applications. One of the common characteristics/assumptions
of most prior memory-banking-related studies is that they assume all banks to
be of the same size, that is, to be uniform. This prevents several energy reduction
opportunities by unnecessarily restricting the data mapping. In particular, in
embedded systems that execute a single application, one can conceive of a cus-
tomized banking strategy where the different banks can be of different sizes.
Such a banking is referred to as nonuniform banking in this work. The first
contribution of this article is to present an ILP-based approach that decides
the best (nonuniform) bank architecture and accompanying data mapping for
a given array-based embedded application. We show through our experiments
that working with customized nonuniform memory banks brings significant
energy savings over an alternate strategy that works with optimal data map-
ping but under uniform bank size (which is also formulated in this article using
ILP).

While our empirical evaluation of the nonuniform banking shows promis-
ing results, one can achieve further energy savings by not fixing the location
of each data unit (i.e., its bank) for the entire execution, that is, by migrating
data across banks during the course of program execution. The second contri-
bution of this article is an ILP formulation of the data migration problem in
the context of a nonuniform bank architecture. Our experimental evaluation
of data migration shows that it brings additional energy savings over nonuni-
form banking, ranging from 24.3% to 33.9%. This is made possible because
migration can place data blocks with similar access patterns/lifetimes into the
same set of banks, thereby increasing the chances for better utilizing low-power
modes.

Similarly, data compression squeezes data blocks in memory, which in turn
allows a better use of available DRAM space and allows to increase the num-
ber of inactive (idle) banks, which are candidates for being put in low-power
operating modes. Data compression can increase energy savings further by
cooperating with migration. However, now, whenever the execution accesses
the compressed data, it needs to be decompressed. Consequently, compression
must be used with care for select data blocks. Note that our approach is or-
thogonal to the selection of compression/decompression algorithm employed.
Since our approach is compiler based, we have to work with a reasonable
high-level representation for code optimization purposes (otherwise, our ap-
proach would have to be modified each time one uses a new compression al-
gorithm). In our approach, the costs for compression and decompression are
taken into account (i.e., they are input to our formulation). If a particular
compression algorithm is chosen, we can change the associated costs accord-
ingly. The rest of our approach does not require any modification, which is
critical from the portability viewpoint. The third contribution of this work is
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Fig. 1. High-level view of our approach.

an ILP formulation of the data compression problem in a nonuniform bank
architecture.

One of the common assumptions implicitly made by prior studies on banking
is that each data block has only a single copy in the banked memory system.
This assumption, while preferable from the viewpoint of reducing the total
memory footprint of program data, may cause unnecessary power consumption
in the context of banked memories. We propose a novel data placement strategy
that can make use of data replication. However, since any replication increases
the overall memory footprint of data, it should be applied with care. There-
fore, the problem attacked is to reduce power consumption while keeping the
amount of replication under control. In other words, given a fixed amount of ex-
tra memory that we can use for replicating read-only data blocks, our approach
makes best use of this space for reducing the power consumption of the banked
memory by exploiting the available low-power modes. As a fourth contribution,
this article proposes an ILP-based solution for the data replication problem in
the nonuniform bank architecture. Our experiments show that data replication
brings 14% energy savings on average (over the case when we use low-power
modes without any replication but with optimal data placement). Also, when
used along with the other optimizations in this article, replication further re-
duces energy consumption by 12% on top of the energy reduction provided by
these optimizations.

We formulate each of these problems using ILP and solve them using a com-
mercial solver. Our approach determines the optimal memory-bank sizes, as
well as optimal data migration, compression, and replication patterns, based
on the data-access pattern information extracted by the compiler. The op-
timal migration, compression/decompression, and replication strategies de-
termined by the ILP solver are then fed to the compiler, which in turn
modifies the application code automatically to insert explicit migration, com-
pression/decompression, and replication calls (instructions). Figure 1 illus-
trates a high-level view of our approach. Our results show that the proposed
techniques can help reduce the overall memory-system energy consumption for
the set of array-intensive benchmarks in our experimental suite. The results
also reveal the solution times taken by the ILP-based approach to be within
tolerable range.

The rest of this article is organized as follows. The next section gives a de-
tailed discussion of related work on banked memories. Section 3 gives a brief
description of banked memories and low-power operating modes. Section 4 ex-
plains the data-access pattern extraction strategy employed by our compiler.
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Section 5 describes our ILP variables, constraints, and overall problem formu-
lation presented to the ILP solver. Section 6 discusses the code modifier through
an example. Section 7 describes our experimental platform, benchmarks, and
methodology, and presents the results. Section 8 concludes with a summary of
the work.

2. RELATED WORK

Prior work has considered power management of banked memories from the
hardware-, OS-, and compiler viewpoints. Delaluz et al. [2001] investigate soft-
ware and hardware techniques to exploit DRAM mode-control capabilities. A
compiler-directed mechanism, along with a runtime approach referred to as the
self-monitored technique, has been proposed in that work. Lebeck et al. [2000]
explore the interaction of page placement with static and dynamic hardware
policies to exploit low-power operating modes. A trace-driven and an execution-
driven simulator have been used in their study. Fan et al. [2002] study OS-based
DRAM power-control policies. Fan et al. [2001] present memory-controller poli-
cies for DRAM architectures with low-power operating modes. The impact of
classical loop optimizations on energy consumption of banked memories has
been evaluated in Kandemir et al. [2002]. In Kandemir et al. [1999], the authors
present an iteration-space reordering technique for banked memories. Farrahi
et al. [1998] discuss how a sleep mode can be exploited for memory partitions.
The impacts of loop optimization (loop splitting and loop distribution) and array
placement strategies on a banked off-chip memory architecture are presented
in Delaluz et al. [2000]. Sudarsanam and Malik [2000] and Saghir et al. [1996]
discuss techniques for exploiting dual banks for ASIPs and DSPs, respectively.
Panda [1999] addresses the problem of incorporating the application-specific
customization of a memory-bank configuration into behavioral synthesis.

The work described in this article builds upon this prior work and shows that
it is possible to further increase the energy savings that come from exploiting
the low-power operating modes available in banked memories. Apart from the
memory system, energy-saving techniques have also been proposed for CPUs
[Jejurikar et al. 2004; Kim et al. 2004; Zhuo and Chakrabarti 2005; eun Lee
et al. 2003; Bunda et al. 1995], caches [Ghose and Kamble 1999; Inoue et al.
2002, 1999; Kamble and Ghose 1997; Kim et al. 2001; Su and Despain 1995;
Kaxiras et al. 2001; Flautner et al. 2002], disks [Gurumurthi et al. 2003; Douglis
et al. 1995; Lebeck et al. 2000; Helmbold et al. 1996; Greenawalt 1994], and
other I/O units [Chandra and Vahdat 2002; Kesselman et al. 2005; Choi et al.
2002; Chang et al. 2004; Anand et al. 2003]. These approaches are orthogonal
to the memory-oriented techniques presented in this article.

3. PRELIMINARIES ON BANKED DRAM ARCHITECTURE AND LOW-POWER
OPERATING MODES

The architectural model assumed in this work is based on a multibank memory
system. We assume a banked memory architecture similar to RDRAM [Rambus
1999], in which banks can be placed into low-power modes independently. More
specifically, each memory bank can be in one of four operating modes, namely,
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Fig. 2. Energy consumption (per cycle) and resynchronization costs for our operating modes.

active, standby, nap, or power-down, at any point during execution. While we
report experimental results with these modes only, our approach can easily
be modified to work with any number of low-power modes where available.
Read/write requests are serviced only in active mode. The low-power operating
modes (i.e., standby, nap, and power-down) can be used only if the bank is not
currently servicing a memory request.

Low-power operating modes are typically implemented by disabling certain
parts of the DRAM chip and, consequently, each low-power mode typically has
a different energy consumption and a different resynchronization cost from the
other modes. Resynchronization cost (reactivation penalty) is mainly due to
bringing a low-powered memory bank back to active mode. The tradeoff is that
decreasing energy consumption using a more aggressive mode results in an in-
crease in cycles. Figure 2 shows energy consumption (per cycle) and resynchro-
nization costs (in cycles) for typical, RDRAM-like low-power operating modes.
In this figure, each mode transition is attached a resynchronization cost. As can
be seen, when choosing a low-power mode for an idle bank, there is a tradeoff
to be accounted for between energy savings and performance penalties. The
bank-interaccess time, the time between successive accesses to the same mem-
ory bank, is the main factor in selecting the most suitable low-power operating
mode to use. This is due to the following observation. Frequent transitions
between low-power and active modes may cause intolerable performance and
energy penalties. Therefore, a more power-saving mode should be selected only
if the bank idleness (interaccess time) is predicted to be sufficiently long. Note
that while it is also possible in principle to turn off (disable) a memory bank
completely, the problem with this approach is that it destroys the contents of
the memory bank in question. This is in contrast to the low-power operating
modes considered in this work (i.e., standby, nap, and power-down), where the
contents of the memory bank are retained while in low-power mode. Another
important point we want to mention is in regard to the goal of banking. Banking
in the systems we target is for reducing energy consumption. Therefore, it is
different from the conventional memory interleaving used in high-performance
systems for increasing throughput.

4. BLOCK-ACCESS PATTERN EXTRACTION

Recall from Figure 1 that the first step of our approach is to extract data-access
pattern information from the application code. While it is possible to do this
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Fig. 3. Dividing a two-dimensional array into data blocks (tiles). Note that all tiles are of the same

size, except maybe at the boundaries of the array.

by profiling the code under consideration, the resulting access pattern may be
very sensitive to the particular input used in profiling. Instead, in this work,
we use static compiler analysis to extract data-access patterns. The following
paragraphs discuss the details of our compiler-directed access-pattern analyzer.

Embedded programs constructed using loop nests (with compile time known
bounds) and array accesses (with affine subscript expressions) are the main
focus in this article. Such codes frequently occur in the embedded image/video-
processing domain [Catthoor et al. 1998; Ye et al. 2000]. An optimizing compiler
can analyze these loop-intensive applications with regular data-access patterns.
Since frequent transitions between low-power modes and active mode can be
very costly, an early design decision we made is to perform these mode transi-
tions at well-defined program points. In our implementation, these transition
points (which delimit the boundaries of execution phases) are expressed in
terms of loop iterations. Specifically, in this article we adopted the concept of a
step to define these transition points. Although, in theory, we have the flexibility
to assign any number of iterations between two transition points, these points
should be selected carefully. In other words, in moving from one step to another
during execution, the data-access pattern should exhibit significant variation.

The unit of data that is being stored in banks (and also the unit of data migra-
tion, compression, and replication across banks) is a data block (also referred
to as data tile). Figure 3 shows a two-dimensional array (X) that is logically
divided into data blocks. All the data blocks have the same size, except possibly
at the boundaries of the array. An example loop nest that accesses an array
X through two references with affine subscript expressions X [i + 2, j − 1] and
X [i, j ] is shown on the left side of Figure 4. The blocked (tiled) version of the
original loop nest is given on the righthand side of the same figure. In this code,
loops i′ and j ′ iterate over the data blocks, and are referred to as the block (in-
tertile) iterators. Loops ii and j j, on the other hand, are called intratile iterators,
and iterate over the elements of a given data block.

A main factor which affects the data-access pattern is the data-block size. In
our experiments, we manually selected suitable data-block sizes for a given
application. An optimizing compiler can be used in the future to automate
the block-size selection process. Figure 5(a) shows two two-dimensional arrays
of the same size divided into data blocks. Now, the code fragment shown in
Figure 5(b), written in a pseudolanguage, accesses the data blocks 0, 4, 5, 6, 7,
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Fig. 4. An example loop nest written in a pseudo high-level language (left) and its blocked (or

tiled) version (right). Each data block (tile) is of size T1 × T2 array elements, and the transformed

loop nest is structured based on this tile size.

Fig. 5. Two two-dimensional arrays (X and Y ) divided into four blocks each; (b) example code

fragment operating on these arrays.

and 1, under the data-tile partitioning given in Figure 5(a). Specifically, when
this loop nest is executed, the order in which data blocks are accessed is 0, 4, 5,
6, 7, 1. Assuming that the entire code fragment is considered as a single execu-
tion step, these are also the blocks accessed in this step. However, if we assume
that each step consists of only Q2/4 loop iterations, then the iteration space of
the code fragment shown in Figure 5(b) spans two steps. In this case, the data
blocks accessed by the first step are 0, 4, 5, 6, and 7; and those accessed by the
second step are 1, 4, 5, 6, and 7. These two sequences collectively constitute
the data-block access pattern for this code fragment. Our ILP-based solution,
presented in the next section, operates with the block-access pattern extracted
from the code fragment being optimized, based on the data-block divisioning
given.

It is to be noted that while the effectiveness of our energy-saving techniques
is influenced by the step size and data-block size chosen, techniques for deter-
mining these sizes optimally (or near optimally) are beyond the scope of this
work. Instead, we are assuming that the compiler is given a data-block size and
a step size and our ILP-based techniques are applied based on these fixed sizes.
However, we believe that our ILP formulations can be modified to output the
optimal block/step sizes as well; we postpone this line of research to a future
study. The data-access pattern extracted by the compiler is fed to the ILP solver,
which is explained next.

5. ILP FORMULATION

ILP is comprised of a set of techniques that solve optimization problems in
which both the objective function and the constraints are linear functions. The
resulting solution variables are restricted to be integers. 0-1 ILP is a type
of ILP problem in which solution variables are restricted to be either 0 or 1
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Table I. Constant Terms Used in Our ILP Formulation

Constant Definition

N Number of memory banks

S Number of steps

M Number of data blocks

σ Coefficient that captures increase in energy as a function of bank size

Rm,s Indicates whether block m is accessed at step s
sizemem Size of a data block

sizeblock Size of a data block

compratio Compression ratio

Rlim Replication limit

AE Energy consumed by an accessed memory bank per step

IE Energy consumed by a low-power memory bank per step

RE Energy consumed for reactivation of a memory bank

DE Energy consumed for deactivation of a memory bank

ME Energy consumed for migrating a data block

CompE Energy consumed for compressing a data block

DeCompE Energy consumed for decompressing a data block

These constant terms are either architecture specific or program specific.

[Nemhauser and Wolsey 1988]. It is used in this article for determining the
optimal bank sizes, data-to-bank mappings, data migration, data compression,
and data duplication patterns. Table I gives the constant terms used in our ILP
formulation. Note that these parameters are either architecture- or program
specific.

Our presentation is given in five parts. In the first part (Section 5.1), we
demonstrate how ILP can be used to optimally assign data blocks into mem-
ory banks. The next part (Section 5.2) partitions the given memory space into
nonuniform banks in the most energy-efficient way, and determines the opti-
mal location (bank) for each data block. The third part (Section 5.3) formu-
lates the problem of data migration across memory banks. Finally, the fourth
(Section 5.4) and fifth (Section 5.5) parts discuss the formulations of data
compression and data replication, respectively, within our ILP-based frame-
work. In all techniques presented, data-to-bank mapping is optimized as well.

5.1 Optimal Data-Block Assignment

Our objective in this section is to optimally assign1 data blocks to (uniform)
memory banks for increasing the energy benefits that could be obtained from
the low-power operating modes supported by the underlying banked memory
system. Based on the data-block-level access pattern extracted by the compiler
(as explained in Section 4), our approach identifies the location of each data
block in the memory.

We assume for now that memory space is divided into N uniform banks,
namely, that all banks are of the same size. This assumption will be relaxed
later in the article. Also for now, we assume we have a single low-power mode.
While we give the ILP formulation based on a single low-power mode for clarity
of presentation, our approach can easily be modified to work with any number

1We use the terms “assignment,” “placement,” and “mapping” interchangeably.
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of low-power modes where available. Assuming that S is the number of steps
(as defined earlier in Section 4) and M the number of data blocks, we can use
0-1 variables to specify the potential location (L) of each data block. Specifically,
we have the following classification.

—Lm,n. This indicates whether data block m is assigned to bank n.
In our ILP formulation, we use variable A to indicate whether the bank
is currently active.

—An,s. This indicates whether bank n is active at step s due to a read/write
operation on it.
Although it is better to have a bank in low-power operating mode from
the energy perspective, depending on the data-access pattern, it might
be better not to go to a low-power operating mode for performance
reasons. As a result, frequent switchings between low-power modes
and active mode in short intervals should be avoided. Our next set of
0-1 variables are used to capture the switchings between active and
low-power modes for a given bank. If a bank is activated from a low-
power mode, the following variable is set to 1.

—X n,s. This indicates whether bank n is activated at step s.
On the other hand, if a bank is switched to a low-power mode, Yn,s will
be set as follows.

—Yn,s. This indicates whether bank n goes to the low-power mode at step s.

After having defined our 0-1 integer variables, we can now discuss our ILP
formulations. The following constraints are needed to capture the values of
X n,s and Yn,s. Bank n is said to be activated at step s if it is not active at step
(s − 1) and is active at step s.

X n,s ≥ An,s − An,s−1, ∀n, s (1)

Bank n is said to be transitioned to a low-power mode at step s if it is active at
step (s − 1) but not active at step s.

Yn,s ≥ An,s−1 − An,s, ∀n, s (2)

Since a data block can reside only in a single bank at any given time, it must
satisfy the following constraint.

N∑
i=0

Lm,i = 1, ∀m (3)

The limited bank capacity forms the basis for the next constraint that needs
to be included in our formulation. Assuming that the size of a block is sizeblock

and the available memory space is sizemem, each memory bank will be of size
sizemem/N .

sizeblock ×
M∑

i=1

Li,n ≤ sizemem

N
, ∀n (4)
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A bank is currently active (at step s) if one of its data blocks is accessed.

An,s ≥ Rm,s × Lm,n, ∀m, n, s (5)

Here, Rm,s indicates whether block m is accessed at step s. Its value is extracted
from the data-access pattern. On the other hand, Lm,n indicates whether data
block m is assigned to bank n.

Having specified the necessary constraints in our ILP formulation, we next
give our objective function. In our execution model, there are four components
of the total memory energy consumption.

—Active. This is the energy consumed when a bank is in active mode.

—Low-Power. This is the energy consumed when a bank is in low-power mode.

—Activation. This is the energy consumed to activate a bank from low-power
mode.

—Deactivation. This is the energy consumed to switch a bank to low-power
mode.

Based on these components, we can express the memory energy consumption
B as follows.

B =
N∑

i=0

S∑
j=1

(Ai, j × AE + (1 − Ai, j ) × IE + X i, j × RE + Yi, j × DE) (6)

In this formulation, AE, IE, RE, and DE correspond to active energy, low-power
energy, activation energy, and deactivation energy, respectively. Based on this
formulation, our 0-1 ILP problem can be defined as one of minimizing B under
constraints (1) through (5).

By optimally assigning data blocks to (uniform) memory banks, we are able to
better exploit the available low-power operating modes. This is achieved by plac-
ing those data blocks with similar access patterns/lifetimes into the same set
of banks, thereby increasing the chances for better utilizing low-power modes.
Figure 6 illustrates how optimal data-block assignment could save energy in a
banked memory system. In this example, we have eight data blocks (B0 through
B7) and thirteen steps, and we compare the behaviors of optimal data-block as-
signment and the declaration-order-based assignment, namely, the case when
arrays are assigned to memory banks based on their order of declaration in
the program code, starting with the first location of the first bank. The bank
accesses, along with the data-block accesses, are shown for convenience. Fig-
ure 6(a) depicts the data-block assignment in declaration order (assuming the
data-block ids are given based on the declaration order) for a banked mem-
ory system constructed using four banks (bank 0 through bank 3). Figure 6(b)
shows the potential impact of optimal data-block assignment. As can be seen
from this figure, bank 0 is the first that can be placed into a low-power mode
(without being reactivated). For declaration-order-based assignment, this can
happen only after step 6, whereas for optimal data-block assignment, it is pos-
sible to reduce energy consumption after step 4. Similarly, after step 10, only
bank 3 will be used by optimal data-block assignment. On the other hand, the
declaration-order-based assignment is going to visit both bank 1 and bank 3 by
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Fig. 6. Data-block layout for: (a) declaration-order-based assignment; and (b) optimal assignment.

the successive data-block accesses. This figure indicates that bank-interaccess
times are highly dependent on data-block assignment, which could affect the
energy consumption dramatically.

Discussion. Recall that our ILP formulation so far is based on a single low-
power mode. Instead of using a single low-power mode as done previously, we
could also use multiple low-power modes. In this case, given a bank-interaccess
time, our approach selects the most suitable power mode to use, and each
memory bank can be in one of the four modes listed in Figure 2 (i.e., ac-
tive, standby, nap, power-down) at any given time. To accommodate multiple
low-power operating modes in our ILP formulation, we define BSn,s , BNn,s , and
BPn,s for standby, nap, and power-down modes, respectively. These variables are
set to 1 if bank n is in the corresponding mode at step s. To ensure a unique mode
selection for each bank at every step (s), the following constraint is included.

An,s + BSn,s + BNn,s + BPn,s = 1, ∀n, s (7)

Note that we assume the operating-mode transitions can occur only between
the active mode and a low-power operating mode. For each low-power operat-
ing mode, the corresponding mode transitions have to be identified. Recall that
X i, j and Yi, j are defined for this purpose. We define X Si, j , X Ni, j , and X Pi, j for
transitions from, respectively, the standby, nap, and power-down modes to the
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active mode. Similarly, YSi, j , YNi, j , and Y Pi, j are used for capturing deactiva-
tions. Based on these definitions, we have the following new constraints. For
the standby mode, we have

X Sn,s ≥ An,s + BSn,s−1
− 1, ∀n, s. (8)

YSn,s ≥ An,s−1 + BSn,s − 1, ∀n, s. (9)

For the nap mode, we have

X Nn,s ≥ An,s + BNn,s−1
− 1, ∀n, s. (10)

YNn,s ≥ An,s−1 + BNn,s − 1, ∀n, s. (11)

For the power-down mode, we have

X Pn,s ≥ An,s + BPn,s−1
− 1, ∀n, s. (12)

Y Pn,s ≥ An,s−1 + BPn,s − 1, ∀n, s. (13)

Finally, the memory energy consumption B in expression (6) should be rewritten
as follows.

B =
N∑

i=1

S∑
j=1

CAi, j × AE + (Ai, j − CAi, j ) × NE

+ BSi, j × IES + BNi, j × IEN + BPi, j × IEP (14)

+ X Si, j × RES + X Ni, j × REN + X Pi, j × REP

+ YSi, j × DES + YNi, j × DEN + Y Pi, j × DEP

Note that in the aforesaid formulation, low-power energy IE, activation en-
ergy RE, and deactivation energy DE are replaced with their counterparts for
each operating mode. For example, low-power energy IE is replaced with IES ,
IEN , and IEP . After these modifications/enhancements, our 0-1 ILP problem
under multiple low-power modes can be defined as one of minimizing B, under
constraints (3) through (5) and (7) through (13).

5.2 Partitioning Memory Space into Nonuniform Banks

The energy consumption of the memory system can be further reduced by par-
titioning the available memory space into nonuniform (sized) banks. We de-
termine the number of banks and their sizes based on the data-access pattern
and total memory size (to be partitioned) using 0-1 variables. For each possi-
ble bank size, we define 0-1 variables. By using these 0-1 variables, we then
determine the partitions (banks) and their contents. Although we restrict the
possible sizes to be powers of two to simplify the problem, this can be extended
to cover other possible sizes as well. This way, we keep the problem size smaller
(fewer variables and constraints) and by doing so reduce the ILP solution time.
If, for example, the memory size in question is 4k (assuming that k is a power of
two) and the minimum bank-size possible is k, then we can potentially have 0-1
variables for one 4k-bank, two 2k-banks, and four 1k-banks. If two of the four
1k-bank variables and one 2k-bank variable are returned as 1 from the ILP
solver, then we conclude that the application under consideration will spend
the minimum memory energy when the memory space is partitioned into three
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banks of sizes k, k, and 2k. Our formulation also gives the optimum mapping
of the data blocks to these banks, as in the previous section.

To incorporate nonuniform banks into our ILP formulation, several modifi-
cations to the original problem have to be made. In this part of our discussion,
we denote a memory bank using a pair of attributes (l , n), where l is used for
its size (in terms of data blocks it can hold) and n is used for distinguishing one
bank from others that have the same size. For example, with a memory of size
8k, there can be two banks with a size of 4k, where k is the minimum bank-
size possible. These two banks can be expressed using the pairs (4k, 1) and
(4k, 2).

Assuming that N denotes the maximum number of banks possible if each
bank holds only one data block (which occurs when the minimum possible bank
size is used), S is the number of steps, and M the number of data blocks, we
redefine the 0-1 variables used to specify the potential location L of each data
block. Specifically, we have the definitions next given.

—Lm,l ,n. This indicates whether data block m is assigned to bank (l , n).
There are possibly N

l banks of size l ( N
l at most, if all banks are of size

l ). We use a variable for each one of these bank candidates. If this 0-1
variable is 1, then we conclude that the corresponding bank actually
exists (i.e., our ILP-based solver returns a memory-space partitioning
that contains such a bank). In addition to the modification in location
variable, we also introduce a new 0-1 variable. We specify whether
bank (l , n) actually exists (returned by our ILP formulation) by using
El ,n. In other words, we have the next definition.

—El ,n. This indicates whether data bank (l , n) exists.
Since the way we identify the memory banks is different from that
employed in Section 5.2, we need to replace some of the variables and
constraints as well. Specifically, we replace the activation and deac-
tivation variables X n,s and Yn,s with X l ,n,s and Yl ,n,s, respectively, as
well as the corresponding constraints. Consequently, expressions (1)
and (2) should be replaced with expressions (16) and (16).

X l ,n,s ≥ Al ,n,s − Al ,n,s−1, ∀l , n, s (15)

Yl ,n,s ≥ Al ,n,s−1 − Al ,n,s, ∀l , n, s (16)

As mentioned earlier, we assume bank sizes are restricted to be powers of two
(though our formulation can be modified to drop this requirement). As an ex-
ample for the sake of illustration, if the memory in question can hold at most 8
data blocks, then this memory can be partitioned into memory banks such that
each bank can hold 1, 2, 4, or 8 data blocks. Since the available memory space
is partitioned among banks, the total size of the banks (determined by the ILP
solver) should be equal to the available memory space.

log2 N∑
i=0

N
2i∑

j=1

E2i , j × 2i = sizemem (17)
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Fig. 7. Data-block layout for nonuniform banking and uniform banking with fixed bank-sizes of

1, 2, 4, and 8.

A data block can be residing in a bank only if the bank in question exists.

El ,n ≥ Lm,l ,n, ∀m, l , n (18)

The unique location constraint given earlier by expression (3) has to be adjusted
as well.

log2 N∑
i=0

N
2i∑

j=1

Lm,2i , j = 1, ∀m (19)

Since banks are not uniform, the sizes may differ. Specifically, instead of ex-
pression (4), the following expression can be written for each possible bank
size l .

sizeblock ×
M∑

i=1

Li,l ,n ≤ l , ∀l , n (20)

Similar to expression (5), a bank is currently active (at step s) if one of its data
blocks is accessed.

Al ,n,s ≥ Rm,s × Lm,l ,n, ∀m, l , n, s (21)

As before, Rm,s (extracted from the data-access pattern given by the compiler)
indicates whether data block m is accessed at step s. Based on the preceding
modifications, our objective function B is redefined (to include all sources of
energy consumption) as follows.

B =
log2 N∑

i=0

N
2i∑

j=1

S∑
k=1

(Ai, j ,k × AE + (1− Ai, j ,k) × IE + X i, j ,k × RE + Yi, j ,k × DE) × σ i

(22)

Note that since we do not have a unique bank size, σ is used to capture the
energy consumption behavior of banks with different sizes (capacities). For
example, if the size of bank is doubled, the energy spent would be σ times the
original energy consumption. Based on this formulation, our 0-1 ILP problem
can be defined as one of minimizing B under constraints (15) through (21).

To better explain how our approach partitions the available memory space
into nonuniform banks and why one can expect benefits from it, we give the
banks and data blocks of an example application in Figure 7. In this example,
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we have five data blocks (B0 through B4) and nine steps, and we contrast the be-
haviors of nonuniform banking and the uniform banking with fixed bank-sizes
of 1, 2, 4, and 8. In Figure 7(a) the data-access pattern is shown and Figure 7(b)
shows how each approach places the data blocks into the banks. One can see
from this figure that our scheme clusters those data blocks accessed together
frequently; that is, B1, B2, B3, and B4 are placed into the same bank (a bank
that can hold four data blocks). As for the uniform scheme, the smaller bank
sizes (e.g., 1) enable to use only a small portion of the memory to save energy;
however, frequent activations/deactivations resulting from the access pattern
might cause even more energy consumption. Similarly, having a memory bank
with only a small portion used wastes energy compared to a perfect fit. In com-
parison, by making use of nonuniform memory banks, our approach is able to
cluster those data blocks that are accessed together and place them into the
most suitable-sized banks.

Discussion. We now discuss two modifications to the problem defined in the
previous section. First, we relax the assumption that suggests memory banks
be only powers of two. Second, we introduce an additional constraint to put a
limit on the performance overhead due to memory banking.

Recall that memory-bank sizes are assumed to be powers of two. If we were
to relax this assumption so that we could use all possible bank sizes (not only
powers of two), Eq. (17) has to be replaced with the following.

N∑
i=1

N
i∑

j=1

Ei, j × i = sizemem (23)

Similarly, the start and end values of index variables i and j in Eqs. (19) and
(22) have to be changed in the same manner as well. For example, if we as-
sume that the memory can hold eight data blocks, banks with powers of two
can have sizes of (1,2,4,8), whereas the banks with any size can have sizes
of (1,2,3,4,5,6,7,8). Note that the total memory size is kept constant and the
only difference is in the way the available memory space is partitioned across
banks.

So far in our discussion we have not put any limit on the potential perfor-
mance degradation due to turning on/off the memory banks. One might envision
a case where only a limited degradation in performance could be tolerated. The
performance overhead in our formulation can be captured using an additional
constraint. In our approach, the performance degradation incurred is mainly
due to two factors: bank reactivation and bank deactivation, captured by X l ,n,s

and Yl ,n,s, respectively. Assuming that Omax is the maximum performance over-
head allowed for the design (which can be 0 to obtain the best energy savings
without tolerating any performance penalty), then our performance constraint
can be expressed as follows.

O =
log2 N∑

i=0

N
2i∑

j=1

S∑
k=1

(X i, j ,k × RP + Yi, j ,k × DP) ≤ Omax. (24)
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In the aforesaid expression, R P and DP are used to capture the performance
overheads incurred due to activating and deactivating, respectively, a memory
bank.

It should be noted that, for multiple low-power modes, the same modifica-
tions described in the uniform-banking case in the previous section have to
be employed. In other words, in addition to Al ,n,s, three low-power operating
modes (BSl ,n,s , BNl ,n,s , and BPl ,n,s ) need to be defined. Moreover, as in the case
of uniform banking, activation/deactivation variables for different low-power
modes should be included. Specifically, we define X Si, j ,k , X Ni, j ,k , and X Pi, j ,k for
transitions from, respectively, the standby, nap, and power-down modes to the
active mode. Similarly, YSi, j ,k , YNi, j ,k , and Y Pi, j ,k are used for deactivation.

5.3 Data Migration

Further energy improvements can be achieved by migrating data blocks among
banks during the course of execution. In particular, in some cases, instead of
activating/deactivating a bank, it might be more beneficial to transfer the data
block to an already-active bank. To incorporate data migration into our ILP
formulation, several modifications to the original problem have to be made. An
important point we would like to make clear is that the migration decisions
in our approach are taken at compile time (by the ILP solver); however, the
migrations themselves take place at runtime.

Since the location of a data block is no longer restricted to be the same
throughout the execution of the program (due to migration), we have to include
the step parameter s in our location variable L. For this purpose, Lm,l ,n is
replaced with Lm,l ,n,s to indicate whether block m is residing in bank (l , n) at
step s.

Consequently, expressions (18), (19), and (20) given previously should be
replaced with expressions (25), (26), and (27), respectively, to capture the bank-
existence constraint, data-block-location constraint (a data block can be in a
single bank at any time), and bank-size constraint.

El ,n ≥ Lm,l ,n,s, ∀m, l , n, s (25)

log2 N∑
i=0

N
2i∑

j=1

Lm,2i , j ,s = 1, ∀m, s (26)

sizeblock ×
M∑

i=1

Li,l ,n,s ≤ l , ∀l , n, s (27)

Eq. (21), on the other hand, does not require any change except for the variable
renaming, since it is already subscripted by step parameter s.

Al ,n,s ≥ Rm,s × Lm,l ,n,s, ∀m, l , n, s (28)

Migration behavior of data blocks needs to be captured as well. In our formu-
lation, we use Zm,s for this purpose. A data block m migrates (at step s) if its
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Fig. 8. A sample scenario that illustrates the potential benefits of data migration. Initial state

and state after migration are shown.

current location (bank) is different from its previous location (i.e., the one in
the previous step).

Zm,s ≥ Lm,l ,n,s − Lm,l ,n,s−1, ∀m, l , n, s (29)

Migration typically brings additional performance overheads on top of the bank-
related overheads. To capture this additional overhead, the constraint in ex-
pression (24) should be replaced with the following.

O +
M∑

i=1

S∑
j=1

(Zi, j × MP) ≤ Omax (30)

In the preceding expression, MP is used to capture the migration cost for a data
block, whereas O reflects the original overhead given in expression (24). Note
that, conservatively, we assume migrations cannot be overlapped.

Although data migration can reduce the energy consumption (as it can empty
banks which can be placed into low-power mode), it also causes extra energy
consumption since the migration itself consumes energy. This overhead has to
be included in the ILP formulation.

T =
M∑

i=1

S∑
j=1

(Zi, j × ME) (31)

Then, our new 0-1 ILP problem can be defined as minimizing B + T under
constraints (15) through (17) and (25) through (30).

Data migration moves data from one memory bank to another at runtime, in
an attempt to better exploit available low-power operating modes. This is possi-
ble since migration can place data blocks with similar access patterns/lifetimes
into the same set of banks, thereby increasing the chances for better utilizing
low-power modes. Figure 8 illustrates, using an example, how data migration
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could save energy in a banked memory system. The layout given on the top
in Figure 8 depicts the initial state for a banked memory system constructed
using four banks (bank 0 through bank 3). It also shows the layout before the
migration. The data-access pattern is given on the bottom of the figure, along
with bank accesses for the migration and no-migration cases. By using migra-
tion, it is possible to place bank 0 into low-power operating mode after step 5,
whereas this is delayed until the end of step 14 if migration is not used. As can
be seen from Figure 8, data block 5 is migrated from bank 0 to bank 2, allowing
bank 2 to service the requests for data block 5.

5.4 Data Compression

We now discuss our next technique for increasing the energy benefits that
could be obtained from low-power operating modes: data compression. Using
data compression, a memory bank can hold more data blocks. This in turn
can reduce the number of banks active during execution, thereby reducing the
memory energy consumption further. In order to incorporate data compres-
sion/decompression into our ILP formulation, extra variables, constraints, and
energy costs have to be defined. In addition to our state variable Lm,l ,n,s, we de-
fine Cm,l ,n,s to distinguish between compressed and uncompressed data blocks.

—Cm,l ,n,s. This indicates whether data block m is compressed and in
bank (l , n) at step s.

Similar to an uncompressed data block (given by expression (25) earlier), a
compressed data block can reside in a bank only if the bank in question exists.

El ,n ≥ Cm,l ,n,s, ∀m, l , n, s (32)

Since a data block can reside only in a single bank at any given time, it must be in
one of the memory banks in the compressed or uncompressed form. Specifically,
we replace expression (26) with the following constraint.

log2 N∑
i=0

N
2i∑

j=1

Lm,2i , j ,s + Cm,2i , j ,s = 1, ∀m, s (33)

Expression (27) has to be adjusted as well, since compressed data blocks con-
sume less space. The size of a compressed data block is compratio × sizeblock.
Consequently, the following expression can be written for each possible bank
size l .

sizeblock ×
( M∑

i=1

Li,l ,n,s + compratio ×
M∑

i=1

Ci,l ,n,s

)
≤ l , ∀l , n, s (34)

Here, we are assuming that a data block can be accessed only if not in com-
pressed form (i.e., in order for an access to take place, the data block in ques-
tion needs first to be decompressed). Depending on the data-access pattern, the
Cm,l ,n,s values for these data blocks at the corresponding steps will be set to 0.
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Vm,s and Wm,s are used to express compression and decompression (of block
m at step s), respectively.

Vm,s ≥ Cm,l ,n,s + Lm,l ,n,s−1 − 1, ∀m, l , n, s (35)

Wm,s ≥ Lm,l ,n,s + Cm,l ,n,s−1 − 1, ∀m, l , n, s (36)

Compressions and decompressions typically bring additional overheads on top
of the migration-related overheads. We can express the additional energy con-
sumption due to compression/decompression.

C =
M∑

i=1

S∑
j=1

(Vi, j × CompE + Wi, j × DeCompE) (37)

In the previous expression, CompE and DeCompE are used to capture compres-
sion and decompression costs for a data block, respectively. Finally, based on
expression (37), our ILP formulation can be reexpressed as one of minimizing
B + T + C.

Data compression squeezes data blocks in memory, which in turn allows
better use of the available DRAM space, and makes it possible to increase the
number of inactive (idle) banks which are candidates for being put in low-power
operating modes. Figure 9 illustrates how data compression can save energy
in a banked memory system. Figure 9(a) shows the initial state of a banked
memory system with four banks (bank 0 through bank 3). If an application
accesses those blocks captured by the data-access pattern from these banks,
bank 0 and bank 1 will be interleavingly accessed between steps 6 to 14 by the
application. Figure 9(b) shows the impact of using data compression. In this
example, data block 3 is compressed and moved (i.e., migrated) from bank 1 to
bank 0. Also, data block 1 is compressed to create sufficient space for block 3.
This allows us to put bank 1 in low-power mode until step 14 (note that in this
particular example, if there were sufficient empty space in bank 0, we could
have migrated all the blocks to it without using any compression).

Another point is that if a decompression algorithm takes too much time, the
main impact on our approach would be that of scheduling predecompressions
earlier. Of course, depending on the latency of the particular decompression al-
gorithm at-hand, if the predecompressions have to be scheduled very early (to
minimize their potential impact on performance), the memory-saving benefits
of our approach will reduce. In the extreme case, we may decide that using a
particular compression algorithm does not make sense due to its very high la-
tency; that is, we may not be able to schedule predecompressions. Nonetheless,
our preliminary analysis of known algorithms, such as LZW and zero-removal,
shows our approach is able to schedule decompressions ahead of time to hide
their latencies, while at the same time achieving large memory-savings.

5.5 Data Replication

The last energy-saving technique we discuss in this article is data replication.
The main objective of this technique is to replicate data blocks to minimize
the overall energy consumption; in other words, to maximize energy the sav-
ings that can be obtained from low-power operating modes. In this section,
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Fig. 9. A sample scenario that illustrates the potential benefits of data compression: (a) initial

state; (b) state after compression.

we do not restrict the location of a data block to a single bank in order to al-
low data replication. A data block m must be in at least one of the banks at
each step s. This is captured by replacing expression (33) with the following
constraint.

log2 N∑
i=0

N
2i∑

j=1

Lm,2i , j ,s + Cm,2i , j ,s ≥ 1, ∀m, s (38)

Note that the only change to this constraint is the use of the ≥ operator, instead
of the = operator. The replication limit (Rlim), set by the designer, bounds the
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number of blocks with replicas. In mathematical terms, we have

M∑
i=1

log2 N∑
j=0

N
2 j∑

k=1

Li,2 j ,k,s ≤ M + Rlim, ∀s. (39)

In the previous expression, the total number of data blocks in the memory
banks is obtained by the sum expression on the left side. This sum should be
less than or equal to the number of data blocks plus the number of replicas
(M + Rlim).

If a data block is being accessed at a certain step, then this access request
should be serviced by one of the memory bank(s) in which this block is residing.
Recall that in order to ensure this, we have defined the 0-1 variable Al ,n,s. This
variable takes a value of 1 if bank (l , n) is active, that is, a bank is considered
as currently active (at step s) if one of its data blocks is accessed. However, this
is now no longer valid, since there might be multiple copies of a data block.
Consequently, we need to employ an additional variable BBm,l ,n,s to indicate
whether data block m is being accessed at step s and resides in bank (l , n),
which is active.

BBm,l ,n,s ≤ Lm,l ,n,s, ∀m, l , n, s (40)

BBm,l ,n,s ≤ Al ,n,s, ∀m, l , n, s (41)

Expression (41) captures whether the data block is located in the corresponding
bank and expression (41) ensures the bank is active.

log2 N∑
i=0

N
2i∑

j=1

BBRm,s,i, j ,s ≥ 1, ∀m, s (42)

In the preceding equation, Rm,s indicates whether block m is accessed at step
s (its value is extracted from the data-access pattern). This indicates an access
to the data block and hence, one of the banks in which this block resides should
be active during this step. The sum of banks that satisfy this constraint should
be greater than or equal to 1.

To illustrate our point, let us consider the scenario depicted in Figure 10.
In this scenario, we assume that an application program makes 17 accesses
(to data blocks in the order given on the bottom of the figure) to the memory
system which is partitioned into four banks (B0 . . . B3). The first layout on the
top shows the case where no replication is used, and the corresponding bank
accesses are depicted above the data-access pattern. Now, consider the alternate
storage scenario shown on the bottom of the figure, where a replica of data block
5 is stored in bank B2; that is, data block 5 is replicated across two banks. The
bank-access pattern in this case is illustrated below the data-block accesses.
Comparing this with the previous bank-access pattern, it can be seen that
the one employing replication is preferable from the low-power-management
viewpoint, since it increases the period during which a bank is idle, namely,
it increases bank-interaccess time. By using replication, it is possible to place
bank 0 into low-power operating mode after step 5, whereas this is not possible
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Fig. 10. An example scenario with seven data blocks and four banks, illustrating data replication.

The block accessed at each step (data-access pattern) is given on the bottom.

before step 14 if replication is not adopted. This small example shows how data
replication can help reduce energy consumption in a banked memory system.

5.6 Instruction Accesses

Although our main goal is to reduce the energy consumption within data ac-
cesses, this approach can easily be modified to target instruction accesses. For
this purpose, an optimizing compiler can analyze the loop-intensive applica-
tions and employ an instruction block (instruction tile) approach similar to
that of a data block. Specifically, the unit of instructions being stored in banks
is denoted by an instruction block. Due to the sequential nature of instruction
accesses, the benefits brought by this approach for instruction accesses may
not be as substantial as for the case of data accesses. This follows from the fact
that instruction accesses usuallys access the banks in sequential fashion, which
utilizes bank accesses and increases the bank idleness period. Apart from this
difference, most of the aforementioned formulation targeting data accesses can
be modified to work for an instruction-access pattern.

6. CODE MODIFICATION

As shown in Figure 1, the last component of our approach is a code modi-
fication module. The purpose of this component is to modify the application
source-code by inserting explicit calls to manage data-block activity within the
banked memory system. Since modifications for the different techniques dis-
cussed in this work are similar, we illustrate code modification only for data
migration.

Our compiler inserts migration management code at each loop nest that uses
migration. Figure 11 shows an example loop nest from one of our benchmarks,
as well as the transformed loop nest augmented with the memory-bank manage-
ment code and data-block assignments. In this example, there are two arrays, X
and Y , each with N 2 elements. We assume that each array is divided into four
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Fig. 11. An example loop nest from one of our benchmarks, written in C (left) and the transformed

loop nest augmented with the memory-bank-management code (middle). Lines marked with “⇒”

are inserted by our compiler. The loop nest is accessed in four steps, each having N2/4 iterations,

and the transformed code is structured based on the number of steps. The right part of the figure

illustrates bank contents at different points.

equal data blocks. Specifically, B0 = X [0..( N
2
−1), 0..( N

2
−1)], B1 = X [0..( N

2
−1),

N
2

..(N−1)], B2 = X [ N
2

..(N −1), 0..( N
2
−1)], B3 = X [ N

2
..(N−1), N

2
..(N −1)]. Sim-

ilarly, B4, B5, B6, and B7 correspond to the data blocks of Y . We are assuming
the original loop nest is accessed in four steps, each having N 2/4 iterations.
In the transformed code, we use “⇒” to indicate the lines inserted by our com-
piler. Before entering the loop nests, we need to make the initial assignments
of data blocks (to banks). This is expressed in the transformed code by the as-
sign(block, bank) command. The first parameter of this command consists of the
block id(s) and the second parameter is the bank in which this data block will
(initially) be stored. Migration decisions are expressed by the migrate(block,
source, destination) command.
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Table II. Benchmark Codes Used in This Study

Benchmark Total Data Data Block Number of Executable

Name Source Size (KB) Size (KB) Arrays Size (KB)

adi Livermore 468.8 39.1 6 9.5

apsi Spec 78.2 19.5 17 9.8

bmcm Perfect Club 234.4 19.5 11 9.5

btrix Spec 75.0 11.7 29 18.2

mxm Spec 937.6 78.0 3 7.0

tomcatv Spec 546.9 19.5 9 13.7

wss Perfect Club 70.8 17.7 10 9.3

7. EXPERIMENTAL EVALUATION

7.1 Setup

The necessary code analysis (to extract access patterns) and modifications (to
insert explicit migration, compression/decompression, and replication calls in
the code) are automated within the SUIF compiler [Wilson et al. 1994], and
the ILP solver used for implementation is XPress-MP [XPress 2002], a com-
mercial tool. To test the effectiveness of our ILP-based approach in reducing
memory energy consumption, we performed several experiments with seven
array-intensive benchmark codes, using a simulation environment built upon
SIMICS [Magnusson et al. 2002]. Table II lists the benchmark codes (taken
from Livermore, Spec, and Perfect Club benchmark suites) used in this study
and their important characteristics. While these codes originally used floating-
point data, we converted them to integer data to test our compression scheme.
The third column of this table gives the total size of the data processed by
each benchmark, and the fourth column shows the data-block size used. The
fifth column gives the number of arrays accessed by each benchmark. The last
column shows the size of each benchmark. The default simulation parameters
used in our experiments are given in Table III. The low-power energy values
given in Table III reflect the actual energy consumption values from Figure 2.
We additionally assume that read/write incurs extra energy consumption in
the active mode. During activation (from low-power mode to active mode) and
deactivation (from active mode to low-power mode), a full active-mode energy
is assumed as spent (to be conservative).

Note that energy consumption for an access is due to accessing the whole
memory bank. However, the compression energy is only due to compressing a
single data block. Moreover, read-access energy is not captured within the com-
pression energy cost, but rather has been captured separately as an individual
access. In expression (15), CAi, j indicates whether bank i is active at step j ,
meaning that it is being accessed (Ai, j = active, CAi, j = active and accessed).
A bank will be active if a compression occurs, that is, CAi, j = 1. Therefore, an
active-bank energy will be incurred while compression energy is also included.

In Table III we report our results based on a fixed compression ratio given
by ∼2. Our goal by assuming a constant compression ratio is to show that com-
pression can be a useful technique to consider in banked memory architectures.
Alternatively, in one of our previous works [Ozturk et al. 2006], we discussed
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Table III. Default Simulation Parameters

Parameter Value

Number of Banks 4

σ 1.3

Compression Ratio ∼2

Replication Limit 20%

Technology 0.35 micron

Processor

Processor type 500 MHz, 2-issue

I-Cache 32KB, Direct mapped

D-Cache 32KB, Direct mapped

Per Access Read Energy for Cache 0.20 nJ

Per Access Write Energy for Cache 0.21 nJ

Bus

On-Chip Bus Transaction Energy 0.04 nJ

Off-Chip Bus Transaction Energy 3.48 nJ

Per Cycle Clock Energy 0.18 nJ

Memory

Data Block Size: Memory Bank Capacity 1:2

Power Down Bank Energy 0.005 nJ

Active Bank Energy 3.570 nJ

Non-accessed Active Bank Energy 3.500 nJ

Standby Bank Energy 0.830 nJ

Nap Bank Energy 0.320 nJ

Bank Activation Energy 3.570 nJ

Bank Deactivation Energy 3.570 nJ

Data Migration Energy 3.570 nJ

Data Compression Energy 2.668 nJ

Data Decompression Energy 2.668 nJ

how a compression-based approach can be implemented when the different
blocks can have different compression ratios. If desired, that approach can also
be used in our implementation to operate with different block sizes.

In this approach, the program starts its execution with all of its tiles com-
pressed. A compressed tile is decompressed and stored in the decompression
buffer by a decompressor before it is accessed by the program. The important
point to emphasize here is that this approach is not tied to any specific com-
pression/decompression algorithm, and the compressor and decompressor can
be implemented either in software or hardware. Compressed tiles are stored
in the compressed area. The memory in this area is divided into equal-sized
slices. The size of a slice is smaller than that of a block in the decompression
buffer. Although the size of tiles is constant, the compression ratio depends on
the specific tile. Therefore, the number of slices required to store a compressed
tile may vary from one tile to another, hence, slices of the same tile form a link
table. This way, it is possible to accommodate different compression ratios.

For each benchmark code listed in Table II, we performed experiments with
five different versions and their different combinations.

—Optimal Data Placement (OD). This is the classical uniform banked memory
management strategy that does not use any data migration, data compres-
sion, or data replication. Data blocks are placed in memory banks and do
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not move during the course of execution. However, it should be emphasized
that, apart from migration, compression/decompression, and replication, this
version makes full use of the low-power modes available and data placement
is optimal.

—Nonuniform Banking (NU). This is the integer-linear-programming-based
strategy discussed in this article, wherein banks with different sizes are
employed. Those data blocks frequently accessed together can be put in a
larger bank, whereas a single data block (without any access-pattern rela-
tionship with other data blocks) can be placed into a smaller-sized bank to
optimize the energy consumption in active banks and during bank activa-
tions/deactivations. Note that data blocks are optimally placed in memory
banks, that is, this is an extension of the previous scheme (i.e., OD).

—Migration (ME). This is also an extension to OD (see Section 5.2), where
data migration is employed to further decrease the energy consumption. An
accessed data block is migrated to an active bank if so doing is profitable from
the energy consumption point-of-view. The rationale behind this scheme is
to transfer the data block being accessed to one of the active memory banks,
thereby reducing the number of active memory banks as much as possible.

—Compression (CO). This scheme also extends OD (see Section 5.3), wherein
data-block compression is employed to decrease the number of banks occu-
pied by data. Compression will provide additional space that can be used for
accommodating additional data blocks in the same bank.

—Replication (RE). In this version, data blocks are placed into banks and repli-
cated based on the access pattern exhibited by the application. Data repli-
cation decisions are based on the values extracted from the integer linear
programming formulations, and give the optimum result. Again, data blocks
are optimally placed in memory banks, as in OD.

In the experimental results, to be presented shortly, the term “energy con-
sumption” is used to refer to that energy expended in the memory banks (during
data migrations, data compressions, and data accesses, as well as that con-
sumed during compression, decompression, and migration). Since our focus is
on memory energy consumption due to data accesses, the experimental results
presented in the following are for this energy consumption. However, enhancing
SIMICS using Wattch-like [Brooks et al. 2000] energy models, we also measured
the energy impact of our approach on other system components. For this pur-
pose, we assumed that program instructions are stored in two reserved memory
banks and that there is an on-chip cache of 32KB. We found the memory energy
due to data accesses to be the dominating element in these benchmarks and
to account for nearly 34.2% of the overall energy consumption. Therefore, one
can expect significant savings in reducing memory energy consumption due to
data accesses. However, our optimizations also incur some additional energy
consumption due to code modifications, compressions, decompressions, and mi-
gration. We found that, except for the energy due to code modifications (primar-
ily loop tiling), the total contribution of the other types of overheads is about
1% and these are included in all the results presented next. The overheads due
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Fig. 12. Normalized energy consumption values with respect to the OD version.

to tiling, on the other hand, are not included in the results, as tiling is applied
as a preprocessing step. Tiling-related overheads are found to be around 2.6%
when averaged over all benchmarks in our experimental suite.

7.2 Baseline Results

Figure 12 shows the normalized energy consumption values with NU, ME, CO,
and RE over the OD version. We see that the average reduction in energy
consumption is 9.8%, 31.3%, 7.2%, and 13.9%, respectively, for NU, ME, CO,
and RE. One can make several observations from these results. First, OD gen-
erates the worst results for all seven benchmarks in our experimental suite,
mainly because of its large number of active banks at any point during exe-
cution. Our second observation is that ME generates the best results for all
the benchmarks tested. This is due to the fact that data migration moves data
from one memory bank to another at runtime, which enables to better exploit
the available low-power operating modes. By placing data blocks with similar
access patterns/lifetimes into the same set of banks, we increase the chances
for better utilizing low-power modes. The solution times incurred with the ILP-
based approach are not excessive. Specifically, the largest solution times when
using the NU, ME, CO, and RE schemes are 18.2, 55.4, 137.5, and 244.1 min-
utes, respectively. Our belief is that these solution times are within tolerable
range, particularly for embedded systems where one can invest a large num-
ber of cycles in compilation, as the code quality is of utmost importance. It
need also be mentioned that when we consider the overall overheads incurred
by the entire framework shown in Figure 1, the ILP solver is certainly the
most time-consuming component. In comparison, the additional overheads in-
curred by the compiler when using all optimizations simultaneously are very
small.

Note also that, as mentioned earlier, since data-memory energy originally
constitutes about 34.2% of the overall energy consumption and tiling brings
around 2.6% overhead on average, the overall energy savings due to our ap-
proach becomes 0.82%, 8.11%, 0.13%, and 2.16% for the NU, ME, CO, and RE
schemes, respectively. In other words, our approach is useful even if one con-
siders all overheads and total energy consumption. Moreover, as will be shown
shortly, these savings increase when we combine some of our optimizations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 50, Pub. date: July 2008.



ILP-Based Minimization Techniques for Banked Memories • 50:29

Table IV. Normalized Energy Consumption of

Different Scheme Combinations with Respect to OD

Approach

Benchmark NU + ME NU + RE ME + CO

adi 71.0% 85.2% 67.8%

apsi 59.6% 59.9% 64.6%

bmcm 56.2% 81.4% 57.4%

btrix 59.8% 72.2% 65.1%

mxm 65.5% 90.1% 66.8%

tomcatv 57.3% 76.9% 63.1%

wss 64.4% 79.3% 61.5%

Fig. 13. Normalized energy consumption values with respect to the OD version.

Table IV shows the results with the different combinations of our schemes,
namely, NU+ME, NU+RE, and ME+CO. One can observe from this table that
when migration is allowed on a nonuniform banked memory (NU+ME), on
average, it is possible to achieve a 38% reduction in energy (corresponding
an average total energy savings of 10.39%). On the other hand, the combined
ME+CO scheme is able to reduce the energy consumption by 36% on average
(corresponding an average total energy savings of 9.71%). One observation from
this result is that ME+CO generates better results than applying ME or CO
individually, in all four applications; that is, data compression brings further
benefits over data migration alone.

In the next set of experiments, we evaluate the effect of applying all
the schemes in a cumulative manner. Figure 13 shows the normalized en-
ergy consumption values obtained using the NU, NU+ME, NU+ME+C0, and
NU+ME+CO+RE schemes over the OD scheme. The average energy reduction
under these schemes is 9.8%, 38.0%, 42.5%, and 55.0%, respectively. The last
value corresponds to a 16.21% reduction of total energy consumption. As can
be seen from this figure, although each scheme brings additional savings over
the previous ones, there are marginal reduction decreases due to the limited
amount of energy reduction potential.

Recall that the benchmarks we use in our experiments are extracted from sci-
entific benchmarks suites. While the access patterns exhibited by these bench-
marks are close to those exhibited by array-dominated embedded applications,
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Fig. 14. Normalized energy consumption values with respect to the OD version.

Fig. 15. Percentage improvements in performance brought by the NU- over the OD approach.

it is also important to check whether our technique can really bring benefits
with embedded applications. To see this, we also conducted experiments with
two full embedded applications. Phods is a hierarchical motion estimation im-
plementation from Zervas et al. [1998]. Lame is, on the other hand, an MP3 en-
coder and is from the MiBench suite [MiBench 2001]. The normalized energy
consumption results with these two benchmarks are presented in Figure 14
under the different optimization schemes. Our main observation is that the
NU, NU+ME, NU+ME+C0, and NU+ME+CO+RE schemes save energy over
the OD scheme for both benchmarks. These results are consistent with those
presented earlier in Figure 13.

While the results presented so far indicate significant energy savings us-
ing our techniques, one may need to consider the performance aspect as well.
Performance results are given in Figure 15. These values are given as improve-
ments brought by the NU approach over the OD scheme, with different bank
sizes. Negative values indicate a performance overhead if our approach is used.
The average performance improvement values are −5%, 14%, 7%, and 13% for
adi, apsi, bmcm, and btrix, respectively. One can observe from this figure that
the maximum overhead brought by our approach is −19% for adi with a bank of
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Fig. 16. Percentage memory-savings with different performance-overhead bounds.

size 8. On the other hand, the maximum improvement brought by our approach
is 28% for btrix with a bank of size 1. In general, the smaller the bank size, the
better the performance. This follows from the fact that the number of cycles
to activate a bank (if the corresponding bank is in low-power operating mode)
decreases if a smaller bank-size is employed. Also, the experiments with our
two embedded benchmarks show that, on a two-bank system, the average per-
formance improvements for Phods and Lame are 6.4% and 7.7%, respectively.

As stated earlier, another performance factor is the effectiveness of the de-
compression algorithm. In general, our approach minimizes the performance
overhead due to decompressions by scheduling predecompressions earlier. How-
ever, this outcome depends on the latency of the particular decompression algo-
rithm at-hand. If the predecompressions have to be scheduled very early, then
the memory savings will reduce. To evaluate this fact we have implemented a
version of the compress utility in UNIX, which is based on the LZC compression
method. This is a specific implementation of LZW using variable-size pointers,
as in LZ78. Figure 16 shows the memory savings using this technique based on
a specific performance-overhead bound. We give the results with performance
bounds ranging from no bound to 0.1%. As can be seen from this figure, without
any performance limitation we can achieve 53% memory savings on average.
Even employing a 10% performance overhead gives us 52% memory savings,
on average. This performance overhead comes from the fact that we need to
reemploy predecompression and the latencies of such predecompressions can-
not be hidden all the time. The last bars on this graph show the memory savings
when we have the performance-overhead bound as 0.1%. We achieve, on aver-
age, 26% memory savings using this bound. One key observation in this graph is
the drastic reduction in the memory savings with mxm. With 10% performance-
overhead we observe 64% memory savings, whereas these savings drop to 22%
with 0.1% performance overhead. This follows from the fact that the data blocks
used in mxm are larger when compared to other benchmarks (78KB versus
39.1KB). Hence, the compression ratios are higher due to larger data blocks,
whereas the decompression latencies are longer. Higher decompression laten-
cies result in performance limitations and reduce the memory savings, with
tighter performance bounds.
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Table V. Percentage Reduction in Energy of NU-over OD

Approach with Varying (fixed) Bank Sizes

Bank Size
Benchmark 1 2 4 8 Average

bmcm 9.8% 12.9% 12.3% 14.1% 12.3%

Fig. 17. Percentage improvement with different migration-cost ratios (bmcm).

7.3 Sensitivity Analysis

In this section, we modify some of the default simulation parameters (see
Table III), and conduct a sensitivity analysis. Unless stated otherwise, we
change only one parameter at-a-time; the remaining parameters are the same
as in Table III. While, due to space concerns, we focus mostly only on the
bmcm benchmark, our observations extend to the remaining benchmarks as well.
Table V gives the energy reductions brought by the NU- over the OD version
for different bank sizes. Bank sizes are given in terms of the data-block sizes
shown in Table II. For example, in the third column (entitled “2”), we compare
our approach with the OD strategy with banks of fixed size 2k (assuming that
a data-block size is k). In NU, a total of 8k memory is partitioned nonuniformly.
However, under the uniform-banking scheme, memory is composed of four dif-
ferent banks, where all banks are of size 2k. The sixth column gives the average
improvement brought by our approach over the OD scheme. We see that the
overall average reduction in energy consumption is 12.3%, demonstrating the
benefits brought by the NU scheme. As stated earlier, we also used ILP to ob-
tain the results for the OD scheme in order to make a fair comparison against
our approach.

The bar chart in Figure 17 shows the percentage improvement in energy
achieved by ME over OD under the different cost ratios. On the x-axis of this
graph, Q denotes the default energy cost for migration. We see from these re-
sults that the effectiveness of our approach increases as the relative cost of mi-
gration decreases. More specifically, the best energy savings are obtained with
a migration cost of Q/4, whereas the worst savings occur with a migration cost
of 5Q , as expected. It should be observed that even with the relative migration
cost of 5Q , our approach achieves 8% reduction on energy consumption over
the OD scheme, which implements optimal data placements across banks.
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Fig. 18. Percentage improvement with different compression/decompression-cost ratios (bmcm).

Fig. 19. Normalized energy consumption values with different replication limits, Rlim (btrix and

tomcatv).

The graph in Figure 18 shows the percentage reduction in energy achieved by
CO over OD under the different compression/decompression costs. Again, the
value Q on the x-axis corresponds to the original compression/decompression
cost assumed. We see from these results that as the relative cost of compres-
sion/decompression decreases, the effectiveness of our approach increases. The
energy savings achieved with a cost of Q/6 is slightly less than 45%. On the
other hand, energy savings with a cost of 5Q is about 38%, which is equal to
the savings with the ME approach. One can observe from this graph that both
costs 4Q and 5Q result in a memory-system energy savings of around 38%. This
is due to the fact that compression/decompression is no longer used when the
relative compression/decompression cost is set 4Q , since in this case compres-
sion/decompression consumes much more energy than it can potentially save.

The bar chart in Figure 19 shows the normalized energy consumption of
RE-over the OD version with different replication limits for btrix and tomcatv.
Percentages on the x-axis of this graph denote Rlim, the maximum replication
allowed, with respect to the total memory size. Recall that the default repli-
cation limit assumed in this article is 20% (see Table III). We see from these
results that the effectiveness of our approach increases with the replication
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Fig. 20. Percentage reduction with different bank sizings.

limit. However, this also increases the memory-space consumption of the ap-
plications. Another problem with achieving higher percentages is that, beyond
a certain percentage (depending on the application at-hand), replication does
not provide much additional benefit. For example, in btrix, the energy savings
increase by 0.1% when moving Rlim from 30% to 40%. Overall, these results
show the tradeoff between memory consumption and energy savings when
data replication is used. To summarize, our experiments clearly show that the
proposed techniques save energy, both individually and when applied together.

Recall that all the results reported so far were obtained using memory-bank
sizes that are powers of two. If we were to relax this assumption so that we
could use all possible bank sizes (not only powers of two), we get the results
shown in Figure 20. This graph shows the average percentage improvement
obtained by the NU-over the OD version with banks with powers-of-two size
(1,2,4,8) and with banks of any size (1,2,3,4,5,6,7,8). Note that the total memory
size is kept constant and the only difference is in the way it is partitioned into
the banks. One can observe from these results that the improvement brought
by our approach over the OD version is better if we do not restrict the bank
size to powers of two, due to the greater flexibility obtained. For example, if
three data blocks are accessed frequently together, then it might be wise to
keep them together in a bank which can hold all three. At the same time, it is
better not to have any space left in the bank, which consumes extra energy. In
this case, instead of using a bank size of 2 or 4, it is more profitable to use one
of size 3.

As stated earlier, so far in our experiments we have used only the power-down
mode. The graph in Figure 21 shows experimental results with the default
parameters (Table III) for nap and standby modes, as well as for the power-
down mode (the default), when only given type of mode and using higher-energy
modes. Even with the standby mode, the ME- and ME + CO approaches achieve
23% and 26% energy improvements, respectively. Although the power-down
operating mode achieves the most energy savings (38% and 43%), it does not
offer a great improvement over the nap mode (35% and 31%). This can be
expected based on the bank energies given in Figure 2, and is due to the limited
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Fig. 21. Percentage improvement with different low-power modes (bmcm).

Fig. 22. Percentage reduction in energy with the different multiple low-power operating modes

brought by the NU- over the OD approach.

number of banks that can be switched to the low-power operating mode. For
example, with a two-bank memory, the maximum energy-savings possible is
less than 50%, assuming that memory is always accessed (i.e., that at least
one of the banks will be in active mode). In addition, bank reactivations and
deactivations further decrease the potential energy-savings.

Instead of using a single low-power mode, as has been the case so far, we
could use multiple power modes. In this case, each memory bank can be in
one of the four modes listed in Figure 2 (active, standby, nap, or power-down)
at any step. Figure 22 shows the energy reduction brought by our approach.
This graph gives the energy improvement with respect to different performance
constraints (x-axis) for different numbers of banks (1, 2, 4, 8). Specifically, the
maximum performance-overhead allowed for the design is given on the x-axis.
We observe that the energy savings vary between 0.0% to 19.4%. Note that if
performance had not been a factor to consider, one could always have chosen
the power-down mode (the most aggressive one), since it normally provides the
least energy consumption.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 50, Pub. date: July 2008.



50:36 • O. Ozturk and M. Kandemir

Fig. 23. Percentage energy reduction with differing memory capacities in terms of data-block-size

ratios and number of steps for: (a) 2 banks; (b) 4 banks; and (c) 8 banks (btrix).

The final set of experiments study the impact of data-block- and step size
on our results. The set of graphs in Figure 23 shows the results with differ-
ent memory capacities; specifically, with data-block-size ratios and with a dif-
fering number of steps. Figures 23(a), (b), and (c) show the results with the
ME + CO version for two, four, and eight banks, respectively. In these graphs,
the x-axis shows memory capacity in terms of a data-block-size ratio ranging
from 4 to 16, whereas the y-axis shows the number of steps, ranging from Q/2
to 4Q. Note that Q is the default number of steps in our experimental anal-
ysis. We observe from these results that energy consumption decreases with
data-block size. This is due to the fact that with smaller-sized data blocks, the
data-block accesses and operations can be performed in a higher granularity.
All approaches discussed so far will benefit from such higher granularity. As a
second dimension we study the effect of the number of steps in our approach for
Q/2, Q, 2Q, and 4Q numbers of steps. Increasing the number of steps enables
capturing the data-access pattern in a more detailed fashion; this in turn in-
creases the flexibility of migration, compression, or decompression. Note that
increasing the number of steps beyond a certain point may not yield a sub-
stantial improvement. For example, consider the graph given in Figure 23(a).
Changing the number of steps from 2Q to 4Q does not yield a reduction of more
than 2.2%.

Although, so far thus our approach has assumed that the compiler is given
a data-block size and a step size as an input, this process can be automated
by compiler as well. The pseudocode given in Figure 24 shows how a compiler
can automatically calculate the data-block- and step sizes. Note that one would
need the complexity limit of the ILP formulation. There are two parameters
indicating the complexity of an ILP formulation, namely, the number of con-
straints (Clim) and number of variables (Vlim). In order to obtain the number of
steps, the compiler can check the number of loop nests that are computation-
ally intense. For example, if there are two loops with N 3 iterations each, then
it would be better to consider each of these loop nests as a single step, hence
there is a total of three steps. This follows from the fact that loops with higher
computational complexity will have the dominating number of accesses. These
loop nests can be further divided, but this will increase the complexity of our
ILP formulation.
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Fig. 24. Pseudocode for automatically selecting block- and step size.

Increasing the granularity of block size will also result in a more complex
ILP formulation. As a second part of the pseudocode given in Figure 24, the
compiler can iteratively double the number of blocks until the ILP complexity
limits are reached. This way, the ILP-solution time can be kept reasonable and a
better result is obtained. It is possible to implement better compiler techniques
to decide on block- and step size, but our goal here is to show that a compiler
can easily identify reasonable ones.

Although increasing the granularity of data-block- and step size will reduce
the energy consumption, this will also incur performance overheads. First, all
data accesses, movements, compressions, and decompressions will need to be
performed multiple times. Second, higher granularity will increase the number
of parameters/constraints in the ILP formulation, which will affect the solution
time exponentially.

8. CONCLUSION

This article shows how ILP (integer linear programming) can be used for for-
mulating the problem of optimal data migration, data compression, and data
replication in a banked memory architecture with low-power operating modes.
In this work, an ILP solver is connected to an optimizing compiler. The opti-
mizing compiler provides the data-access pattern information, that it extracts
from the application source-code, to the ILP solver, which in turn determines
the optimal data migration, data compression/decompression, and data repli-
cation patterns. This article also presents experimental evidence demonstrat-
ing the impact of the proposed approach in practice. The results indicate that
the ILP-based techniques presented in this article are very effective in reduc-
ing memory energy consumption, and that our savings are consistent across a
range of values of major simulation parameters.
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