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A continuous review perishable inventory system operating under the (s, S) policy is considered. Assuming a random shelf life with
a general distribution, renewal arrivals and a negligible replenishment lead time, exact expressions for the expected cost rate function
for unit and batch demands are derived. For unit demands, it is shown that the average cost rate function is quasi-convex in (s, S).
Numerical findings indicate that the loss incurred by ignoring the randomness of the shelf life can be drastic. It is observed that the
shape of the shelf life distribution has a significant impact on the costs and a precise estimation of shelf life distribution may result in
substantial savings. Based on the presented analytical results, a new heuristic for positive lead times is proposed. Extensive numerical
studies show that the proposed heuristic performs better than an existing one suggested for fixed shelf lives in most of the cases studied.
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1. Introduction and literature review

Most of the existing models in the inventory literature as-
sume that items have an infinite shelf life and thus can be
stored indefinitely. This assumption is not realistic for per-
ishable goods that can deteriorate and become unusable af-
ter some finite time. Fresh food stuff, blood products, meat,
chemicals, composite materials and pharmaceuticals are all
examples of perishable products.

Perishability is generally modeled in one of three ways.

1. Continuous deterioration, where the items in stock decay
with a rate proportional to the amount and/or age of
the items. Volatile chemicals and radioactive materials
are examples of this type of decay.

2. Independent random shelf lives of individual items in
stock. In this setting, all of the items have identical shelf
life distributions but they perish (i.e. become unusable)
individually. Only the exponential shelf life is considered
in the literature for this case. Although the memoryless
property of the exponential distribution and indepen-
dent degradation of individual items are convenient for
the analysis, this model may not be appropriate for prod-
ucts whose lifetimes are correlated due to external fac-
tors, such as storage conditions or the internal dynamics
of the supply chain.

∗Corresponding author

3. Batches of items having the same shelf lives, where the
items in a single batch perish at the same time. The shelf
life itself may be constant or random.

In this study, we consider the last degradation type with
items in the same batch having the same random lifetime
with a general distribution.

Consider the following example, communicated by a
colleague with experience in the distribution of apples to
grocery stores. Each year’s harvest is stored in very large
batches in sealed, low-oxygen and low-temperature cells.
Apples can be stored in such sealed cells for very long pe-
riods of time; however, once a cell is unsealed, the apples
have a remaining shelf life of about 6 weeks. Over time, the
sealed cells are opened and their contents are used to satisfy
orders placed by individual grocery stores. Practically, each
individual order is satisfied by the material stored in the
most recently opened cell; hence, all of the produce within
the replenishment order come from the same vintage and
have the same shelf life at the store level. As orders arrive
according to different consumption patterns at individual
stores, the remaining shelf lives of the batches as experi-
enced by an individual store are random, although each
sealed cell has a fixed shelf life itself. (See also Johnston
et al. (2002) for issues regarding the post-harvest storage
factors that influence the perishability of the apples.)

This example can be formalized and generalized to
all perishable items with a fixed shelf life at the upper
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Fig. 1. Simulated frequency distribution of the shelf life faced by the retailer in a single-warehouse two-retailer system.

echelon in a supply chain. We provide a simulated example
below. Consider a continuous review two-echelon inventory
system for a perishable item, with a single warehouse and
a number of identical retailers. Suppose that the retailers
face independent unit renewal demands and the warehouse
orders from an outside supplier with a constant lead time.
Assume that the items arrive at the warehouse fresh, with a
fixed shelf life ν. Suppose also that the shipment time from
the warehouse to the retailers is negligible and all retail-
ers employ an (s, S)-type control policy. For convenience,
assume that the warehouse also employs an (s,S)-type pol-
icy. Then, the items in a batch shipped from the warehouse
to the retailer will have the same random shelf life which
is characterized by the steady-state distribution of the re-
maining shelf life of the items in stock at the warehouse
level. A set of examples for the simulated steady-state dis-
tributions of the shelf life faced by the retailer is illustrated
in Fig. 1 for a single-warehouse two retailer-system, under
different system parameters. (In the graphs, the subscripts
0,1,2 refer to the warehouse, the first and the second retailers
respectively and L0 stands for the warehouse replenishment
lead time.) We observe that, depending on the particulars
of the system parameters, batches that arrive at a retailer
may assume different shelf life distributions. Hence, we find

it interesting and important to study the impact of shelf life
distributions on replenishment decisions and inventory sys-
tem performance for perishable goods.

In this study, we consider a model for perishable goods at
the retailer level, similar to the one discussed in the above
setting. More specifically, we consider the replenishment of
a perishable product under a continuous review (s, S) policy
with renewal batch demands (both discrete and continuous
demand sizes) and negligible replenishment lead times. We
assume that the shelf life of the items is a random vari-
able and that items in the same batch perish at the same
time. On the other hand, the shelf life of items in different
batches are independent and identically distributed. Before
we present the details of our model, we briefly review the
related literature.

Continuously deteriorating inventory systems are exten-
sively investigated in the literature, and interested readers
are referred to the review papers by Raafat (1991) and
Goyal and Giri (2001). The literature on the case in which
each item in a batch independently perishes is limited to
exponential lifetimes. Kalpakam and Arivarignan (1988)
study a continuous review (s, S) model with Poisson de-
mand and zero lead time. Liu (1990) allows backorders for
the same model. Moorthy et al. (1992) propose another
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aging structure in which the shelf life of an item starts when
it is put on display after the previous item is sold or ex-
pires. Kalpakam and Sapna (1994) and Liu and Yang (1999)
consider extensions of the Kalpakam–Arivarignan model,
whereas Kalpakam and Sapna (1996) discuss a lost-sales
(S − 1, S) policy with exponential lead times and renewal
demands. Liu and Shi (1999) study an (s,S) model with an
exponential shelf life, where degradation is only detected at
demand arrivals. Recently, Kalpakam and Shanthi (2001)
analyze a lost sales, Poisson demand model with an expo-
nential shelf life and a random lead time operating under
an (S − 1,S) policy.

Early studies on perishable goods assume a periodic re-
view approach with a fixed shelf life. Van Zyl (1964) provides
the first finite-horizon and infinite-horizon dynamic pro-
gramming formulations with a shelf life of exactly two pe-
riods. Nahmias and Pierskalla (1975) investigate the prop-
erties of the optimal policy for two-period shelf lives and
Fries (1975) and Nahmias (1975) extend the results to m-
periods. Because the optimal policy structure is very com-
plex, for longer shelf lives, approximate policies have been
developed by Cohen (1976) and Nahmias (1976, 1977a).
Nahmias (1977b) considers extensions to the random shelf
life approach and establishes the similarity of the optimal
policy structure to that for a fixed shelf life. A comprehen-
sive survey of the studies with periodic review can be found
in Nahmias (1982).

The current literature on continuous review perishable
problems considers various assumptions on lead times.
With a zero lead time, Weiss (1980) shows that an (s,S)-
type policy is optimal for unit Poisson demand and con-
stant shelf life. Liu and Lian (1999a) consider a continuous
review (s, S) model with a fixed shelf life and renewal ar-
rivals. Liu and Lian (1999b) assume a zero lead time and
allowing for backorders, they study an (s, S) model with
geometric inter-demand times. Lian and Liu (2001) study
an (s, S) policy with a fixed shelf life and renewal batch de-
mands. Using Markov chain methods and Laplace–Steltjes
transforms, they provide an iterative approach for finding
the expected length of a regenerative cycle and present ex-
pected sojourn times through which the expected holding
and backorder cost of a cycle is obtained (see also Gürler
and Özkaya (2003) for a correction of Lian and Liu (2001).
With zero or exponential lead times, it is usually possible
to analyze a perishable inventory system using Markov re-
newal techniques. A constant positive lead time however,
does not allow a Markovian structure and the analysis be-
comes very complicated. Nahmias and Wang (1979) pro-
vide the first approximate analysis of a perishable inven-
tory system with a constant lead time and the first exact
study of an (S − 1, S) policy with a fixed shelf life, constant
lead time and lost sales assumption is given by Schmidt
and Nahmias (1985). Later Chiu (1995) proposed an ap-
proximation for the continuous review (Q, r ) model with a
fixed shelf life. Perry and Posner (1998) study an (S − 1, S)
policy with a fixed shelf life, Poisson demand and lead-time-

dependent backordering. Ravichandran (1995) considers
an (s, S) inventory model with a random lead time and
Poisson demand with a specific aging pattern. Tekin et al.
(2001) extend the work of Ravichandran (1995) by consid-
ering a time based policy when the lead time is a positive
constant.

Our study generalizes and improves on the previous work
in several aspects. First, the proposed model allows the shelf
life to be a random variable, which, apart from being ap-
plicable to items with inherently random shelf lives, also
allows the treatment of fixed shelf life products that may
perish randomly due to imperfect storage conditions. In
this respect, we also extensively investigate the impact of
the shelf life distribution and obtain practically important
findings. To the best of our knowledge only the exponen-
tial distribution has been considered in the literature. Sec-
ond, we present explicit expressions for the expected cost
rate and the operating characteristics for the model studied,
from which the explicit cost expressions of the models by
Liu and Lian (1999) and Lian and Liu (2001) can be ob-
tained. We also show that the expected cost rate function
is quasi-convex in (s, S) for unit demand, which guarantees
unimodality and facilitates finding the global optimum in
a numerical search. Finally, based on the analytical find-
ings for the zero lead time case, we provide a heuristic for
positive lead times.

The results of our extensive numerical study indicate that
the loss incurred by ignoring the randomness of the shelf life
can be substantial. We observe that treating the shelf life as
being constant when it is random results in 21.42 and 5.90%
average losses for unit and gamma demands respectively. In-
cluding the unreported cases with other demand rates and
coefficient of variances for the shelf life, the average losses
become as high as 23.10, 9.26, and 9.45% for unit, geometric
and gamma demands respectively, over the 104 cases stud-
ied. We also observe that the distribution of the shelf life
has a significant impact on the system costs, and the average
cost differences can get as large as 20, 13 and 13% for unit,
geometric and gamma demands. In unreported results, we
observed that the highest costs are observed for the expo-
nential shelf life case.We note that the proposed heuristic
performs as good as or better than the existing one by Lian
and Liu (2001) suggested for fixed shelf life studies in most
of the cases, although on the average the existing heuristic
performs slightly better for the unit demand. In particular,
the deviation of the proposed heuristic from the simulated
exact model is 0.34 and 1.60% for the unit and the batch
demands over the 48 cases, whereas the corresponding fig-
ures are 0.29 and 3.62% for the existing heuristic of Lian
and Liu (2001).

The rest of the paper is organized as follows. In Section
2, we introduce the model and derive the operating charac-
teristics for both discrete and continuous batch demands.
In Section 3, analytical results for the unit demand case are
presented. In Section 4, a heuristic is developed for pos-
itive lead times and in Section 5, results of the extensive
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numerical study are presented. The paper ends with con-
cluding remarks in Section 6.

2. Model and analysis

We consider a single-item single-location inventory system
in which the items face batch demands that arrive according
to a renewal process with random batch sizes that are inde-
pendent of the arrival process. Unmet demands are back-
ordered and if the entire demand can not be satisfied by
the on-hand stock, it is partially filled immediately with
the available stock and the rest is backordered. The shelf
life of the products, τ , is a random variable with a general
distribution. We assume that products in an arriving order
have the same shelf life, where the shelf lives of items in
different orders are independent and identically distributed
random variables. The costs associated with the inventory
system are the fixed ordering cost K per order; the holding
cost h per unit per time; the degradation cost π per unit;
the backorder cost b per unit and ρ per unit per time. The
replenishment lead time, L, is assumed to be zero and the
following continuous review (s, S) ordering policy is used:

Policy: When the inventory level drops to s or below, a re-
plenishment order is placed to raise it up to S.

For unit demands, Weiss (1980) shows that the optimal
replenishment policy for this model is of (s, S) type when
backorder costs are increasing convex in the time until satis-
faction and the replenishment lead time is zero. The zero re-
plenishment lead time assumption induces an upper bound
on s as s < 0, since, otherwise the instantaneously arriving
fresh items wait for the next demand, during which they in-
cur a holding cost and are at risk of degradation while they
are held in stock. Also, if S < 0, the inventory level is always
negative, items never perish and the model becomes mathe-
matically trivial and practically uninteresting. We therefore
assume that S ≥ 0.

Under the above policy, the instances at which the inven-
tory level is raised to S constitute regeneration points and
a regenerative cycle is defined as the time between two such
consecutive instances. For the derivation of the operating
characteristics, we partition a regenerative cycle into two
segments. The first one, subcycle 1 is the time from the be-
ginning of a cycle until the inventory level becomes negative
for the first time and the second one, subcycle 2 is the re-
maining time to complete the cycle. If at the end of subcycle
1, the inventory level is below s, then an order is placed im-
mediately which completes the cycle and subcycle 2 is not
realized.

We use the following notation in our analysis: N(t) is
the counting process of the demand arrivals up to time t ,
where t = 0 is taken as the beginning of a regenerative cy-
cle. The inter-arrival times are independent and identically
distributed random variables denoted by X , with mean µ.
{Xn, n = 1, 2, . . .} is the sequence of arrival times since the
beginning of a cycle, with distribution function (d.f.) Fn and

{di, i ≥ 1} is the sequence of batch sizes with d.f. V . Also
let Dk = ∑k

i=1 di denote the cumulative demand at the kth
arrival with d.f. Vk and G be the d.f. of the random shelf life
τ . We define l0 as the number of demand arrivals by which
the inventory level drops below zero for the first time and
r1 as the level of the inventory when it drops below zero for
the first time. In what follows, for a d.f. F , F̄ = 1 − F , the
function I(·) is the indicator of its argument and the conven-
tions D0 = X0 = 0 and F0(x) = V0(x) = 1 for x ≥ 0, zero
otherwise are used.

Objective function: In view of the renewal reward theorem
(Ross (1983)), the optimization problem is stated as the
minimization of the ratio of the expected cycle cost to that
of cycle length. That is

min
s,S

AC(s, S) = E[CC(s, S)]
E[CL(s, S)]

,

where AC(s, S), CC(s, S) and CL(s, S) are the average cost
rate, cycle cost and cycle length, respectively.

We first discuss below the discrete demand case, and ex-
tend the results to continuous demand in Section 2.2.

2.1. Discrete demand

We now consider the case where the demand batch size is
a discrete random variable with probability mass function
(p.m.f.) v, and vk is the p.m.f. of the cumulative demand at
the kth arrival since the beginning of a cycle.

Figure 2 illustrates some realizations for a cycle when the
demand batch size is a discrete random variable. Case 1
refers to a realization where the inventory level drops ex-
actly to zero by demand and no degradation occurs. In case
2, items do not perish, and the inventory level crosses zero
without staying at level zero, whereas in case 3, some items
in the batch perish before they are depleted by demand. In
all three cases, the cycles are completed immediately when
the inventory level hits or crosses s. We assume that when
demand is partially fulfilled, a backorder cost is incurred
only for the unsatisfied portion of the batch. Also note that
since L = 0, the demand batch which triggers the replen-
ishment order is satisfied immediately and does not incur a
backorder cost.

We start by presenting a result which provides the p.m.f.
of r1, the level of the inventory in a cycle when it first drops
below zero.

Lemma 1. The p.m.f. of r1 is given as below for x =
−1, −2, . . . :

Pr1 (x) =

v(−x)
S∑

k=0

[∫ ∞

u=0
[Vk(S)Fk(u) − Vk(S − 1)Fk+1(u)] dG(u)

]

+
S∑

k=1

∫ ∞

u=0
Fk(u)dG(u)

[
S−1∑

i=k−1

vk−1(i)v(S − i − x)

]
. (1)

Proof. See the Appendix. �
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2.1.1. Expected cycle length
Recall that we have partitioned a regenerative cycle into
two segments. Subcycle 1 is the time from the beginning
of a cycle until the inventory becomes negative for the first
time and subcycle 2 is the time from the end of subcycle
1 to the end of the regenerative cycle. Let CL1(s, S) and
CL2(s, S) be the lengths of subcycles 1 and 2 respectively.
Then,

CL1(s, S)

=



Xl0 if Xl0−1 < τ, Dl0−1 = S or
Xl0 < τ, Dl0−1 ≤ S − 1, Dl0 > S.

XN(τ )+1 if XN(τ ) < τ < XN(τ )+1, DN(τ ) ≤ S − 1.

(2)

The first expression above corresponds to the cases where
the inventory level drops exactly to zero by demands and
stays there until the next demand arrives or becomes neg-
ative without staying at zero (cases 1 and 2 in Fig. 2) and
the second one refers to degradation (case 3 in Fig. 2). Let
n2 denote the number of demand arrivals in subcycle 2. To
avoid confusion, we denote the arrival time of the ith de-
mand in subcycle 2 by X̃ i and the cumulative demand at the
ith demand arrival by D̃i, which are identically distributed
with Xi and Di of subcycle 1, respectively. Then, CL2(s, S)
is written as

CL2(s, S)

=



X̃n2 if D̃n2−1 ≤ r1 − s − 1, D̃n2 ≥ r1 − s, r1 > s.

0 if r1 ≤ s.
(3)

Taking the expectations of Equations (2) and (3) and
using Lemma A1., we obtain the following, proofs of which
are given in the Appendix.

E [CL1(s, S)] = µ

S∑
k=0

Vk(S)
∫ ∞

x=0
Fk(x)dG(x), (4)

E [CL2(s, S)] = µ

−1∑
x=s+1

x−s−1∑
k=0

Vk(x − s − 1)Pr1 (x). (5)

The expected cycle length E[CL(s, S)] is then obtained as
the sum of E [CL1(s, S)] and E [CL2(s, S)].

2.1.2. Expected cycle cost
The derivation of the costs for the two subcycles will be
considered separately. In subcycle 1, a backorder cost is
triggered only by the last demand if r1 > s. If r1 ≤ s, sub-
cycle 1 and the cycle are completed simultaneously with
order placement and no shortage cost is incurred. There-
fore, the unit-dependent shortage cost, USC1, of subcycle
1 is −br1I(r1 > s) and

E[USC1] = −b
−1∑

x=s+1

xPr1 (x). (6)

For the holding and perishing costs, suppose the inven-
tory level is S − Di−1 ≥ 0 after the (i − 1)th demand. Then,
the next event will either be the arrival of the ith demand
(Figs. 3(a), 3(d) and 3(e)), if Xi < τ or perishing if Xi ≥ τ

(Fig. 3(b) and 3(c)). Then, the holding cost, HCi, and the
perishing cost, PCi, associated with the ith demand are
given as

HCi =




h(Xi − Xi−1)(S − Di−1) if Xi < τ,

Di−1 < S.

h(τ − Xi−1)(S − Di−1) if Xi−1 < τ ≤ Xi,

Di−1 < S.

(7)

PCi = π (S − Di−1)I(Xi−1 < τ ≤ Xi, Di−1 < S). (8)

Taking expectations and summing over i, we find the ex-
pected holding cost, E[HC(s, S)], and the expected perish-
ing cost, E[PC(s, S)], of the cycle as

E[HC(s, S)] = h
S∑

i=1

S−1∑
k=i−1

Vi−1(k)

×
∫ ∞

u=0
[Fi−1(u) − Fi(u)] Ḡ(u)du, (9)
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E[PC(s, S)] = π

S∑
i=1

S−1∑
k=i−1

Vi−1(k)

×
∫ ∞

u=0
[Fi−1(u) − Fi(u)] dG(u). (10)

Now, we consider the costs incurred in subcycle 2.
Suppose the inventory level is s < r1 − D̃i−1 < 0 after the

(i − 1)th demand. Then, there may be two realizations: if the
demand of the ith arrival is d̃i and the inventory level drops
to r1 − D̃i−1 − d̃i > s ( Fig. 4(a)), the cycle is not completed
and a time-dependent shortage cost for D̃i−1 − r1 backo-
rdered items is incurred as well as the unit-dependent short-
age cost for the additional d̃i items backordered. Otherwise,
r1 − D̃i−1 − d̃i ≤ s and the cycle is completed (Fig. 4(b)), in-
curring only the time-dependent shortage cost for D̃i−1 − r1
backordered items during (X̃ i−1, X̃ i). In fact, the unit short-
age costs are incurred for all the backordered units in sub-
cycle 2, except for the last arrival which ends the cycle. Let
USC2

i be the unit shortage cost of subcycle 2 if it termi-
nates with the ith demand arrival and similarly, let TDSCi
denote the time-dependent shortage cost of subcycle 2 that

terminates with the ith demand. Then,
USC2

i = bD̃i−1 if D̃i−1 ≤ r1 − s − 1, D̃i ≥ r1 − s,
(11)

TDSCi = ρ(X̃ i − X̃ i−1)(D̃i−1 − r1) if D̃i−1 ≤ r1 − s − 1.

(12)
The expected unit-dependent shortage cost in subcycle 2 is

E[USC2]

=
−1∑

x=s+1

x−s∑
i=1

E
[
USC2

i |x
]
Pr1 (x)

= b
−1∑

x=s+1

[
x−s∑
i=1

x−s−1∑
k=i−1

kV (x − s − k − 1)vi−1(k)

]
Pr1 (x),

(13)

and the sum of Equations (6) and (13) gives the total ex-
pected unit shortage cost as

E[USC(s, S)]

= b
−1∑

x=s+1

[
−x +

x−s∑
i=1

x−s−1∑
k=i−1

kV (x − s − k − 1)vi−1(k)

]

× Pr1 (x). (14)
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The expected time-dependent shortage cost is written sim-
ilarly as

E[TDSC(s, S)] =
−1∑

x=s+1

x−s∑
i=1

E[TDSCi|x]Pr1 (x)

= ρµ

−1∑
x=s+1

x−s∑
i=1

x−s−1∑
k=i−1

(k − x)vi−1(k)Pr1 (x).

(15)

The expected cycle cost E[CC(s, S)] is then obtained as
the sum of the ordering cost K and the expected holding,
perishing, unit and time-dependent shortage costs given in
Equations (9), (10), (14), and (15) respectively.

We next provide the operating characteristics of the spe-
cial case where the shelf life is a constant.

2.1.2.1. Constant shelf life. If we let G(t) = I(t ≥ T), we
obtain the model of Lian and Liu (2001), where the shelf
life is a constant, T . In their results, the objective function
is obtained by iteratively solving Laplace transforms. Be-
low we present the explicit expressions for the operating
characteristics of this special case:

Pr1 (x) = v(−x)
S∑

k=0

[Fk(T)Vk(S) − Fk+1(T)

× Vk(S − 1)] +
S∑

k=1

Fk(T)

×
[

S−1∑
i=k−1

vk−1(i)v(S − i − x)

]
,

E [CL(s, S)] = µ

[
S∑

k=0

Vk(S)Fk(T) +
−1∑

x=s+1

Pr1 (x)

×
x−s−1∑

k=0

Vk(x − s − 1)

]
,

E[HC(s, S)] = h
S∑

i=1

S−1∑
k=i−1

Vi−1(k)
∫ T

u=0
[Fi−1(u) − Fi(u)] du,

E[PC(s, S)] = π

S∑
i=1

S−1∑
k=i−1

Vi−1(k) [Fi−1(T) − Fi(T)] .

The expressions for the expected shortage costs of a cycle
are as given in Equations (14) and (15).

2.2. Continuous demand

Next we extend our results to the continuous demand case.
We retain the rest of the assumptions and the notation intro-
duced before, except that v(.) now denotes the probability
density function (p.d.f). of the continuous batch size of a
demand. The level of the inventory when it first drops be-
low zero, r1, is now a continuous random variable with d.f.
and p.d.f given by Fr1 (.) and fr1 (.) respectively. As to the
differences between discrete and continuous demands, we
note that due to the continuity of the batch size, the num-
ber of demand arrivals needed to deplete an inventory of
say S units is no longer bounded. Also, the probability that
the inventory hits the zero level by demand arrivals and
stays there a positive amount of time is zero, hence such
events are no longer taken into account in the derivations.
We present the key expressions below for the continuous
demand case, the proofs of some of which are given in the
Appendix. First, we present a result analogous to Lemma 1
for the p.d.f. of r1.

Lemma 2. The p.d.f. of r1 is given as follows for x < 0:

fr1 (x) = v(−x)
∞∑

k=0

Vk(S)
∫ ∞

z=0
[Fk(z) − Fk+1(z)] dG(z)

+
∞∑

k=1

∫ ∞

z=0
Fk(z)dG(z)

∫ S

u=0
v(S − x − u)dVk−1(u).

(16)
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Proof. See the Appendix. �
For the expected length of subcycle 1, consider Equation

(2) and note that now the event that {Dl0−1 = S, Xl0−1 < τ }
has a zero probability. For subcycle 2, CL2(s, S) is written
as given in Equation (3). Then,

E[CL1(s, S)] = µ

∞∑
k=0

Vk(S)
∫ ∞

x=0
Fk(x)dG(x), (17)

E[CL2(s, S)] = µ

∫ 0

x=s

∞∑
k=0

Vk(x − s)dFr1 (x). (18)

Regarding the expected cycle cost, the modified expressions
for continuous demand are given as below, the details of
which are skipped since they are obtained similar to the
discrete case.

E[HCi] = h
∫ S

x=0
Vi−1(x)dx

∫ ∞

u=0
[Fi−1(u) − Fi(u)] Ḡ(u)du,

E[PCi] = π

∫ S

x=0
Vi−1(x)dx

∫ ∞

u=0
[Fi−1(u) − Fi(u)] dG(u),

E[USC1] = −b
∫ 0

x=s
xdFr1 (x),

E
[
USC2

i

] = b
∫ 0

x=s

∫ x−s

t=0
tV (x − s − t)dVi−1(t)dFr1 (x),

E[TDSCi] = ρµ

∫ 0

x=s

∫ x−s

t=0
(t − x)dVi−1(t)dFr1 (x).

The final expressions are then obtained as before after
summing over the index i.

2.3. A special case: Poisson arrivals with exponential
demand size

Now, we present the expressions for the special case of
Poisson demands with rate λ and exponential batch sizes
with mean 1/α. Let p(k, λ) and P(k, λ) represent, re-
spectively, the p.m.f. and d.f. of a Poisson random vari-
able with rate λ. Then, for k = 1, 2, . . . , we have Fk(x) =
P(k − 1, λx), vk(x) = αp(k − 1, αx) and Vk(x) = P(k −
1, αx). For this special case, the foregoing expressions are
written as

fr1 (x)

= αeαx
∞∑

k=0

∫ ∞

z=0

[
P(k − 1, αS)p(k, λz)

+ eα(S−s)p(k − 1, αS)P(k − 1, λz)
]

dG(z),
E[CL(s, S)]

= α

∞∑
k=0

[
P(k − 1, αS)

∫ ∞

z=0
P(k − 1, λz)dG(z)

+
∫ ∞

x=0
P(k − 1, α(x − s))dFr1 (x)

]
,

E[CL(s, S)]

= α

∞∑
k=0

[
P(k − 1, αS)

∫ ∞

z=0
P(k − 1, λz)dG(z)

+
∫ ∞

x=0
P(k − 1, α(x − s))dFr1 (x)

]
,

E[HC(s, S)]

= h
∞∑

i=1

[
SP(i − 2, αS) − (i − 1)

α
× P(i − 1, αS)

]

×
[

1
λ

−
∫ ∞

x=0
p(i − 1, λx)G(x)dx

]
,

E[PC(s, S)]

= π

∞∑
i=1

[
SP(i − 2, αS) − (i − 1)

α
P(i − 1, αS)

]

×
∫ ∞

x=0
p(i − 1, λx)dG(x).

E[USC(s, S)]

= −b
∫ 0

x=s

[
s + 1

α
P(0, α(x − s))

]
dFr1 (x),

E[TDSC(s, S)]

= ρα

∫ 0

x=s

∞∑
i=1

[
i − 1

α
P(i − 1, α(x − s))

− xP(i − 2, α(x − s))
]

dFr1 (x).

3. Quasi-convexity of the average cost for unit demands

The unit demand case is important from both theoretical
and practical aspects and is one of the most frequently as-
sumed models in the literature. We provide some structural
results for this special case below. If we let vk(x) = I(x = k),
the expressions for the operating characteristics simplify as

E[CL(s, S)] = µ

[
−s +

S∑
k=1

∫ ∞

x=0
G(x)dFk(x)

]
,

E[SC(s, S)] = b(−s − 1) + ρµs(s + 1)/2 ≡ C1(s), (19)

E[HC(s, S)] = h
S∑

k=1

∫ ∞

0
Ḡ(x)Fk(x)dx ≡ hC2(S), (20)

E[PC(s, S)] = π

S∑
k=1

∫ ∞

0
Fk(x)dG(x)

= π

[
S −

S∑
k=1

P(τ > Xk)

]
≡ πC3(S), (21)

where SC(s, S) is the sum of the unit and the time-
dependent shortage costs in a cycle. We next show that
AC(s, S) is quasi-convex in (s, S) for unit demands. Since
quasi-convexity implies unimodality, this result is of both
theoretical and practical importance. In the literature,
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convexity properties of functions are usually obtained over
convex sets which are not readily applicable to our setting
due to the discrete structure of the average cost rate func-
tion. Hence, we provide general definitions for arbitrary sets
below.

Definition 1. Let θ be a function defined on an arbitrary non-
empty set, X . Also, let γ ∈ [0, 1] and x∗, x, x ∈ X subject
to γ x + (1 − γ )x ∈ X .

(i) θ is convex at a point (concave at a point) x ∈ X if

θ (γ x + (1 − γ )x) ≤ (≥)γ θ (x) + (1 − γ )θ (x). (22)

(ii) θ is convex (concave) on X if θ is convex (concave) at
every point x ∈ X .

(iii) θ is quasi-convex at a point x ∈ X if

θ (γ x + (1 − γ )x) ≤ max[θ (x), θ (x)]. (23)

(iv) θ is quasi-convex inX if θ is quasi-convex at every point
x ∈ X .

(v) x∗ ∈ X is a local minimum of θ if and only if there
exists a subset A = {x : |x − x∗| ≤ ε, x �= x∗ε > 0} ⊂
X such that ∀x ∈ A, θ (x∗) ≤ θ (x).

(vi) If x∗ is unique in A ⊂ X , then it is a strict local mini-
mum.

The following two lemmas generalize the results of Avriel
(1976, p. 156) on the analytical properties of non-linear
fractional functions defined at arbitrary non-empty sets for
which the proof is given only for the latter since the former
is straightforward.

Lemma 3. Let ϕ1(x) and ϕ2(x) be real-valued functions de-
fined on an arbitrary set, X . Let ϕ1(x) be a non-negative and
convex and ϕ2(x) be a positive and concave function on X .
Then ϕ(x) = ϕ1(x)/ϕ2(x) is a quasi-convex function on X .

Lemma 4. Let X be an arbitrary set and ϕ be a real-valued
quasi-convex function on X and x∗ ∈ X be a strict local min-
imum of ϕ on X . Then x∗ is a strict global minimum.

Proof. See the Appendix. �
Next we have some results regarding the convexity behav-

ior of the expected cycle length and cycle cost functions.

Lemma 5.
(i) E [CL(s, S)] is concave in (s, S).
(ii) E [CC(s, S)] is convex in (s, S).

Proof. See the Appendix. �
We next have the following theorem which states a strong

analytical property of the cost rate function which follows
directly from Lemma 3 and Lemma 5.

Theorem 1. AC(s, S) is quasi-convex in (s, S).

We finally have the following theorem, the proof of which
follows from Lemma 4 and Theorem 1.

Theorem 2. A strict local minimum, (s∗, S∗) is also a strict
global minimum of the average cost rate function, AC(s, S).

4. A heuristic for positive lead times

In the previous sections, we considered the analysis of the
(s, S) policy for perishable goods with zero lead time. When
a positive lead time is introduced, the model becomes highly
complicated since one has to keep track of the remaining
lead times and the remaining shelf lives of different batches
in the system at a given instant. As another issue, when L =
0, the First-In First-Out (FIFO) issuing policy is optimal
and in fact two batches do not exist in stock simultaneously
since s < 0. When L > 0 and the shelf life is fixed, the FIFO
policy would still be optimal since it is implicitly assumed
that the items are sold at the same price. However, when the
shelf life is random and L > 0, FIFO would no longer be
optimal since a batch that arrives later may have a shorter
shelf life, in which case a policy where items with shorter
shelf lives are sold first should be employed. Such a policy
would unfortunately make the analysis intractible and we
therefore assume a FIFO policy also for L > 0.

For a fixed shelf life and positive lead times, Lian and
Liu (2001) proposed a heuristic based on the optimal and
order-up-to levels (s0, S0) of the model with L = 0. They use
the modified reorder and order-up-to levels (s1, S1) given
as s1 = s0 + DL + EP and S1 = S0 + DL + EP where DL
is the expected demand during the lead time and EP is the
expected number of items that perish during a cycle. As con-
firmed with our experiments, the results presented by Lian
and Liu (2001) show that this heuristic overestimates the re-
order and order-up-to levels by adding an inflated quantity
EP. We believe that a more effective heuristic should make
use of the information about the remaining shelf life of the
products in stock at the time of order placement for the es-
timation of the number of units expected to perish during a
lead time. For our heristic, we assume that the batch size is
constant given by β, the expected batch size. The demand
during the lead time is estimated by DL = �Lβ/µ�, where
�x� is the smallest integer greater than or equal to x, and the
inventory level at the time of order placement is estimated
by

s̃0 = S0 − �(S0 − s0)/β� β. (24)

We then adjust the order-up-to and reorder levels as S1 =
S0 + DL and s1 = s̃0 + DL. If s1 ≤ 0, the on-hand inventory
is zero at the beginning of the lead time and we propose to
use (s1, S1) as our heuristic, since no units perish during the
lead time. Otherwise, since the items in stock at the instance
of order placement are at risk of degrading during the lead
time, we estimate the expected number of degraded units
and further adjust S1. To describe the estimation method,
let us define k1 and k2 as the estimated number of demand
arrivals that makes the inventory position drop from S1 to
or below s1 and from s1 to or below zero respectively. Also
let τr = τ − Xk1 denote the remaining shelf life of the batch
in use at the time of order placement. Let p = Fk1 (τ ) −
Fk1 (τ − L) denote the probability that degradation occurs
during the lead time and given that degradation occurs, we
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approximate the number of perished units as

Pr =
k2∑

i=1

(s1 − (i − 1)β)I(Xi−1 < τr < Xi)

with expected value

E[Pr] = s1(Fk1 (τ ) − Fk1+k2 (τ ))

+ k2βFk1+k2 (τ ) − β

k2∑
i=1

Fk1+i(τ )

Then, the approximate number of units that perish during
the lead time is taken as E[PL] = pE[Pr].

We summarize our proposed heuristic in the following
steps:

Step 1. Calculate (s0, S0) of the model with L = 0 and refer-
ring to Equation (24), let (s1, S1) = (s̃0 + DL, S0 +
DL).

Step 2. If s1 ≤ 0, (s1, S1) are the proposed optimal param-
eters.

Step 3. If s1 > 0, set k1 = �(S1 − s1)/β� and k2 = �s1/β�.
The suggested optimal parameters are (s1, S1 +
�E[PL]�).

In the heuristic proposed above, τ can be fixed or random.
If it is random, then expectations of E[Pr] and p should
be taken with respect to τ . Note also that the proposed
heuristic is applicable to both discrete and continuous de-
mand batches. The performance of the heuristic proposed
above is compared to that of Lian and Liu (2001) in the
next section.

5. Numerical results

We conducted an extensive numerical study to address sev-
eral issues regarding the inventory control of perishable
items with a fixed and a random shelf life. Major issues con-
sidered are the sensitivity of the optimal policy to different
choices of system parameters, the loss due to ignorance of
the randomness of the shelf life, the impact of the shape
of the shelf life distribution and finally the performance of
the proposed heuristic for positive lead times. To elaborate
on these, various cases of cost parameters, batch distribu-
tions, the mean µτ , the coefficient of variation (c.o.v.), Cτ ,
distributions of the shelf life τ and c.o.v. CX of X , are inves-
tigated. For the batch distribution, unit (BD1), geometric
(BD2) and gamma (BD3) demand batches with mean β = 5
and variance 20 are considered. The comparisons for differ-
ent batches are based on fixed values of the average num-
ber of units demanded per time, denoted with α = β/µ.
We considered both exponential and 4-Erlang inter-arrival
times, the parameters of which are selected to match the
assumed α values. For example, if α = 25, with a geometric
or gamma batch with mean β = 5, the mean inter-demand
time is µ = 0.2 and the parameters of the exponential and

Erlang distributions are five and 20, respectively. Also, to
standardize the selection of the experimental values of the
mean shelf life, we consider the average time required to
consume the modified (since we have batch demands) or-
der quantity Q = √

2Kα/h of the economic order quality
model. That is, we set T = Q/α and the values of E[τ ] are
selected as multiples of T . Throughout our experiments
with a zero lead time, the holding cost h = 1 and the or-
dering cost K = 50 are used. Six different shelf life distri-
butions are considered to investigate factors such as the
shape, skewness, tail probabilities and the range of the shelf
life distribution. These distributions are respectively the
gamma, Weibull, uniform, triangular, and left-truncated
gamma with two different truncation values. Gamma and
Weibull distributions are commonly used to represent time
to failure, hence are considered here for the shelf life. The
uniform distribution is interesting from a practical point
of view since it represents a “non-informative” case and
the triangular distribution is a three-parameter distribu-
tion which may be used as a simple approximation to more
complicated ones. Finally, truncated gamma distributions
are included to cover the cases where there may be a posi-
tive threshold for the shelf life below which products may
not be acceptable. The two truncation points are taken as
the lower limits of the uniform and triangular distributions
respectively. The parameters of all the distributions are ad-
justed to match the selected mean and the c.o.v. of the shelf
life.

5.1. Sensitivity analysis

We start with discussing the sensitivity of the optimal pol-
icy parameters and the cost rate to system parameters. In
the tables presenting the numerical results, optimal policy
parameters and optimal cost rate are denoted by (s0, S0)
and AC∗ respectively.

Table 1 provides a representative set of our results. The
shelf life is gamma with α = 25 and CX = 0.5. We ob-
serve that the results are in agreement with expectations, in
that both s0 and S0 decrease in general with the perishing
cost. When the shelf life variability is high, the order-up-
to levels become more sensitive to changes in the perish-
ing costs. For example, when Cτ = 1, we observe a more
drastic decrease in S0 as π increases from three to 15,
than the corresponding decrease when Cτ = 0.5. When
the perishing cost is large, the policy parameters become
highly sensitive to both the mean and the variability of
the shelf life. Consider for example the case with geomet-
ric demand (BD2), Cτ = 1.00, b = 6, ρ = 2 and π = 15.
We observe that when E[τ ] drops from 1.50T to 1.00T
the change in S0 is 27% (from 15 to 11) and when E[τ ]
drops from 1.00T to 0.75T , it is 18% (from 11 to nine).
Note, however, that the corresponding decreases are signif-
icantly lower, 14% (from 28 to 24) and 13% (from 24 to 21)
for π = 3.
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Table 1. Sensitivity analysis with gamma shelf life and α = 25—gamma inter-arrival time with c.o.v = 0.50

Cτ = 0.50 Cτ = 1.00

Batch distribution BD1 BD2 BD3 BD1 BD2 BD3

E[τ]/T π b ρ (s0, S0) AC∗ (s0, S0) AC∗ (s0, S0) AC∗ (s0, S0) AC∗ (s0, S0) AC∗ (s0, S0) AC∗

0.75 3 2 2 (−10,26) 68.35 (−10,23) 62.39 (−10.3,22.7) 63.01 (−19,21) 87.09 (−15,18) 76.97 (−15.3,18.3) 77.63
4 (−5,27) 69.81 (−7,23) 64.24 (−7.3,22.7) 64.72 (−11,23) 93.46 (−10,19) 81.48 (−10.6,19.0) 82.09

6 2 (−1,27) 71.37 (−3,24) 68.32 (−2.7,24.3) 68.39 (−1,25) 105.16 (−4,21) 90.61 ( −4.3,21.0) 91.26
4 (−1,27) 71.37 (−3,24) 68.54 (−3.0,24.0) 69.56 (−1,25) 105.16 (−4,21) 91.14 (−4,21.3) 91.77

15 2 2 (−15,18) 78.62 (−13,15) 71.65 (−13.3,15.3) 73.34 (−28,9) 104.19 (−23,6) 93.92 (−23.0,5.7) 94.02
4 (−9,19) 82.53 (−9,15) 75.16 (−9.3,15.0) 76.10 (−18,10) 119.44 (−15,7) 105.06 (−14.7,7.3) 105.79

6 2 (−1,19) 88.60 (−4,16) 82.68 (−3.7,15.7) 84.10 (−9,13) 166.81 (−7,9) 128.38 (−7.3,9.3) 129.01
4 (−1,19) 88.60 (−3,16) 83.12 (−3.0,16.3) 83.90 (−5,13) 169.03 (−6,9) 130.46 (−6.0,9.3) 131.08

1.00 3 2 2 (−7,31) 62.13 (−8,27) 57.47 (−8.3,27.3) 58.11 (−16,25) 81.74 (−13,21) 72.37 (−13.3,21.0) 73.02
4 (−4,31) 62.69 (−6,27) 58.71 (−6.3,27.0) 59.18 (−10,26) 86.11 (−9,22) 75.68 (−9.0,22.0) 76.25

6 2 (−1,31) 63.16 (−3,28) 61.55 (−2.7,28.3) 63.16 (−1,28) 92.83 (−4,24) 82.46 (−3.7,24.3) 82.97
4 (−1,31) 63.16 (−2,28) 61.73 (−2.3,27.7) 63.26 (−1,28) 92.83 (−3,24) 82.84 (−3.7,24.0) 83.29

15 2 2 (−11,23) 71.46 (−11,19) 65.48 (−11.0,19.3) 66.14 (−26,11) 100.69 (−21,9) 90.27 (−21.3,9.3) 91.05
4 (−6,23) 73.49 (−8,19) 67.79 (−8.3,19.0) 67.46 (−16,12) 113.58 (−14,10) 99.43 (−14.0,9.7) 99.89

6 2 (−1,23) 75.97 (−3,20) 72.75 (−3.3,20.3) 73.48 (−1,15) 150.39 (−6,11) 117.97 (−6.0,10.4) 118.49
4 (−1,23) 75.97 (−3,20) 72.98 (−3.0,20.3) 72.71 (−1,15) 150.39 (−5,12) 119.42 (−5.3,12.3) 119.77

1.50 3 2 2 (−3,38) 55.61 (−7,33) 52.38 (−6.7,33.3) 52.90 (−13,30) 74.45 (−11,26) 66.36 (−11.3,26.0) 67.02
4 (−2,38) 55.71 (−5,33) 53.18 (−5.3,33.3) 52.71 (−7,31) 76.79 (−8,26) 68.54 (−8.3,26.0) 69.11

6 2 (−1,38) 55.75 (−2,34) 55.04 (−2.3,34.3) 55.59 (−1,32) 79.69 (−3,28) 73.03 (−3.3,28.3) 73.81
4 (−1,38) 55.75 (−2,34) 55.09 (−2.3,34.3) 54.64 (−1,32) 79.69 (−3,28) 73.24 (−3.0,28.3) 74.03

15 2 2 (−7,30) 62.32 (−9,25) 57.91 (−9.3,25.3) 57.48 (−23,15) 94.91 (−18,12) 84.38 (−18.3,12.3) 85.08
4 (−4,30) 62.89 (−6,25) 59.18 (−5.7,25.3) 59.77 (−14,16) 104.37 (−12,13) 90.96 (−12.0,13.3) 91.67

6 2 (−1,30) 63.37 (−3,26) 62.08 (−3.3,26.3) 62.70 (−1,19) 125.42 (−5,15) 103.88 (−5.6,15.6) 104.55
4 (−1,30) 63.37 (−3,26) 62.27 (−3.0,26.0) 61.89 (−1,19) 125.42 (−5,15) 104.79 (−5.3,15.3) 105.46

As to the batch size, geometric and gamma demands yield
smaller S0 values than the unit demand. When the backo-
rder costs are small, smaller s0 values are observed for the
unit demand, whereas the reverse is usually true with higher
backorder costs. The optimal policy parameters and the
cost rate of geometric and gamma demands are less sensi-
tive to the cost and model parameters. Overall, the optimal
cost rates for geometric and gamma demands are much
smaller than that of the unit demand. We also observe that
the geometric and gamma demands with the same variance
yield very similar results in terms of the optimal cost and
the policy parameters.

The effect of the c.o.v. of the inter-demand time (CX ) has
a small effect on both (s0, S0) and AC∗. In the unreported
results for CX = 1, which corresponds to Poisson arrivals,
we observed that the optimal policy parameters changed
in only four of the 48 instances with unit demand, 29 of
the 42 with geometric and gamma demands. In these in-
stances, the exponential demand usually results in lower
s0 and/or S0 values with a maximum change of only one
unit. With unit demand and Cτ = 0.5, the AC∗ of CX = 0.5
is always smaller than that of CX = 1. For Cτ = 1, expo-
nential arrivals resulted in slightly lower cost rates with an
average difference of 0.29%. We also observed similar be-
havior with geometric and gamma demands except that the
average differences were higher. For Cτ = 0.5, the average

differences between the cases of CX = 0.5 and CX = 1 are
2.73 and 2.81% for geometric and gamma demands, respec-
tively, whereas with Cτ = 1, the corresponding figures are
1.25 and 1.27%.

5.2. The impact of constant versus random shelf life

Next, we discuss whether incorporating the randomness of
the shelf life is crucial and if its distribution has a notable
impact on the costs. In the following, the model that con-
siders the shelf life as a random variable is referred to as
the random model and the model that treats the shelf life
as fixed (at the mean of the random shelf life) is referred
to as the constant (or fixed) model. Let (s0, S0) and (sc, Sc)
be the optimal policy parameters of the random and the
constant models respectively and let AC(s, S) denote the
average cost rate of the random model evaluated at (s, S)
with AC∗ being the optimal one. As a measure of the loss
due to the ignorance of the randomness of the shelf life, we
consider �0% below.

�0% = AC(sc, Sc) − AC(s0, S0)
AC(s0, S0)

× 100. (25)

A representative set of our results with Cτ = 0.50 and
α = 50 for the six shelf life distributions presented be-
fore are given in Tables 2 and 3 for the unit and gamma
demands. We exclude geometric demand here since it



T
ab

le
2.

P
er

fo
rm

an
ce

of
th

e
ra

nd
om

ve
rs

us
fix

ed
sh

el
f

lif
e

m
od

el
s

(u
ni

t
de

m
an

d,
α

=
50

)

D
is

tr
ib

ut
io

n
F

ix
ed

G
am

m
a

W
ei

bu
ll

U
ni

fo
rm

E
[τ

]/
T

π
b

(s
c,

S
c)

(s
0,

S
0)

A
C

∗
�

0%
(s

0,
S

0)
A

C
∗

�
0%

(s
0,

S
0)

A
C

∗
�

0%

0.
75

5
2

(−
1,

44
)

(−
7,

32
)

11
3.

64
11

.7
2

(−
10

,3
2)

11
8.

43
10

.9
4

(−
13

,3
1)

12
5.

12
12

.1
4

6
(−

1,
44

)
(−

1,
32

)
11

4.
94

10
.4

6
(−

1,
32

)
12

0.
95

8.
63

(−
1,

32
)

13
0.

19
7.

77
10

2
(−

1,
42

)
(−

12
,2

7)
12

3.
74

27
.4

7
(−

16
,2

6)
13

0.
57

27
.4

9
(−

19
,2

4)
13

7.
94

32
.7

6
6

(−
1,

42
)

(−
1,

27
)

12
8.

57
22

.6
8

(−
1,

27
)

13
8.

94
19

.8
1

(−
1,

25
)

15
2.

33
20

.2
2

1.
00

5
2

(−
1,

56
)

(−
1,

38
)

99
.4

5
15

.4
7

(−
3,

38
)

10
5.

20
13

.5
9

(−
7,

36
)

11
2.

48
14

.3
5

6
(−

1,
56

)
(−

1,
38

)
99

.4
5

15
.4

7
(−

1,
38

)
10

5.
32

13
.4

6
(−

1,
36

)
11

3.
45

13
.3

7
10

2
(−

1,
55

)
(−

5,
33

)
10

9.
09

34
.0

5
(−

9,
32

)
11

7.
35

32
.1

9
(−

13
,2

9)
12

5.
36

37
.1

9
6

(−
1,

55
)

(−
1,

33
)

10
9.

59
33

.4
4

(−
1,

32
)

11
9.

47
29

.8
4

(−
1,

29
)

13
0.

61
31

.6
9

1.
50

5
2

(−
1,

70
)

(−
1,

48
)

84
.6

7
14

.3
1

(−
1,

47
)

89
.9

6
13

.6
7

(−
1,

43
)

95
.8

5
16

.3
2

6
(−

1,
70

)
(−

1,
48

)
84

.6
7

14
.3

1
(−

1,
47

)
89

.9
6

13
.6

7
(−

1,
43

)
95

.8
5

16
.3

2
10

2
(−

1,
70

)
(−

1,
42

)
90

.8
4

30
.3

6
(−

1,
41

)
99

.5
0

29
.2

7
(−

4,
36

)
10

6.
71

36
.4

5
6

(−
1,

70
)

(−
1,

42
)

90
.8

4
30

.3
6

(−
1,

41
)

99
.5

0
29

.2
7

(−
1,

36
)

10
6.

94
36

.1
6

2.
00

5
2

(−
1,

70
)

(−
1,

54
)

78
.1

7
5.

23
(−

1,
53

)
82

.7
8

6.
00

(−
1,

48
)

86
.8

0
9.

54
6

(−
1,

70
)

(−
1,

54
)

78
.1

7
5.

23
(−

1,
53

)
82

.7
8

6.
00

(−
1,

48
)

86
.8

0
9.

54
10

2
(−

1,
70

)
(−

1,
49

)
82

.1
5

12
.0

4
(−

1,
47

)
89

.6
3

13
.9

5
(−

1,
41

)
94

.3
5

22
.4

2
6

(−
1,

70
)

(−
1,

49
)

82
.1

5
12

.0
4

(−
1,

47
)

89
.6

3
13

.9
5

(−
1,

41
)

94
.3

5
22

.4
2

T
ri

an
gu

la
r

T
ru

nc
at

ed
G

am
m

a
1

T
ru

nc
at

ed
G

am
m

a
2

(s
0,

S
0)

A
C

∗
�

0%
(s

0,
S

0)
A

C
∗

�
0%

(s
0,

S
0)

A
C

∗
�

0%

(−
8,

30
)

11
5.

90
14

.8
9

(−
7,

32
)

11
3.

99
12

.0
0

(−
9,

30
)

11
7.

98
17

.6
4

(−
1,

30
)

11
7.

81
13

.0
2

(−
1,

32
)

11
5.

36
10

.6
8

(−
1,

30
)

12
0.

48
15

.1
9

(−
13

,2
5)

12
4.

36
35

.3
4

(−
13

,2
7)

12
4.

10
28

.0
7

(−
14

,2
5)

12
7.

28
39

.3
9

(−
1,

25
)

12
9.

81
29

.6
5

(−
1,

27
)

12
9.

09
23

.1
2

(−
1,

25
)

13
4.

24
32

.1
6

(−
1,

36
)

10
0.

78
19

.9
0

(−
1,

38
)

99
.7

6
15

.7
5

(−
2,

36
)

10
3.

05
21

.5
3

(−
1,

36
)

10
0.

78
19

.9
0

(−
1,

38
)

99
.7

6
15

.7
5

(−
1,

36
)

10
3.

08
21

.4
9

(−
5,

31
)

10
8.

38
44

.6
5

(−
5,

33
)

10
9.

45
34

.6
5

(−
6,

30
)

11
1.

91
47

.3
7

(−
1,

31
)

10
8.

82
44

.0
8

(−
1,

33
)

10
9.

99
33

.9
9

(−
1,

30
)

11
2.

89
46

.0
9

(−
1,

45
)

83
.8

6
20

.6
5

(−
1,

48
)

84
.8

6
14

.5
9

(−
1,

44
)

85
.8

4
20

.4
5

(−
1,

45
)

83
.8

6
20

.6
5

(−
1,

48
)

84
.8

6
14

.5
9

(−
1,

44
)

85
.8

4
20

.4
5

(−
1,

40
)

87
.7

6
43

.8
8

(−
1,

42
)

91
.0

7
30

.9
5

(−
1,

39
)

91
.0

0
44

.1
2

(−
1,

40
)

87
.7

6
43

.8
8

(−
1,

42
)

91
.0

7
30

.9
5

(−
1,

39
)

91
.0

0
44

.1
2

(−
1,

52
)

76
.2

6
8.

75
(−

1,
54

)
78

.2
7

5.
39

(−
1,

51
)

77
.7

9
8.

80
(−

1,
52

)
76

.2
6

8.
75

(−
1,

54
)

78
.2

7
5.

39
(−

1,
51

)
77

.7
9

8.
80

(−
1,

49
)

78
.1

6
19

.1
1

(−
1,

49
)

82
.2

7
12

.4
0

(−
1,

43
)

78
.5

8
23

.4
1

(−
1,

49
)

78
.1

6
19

.1
1

(−
1,

49
)

82
.2

7
12

.4
0

(−
1,

43
)

78
.5

8
23

.4
1

770



T
ab

le
3.

P
er

fo
rm

an
ce

of
th

e
ra

nd
om

ve
rs

us
fix

ed
sh

el
f

lif
e

m
od

el
s

(g
am

m
a

de
m

an
d,

α
=

50
)

D
is

tr
ib

ut
io

n
F

ix
ed

G
am

m
a

W
ei

bu
ll

U
ni

fo
rm

E
[τ

]/
T

π
b

(s
c,

S
c)

(s
0,

S
0)

A
C

∗
�

0%
(s

0,
S

0)
A

C
∗

�
0%

(s
0,

S
0)

A
C

∗
�

0%

0.
75

5
2

(−
7.

3,
31

.7
)

(−
10

.3
,2

7.
7)

10
4.

65
1.

49
(−

10
.6

,2
8.

3)
10

9.
11

1.
67

(−
10

.3
,2

7.
3)

11
2.

98
2.

19
6

(−
2.

0,
32

.3
)

(−
3.

3,
28

.7
)

11
5.

20
0.

58
(−

3.
0,

29
.6

)
11

8.
81

0.
60

(−
3.

0,
29

.0
)

12
1.

09
0.

85
10

2
(−

7.
7,

28
.3

)
(−

12
.3

,2
2.

4)
11

6.
74

3.
32

(−
12

.4
,2

1.
7)

12
0.

19
4.

15
(−

15
.3

,2
1.

3)
12

4.
90

5.
87

6
(−

2.
3,

28
.0

)
(−

3.
6,

24
.0

)
12

9.
45

2.
01

(−
3.

6,
23

.7
)

13
2.

23
2.

30
(−

3.
6,

22
.7

)
14

2.
00

3.
13

1.
00

5
2

(−
6.

6,
40

.7
)

(−
8.

0,
34

.3
)

93
.3

2
2.

58
(−

8.
3,

34
.0

)
98

.9
1

2.
75

(−
9.

3,
31

.7
)

10
1.

23
3.

61
6

(−
2.

3,
40

.7
)

(−
1.

7,
24

.7
)

98
.1

0
1.

77
(−

2.
0,

35
.3

)
10

4.
28

1.
73

(−
2.

3,
33

.4
)

11
0.

21
2.

24
10

2
(−

6.
3,

37
.3

)
(−

9.
3,

27
.3

)
10

2.
76

5.
74

(−
10

.3
,2

7.
3)

10
8.

97
6.

75
(−

11
.3

,2
5.

3)
11

5.
32

9.
35

6
(−

1.
7,

37
.3

)
(−

2.
3,

28
.7

)
10

9.
28

4.
03

(−
2.

4,
29

.3
)

11
7.

01
4.

51
(−

3.
0,

27
.3

)
12

3.
97

6.
31

1.
50

5
2

(−
4.

7,
55

.0
)

(−
6.

6,
43

.3
)

81
.7

6
4.

23
(−

6.
3,

41
.7

)
84

.8
1

4.
75

(−
6.

7,
38

.4
)

90
.3

2
6.

54
6

(−
2.

3,
55

.7
)

(−
2.

3,
44

.3
)

85
.2

9
4.

32
(−

2.
0,

43
.0

)
89

.9
0

4.
58

(−
1.

7,
40

.4
)

93
.2

0
6.

09
10

2
(−

5.
0,

51
.4

)
(−

7.
0,

37
.6

)
89

.2
0

8.
93

(−
7.

3,
35

.3
)

94
.0

2
10

.3
3

(−
8.

3,
33

.3
)

99
.0

8
14

.6
3

6
(−

2.
6,

53
.3

)
(−

2.
3,

37
.7

)
91

.1
9

8.
87

(−
2.

0,
37

.3
)

97
.3

9
9.

81
(−

2.
3,

34
.3

)
10

5.
32

13
.5

7
2.

00
5

2
(−

5.
3,

62
.7

)
(−

4.
7,

49
.3

)
76

.1
8

3.
92

(−
5.

7,
47

.7
)

80
.0

2
4.

66
(−

5.
7,

44
.3

)
82

.7
8

6.
90

6
(−

2.
3,

63
.7

)
(−

2.
3,

49
.0

)
79

.0
2

4.
01

(−
2.

0,
48

.7
)

81
.3

8
4.

67
(−

1.
4,

45
.3

)
85

.2
0

6.
81

10
2

(−
5.

6,
62

.0
)

(−
6.

6,
43

.7
)

81
.7

2
8.

80
(−

6.
7,

40
.7

)
86

.2
3

10
.7

8
(−

7.
3,

37
.7

)
90

.0
7

15
.8

9
6

(−
1.

7,
63

.3
)

(−
2.

3,
44

.7
)

82
.4

5
9.

09
(2

.6
,4

2.
7)

89
.0

1
10

.6
9

(−
2.

3,
39

.3
)

93
.2

9
15

.6
0

T
ri

an
gu

la
r

T
ru

nc
at

ed
ga

m
m

a
1

T
ru

nc
at

ed
ga

m
m

a
2

(s
0
,
S

0
)

A
C

∗
�

0
%

(s
0
,
S

0
)

A
C

∗
�

0
%

(s
0
,
S

0
)

A
C

∗
�

0
%

(−
10

,2
7.

3)
10

6.
23

1.
90

(−
10

.3
,2

7.
7)

10
7.

23
1.

54
(−

10
.3

,2
5.

7)
11

1.
12

2.
87

(−
3.

0,
28

.7
)

11
5.

91
0.

86
(−

3.
3,

29
.3

)
11

5.
34

0.
62

(−
3.

3,
28

.3
)

12
0.

04
1.

61
(−

12
.3

,2
1.

7)
11

5.
43

4.
30

(−
12

.6
,2

3.
3)

11
5.

71
3.

53
(−

13
.3

,2
1.

3)
12

1.
76

5.
90

(−
3.

6,
22

.7
)

12
8.

10
2.

75
(−

3.
3,

24
.3

)
12

7.
09

2.
15

(−
3.

0,
22

.3
)

13
3.

29
3.

90
(−

7.
7,

33
.3

)
94

.9
7

3.
38

(−
7.

4,
34

.3
)

95
.0

1
2.

67
(−

8.
6,

32
.3

)
97

.2
3

4.
40

(−
2.

3,
34

.3
)

10
0.

73
2.

49
(−

2.
6,

35
.3

)
99

.2
8

1.
89

(−
2.

3,
33

.3
)

10
3.

65
3.

34
(−

9.
6,

26
.7

)
10

2.
99

7.
37

(−
9.

3,
28

.0
)

10
2.

45
6.

01
(−

9.
7,

25
.7

)
10

5.
90

9.
08

(−
2.

3,
27

.7
)

11
2.

82
5.

50
(−

2.
6,

29
.3

)
11

2.
71

4.
29

(−
3.

3,
26

.7
)

11
4.

30
7.

02
(−

6.
3,

41
.3

)
81

.9
5

5.
70

(−
6.

0,
43

.3
)

83
.2

4
4.

42
(−

6.
3,

40
.7

)
83

.9
0

6.
47

(−
2.

3,
42

.0
)

86
.4

5
5.

81
(−

2.
6,

44
.3

)
85

.0
2

4.
46

(−
2.

3,
41

.7
)

86
.9

0
6.

52
(−

7.
0,

35
.7

)
88

.9
2

11
.4

7
(−

7.
3,

37
.3

)
88

.3
5

9.
19

(−
7.

3,
34

.7
)

89
.2

9
13

.1
9

(−
2.

3,
36

.7
)

90
.1

3
11

.7
2

(−
2.

6,
38

.3
)

91
.2

0
9.

18
(−

2.
3,

36
.7

)
93

.8
0

13
.2

0
(−

5.
3,

47
.7

)
77

.0
3

5.
23

(−
5.

6,
49

.3
)

77
.8

1
4.

07
(−

5.
3,

47
.3

)
76

.8
7

5.
63

(−
2.

0,
47

.7
)

79
.3

5
5.

40
(−

2.
3,

50
.0

)
79

.9
0

4.
22

(−
2.

6,
47

.3
)

80
.0

2
5.

81
(−

6.
3,

42
.0

)
79

.4
9

11
.3

9
(−

6.
6,

43
.7

)
81

.2
9

9.
15

(−
5.

7,
41

.7
)

81
.4

3
12

.4
3

(−
2.

3,
42

.3
)

82
.0

1
11

.8
0

(−
2.

6,
45

.3
)

83
.4

0
9.

35
(−

2.
3,

43
.0

)
84

.2
3

13
.0

2

771



772 Gürler and Özkaya

provides results similar to gamma demand as presented in
Table 1.

One of the main conclusions from the results of Tables
2 and 3 is that explicitly modeling the randomness of the
shelf life makes significant differences in the cost rates, es-
pecially for unit demands for which �0% can be as large
as 34%, which is 44% for the gamma and triangular distri-
butions. The batch demand seems to provide some robust-
ness, however, even in this case the loss due to ignorance
of randomness can be as large as 9 and 11% for the same
distributions. The results also indicate that the shape of the
shelf life distribution is quite effective on optimal policy
parameters, cost rate and the �0% values. Usually, gamma
distribution yields the smallest and the uniform distribution
yields the highest cost rate and �0% values. The results for
the triangular distribution are very similar to those for the
gamma distribution, which suggests for this problem that
it can be used as a simple approximation to the gamma dis-
tribution. When we compare the gamma and the truncated
gamma distributions, we see that the costs increase as the
left threshold becomes larger, which might seem counter-
intuitive at first sight. This results from forcing the mean
of all three distributions to be the same and as the lower
threshold increases, the smaller values close to the threshold
attain more probability in order to keep the mean constant.
This observation brings about an interesting point: if the
truncation value (lower threshold) represents a lower limit
on the shelf life that the retailer is willing to impose in a con-
tract with a supplier, the retailer should be careful to pay
more attention to the distribution of the shelf lives rather
than the threshold value.

Table 4 presents the percentage difference between the
maximum and minimum costs among the six shelf life dis-
tributions. We again observe big differences among the costs
with respect to different shelf life distributions and costs al-
most double for the unit demand compared to geometric de-
mand. For gamma demand, the percentage difference is be-
tween those two. Hence, improving the storage conditions
or the production process in general that would result in
longer-tailed shelf life distributions may result in significant
savings. We also investigated the impact of the variability
of the shelf life and considered the cases for Cτ = 0.75, 1.0.
From the results unreported herein, we observed that as Cτ

Table 4. Percentage cost differences across shelf life distributions

E[τ]/T

0.75 1.00 1.50 2.00

5 10 5 10 5 10 5 10
π
b 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6

BD1 10.10 13.27 11.48 18.48 13.10 14.08 15.67 20.02 14.30 14.30 21.59 21.86 13.82 13.82 20.71 20.71
BD2 5.90 7.07 7.27 9.84 7.37 8.57 9.28 11.34 8.30 9.20 11.40 12.97 8.40 9.05 12.26 13.40
BD3 6.96 6.11 7.48 10.73 7.19 9.34 10.56 12.11 9.47 9.65 12.14 13.20 8.66 9.82 12.71 13.80

increases the difference between the constant and the ran-
dom model increases considerably and the highest costs are
incurred for the exponential shelf life. Since an exponential
distribution is commonly used for modeling shelf life, our
results indicate a warning about its usage unless there is a
strong empirical evidence.

5.3. Performance of the proposed heuristic for positive lead
times

In this section we present the performance of the proposed
heuristic, H1, over a wide range of parameters for a random
shelf life and compare the performance of it to that of a
recently suggested one, H2,by Lian and Liu (2001) for a
fixed shelf life.

For measuring the performance of the heuristics, a sim-
ulation model is used. One simulation run is obtained by
generating 10 000 time units in the (s, S) model, from which
the average cost rate is obtained. For a given (s, S) pair, the
final cost rate is obtained by taking the average of ten sim-
ulation runs, over which the optimal values of (s, S) are
searched. The following performance measure, �L%, for
both heuristics is considered:

�L% = ACL(s∗
i , S∗

i ) − ACL(s∗, S∗)
ACL(s∗, S∗)

× 100.

where for i = 1, 2, (s∗
i , S∗

i ) and (s∗, S∗) are the optimal pol-
icy parameters obtained from heuristic Hi and the simula-
tion model respectively and ACL is the estimated average
cost calculated from simulation.

The results for the proposed heuristic are given in Table 5
for unit demand and π = 5, b = 2, ρ = 2. We also provide
underneath each distribution, the average deviation of the
heuristic from the simulation in the presented 12 cases, as
well as the corresponding average for the batch demand
case, for which we have not provided details to save space.
We observe that the performance of H1 is in general very
good for all distributions, with an average of less than 1%
for unit demands and less than 2% in batch demands. We
also note that its performance is comparable among various
distributions and the batch size has more impact than the
shelf life distribution. The relatively poor performance for
batch demands may result from the fact that the proposed
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heuristic does not explicitly take into account the batch size
distribution.

Next we want to discuss the performance of the pro-
posed heuristic relative to an existing one, namely the one
by Lian and Liu (2001) proposed for a fixed shelf life. Ta-

Table 6. Performance of the proposed and available heuristics for fixed shelf life

BD1 BD2

H1 H2 Simulation H1 H2 Simulation

E[τ] L π b s∗
1 S∗

1 �L% s∗
2 S∗

2 �L% s∗ S∗ AC∗ s∗
1 S∗

1 �L% s∗
2 S∗

2 �L% s∗ S∗ AC∗

7.5 3 5 2 −2 18 0.00 −2 18 0.00 −2 18 21.85 −6 14 0.56 −2 14 2.99 −4 17 27.03
6 1 20 0.48 2 20 0.82 0 19 25.20 −1 14 3.01 0 14 7.40 −4 18 32.48

10 2 −2 18 0.04 −2 18 0.04 −3 18 22.21 −3 12 2.27 −2 12 3.74 −6 14 28.27
6 1 19 0.37 2 19 0.69 −1 18 25.75 −2 13 2.33 0 13 7.98 −4 16 34.12

6 5 2 4 25 0.00 5 25 0.05 4 25 22.67 0 20 1.53 5 21 3.65 −1 23 31.06
6 7 26 0.00 8 26 0.37 7 26 26.15 5 21 2.61 7 21 3.51 5 24 36.54

10 2 4 25 0.51 5 25 0.52 4 24 23.10 3 19 3.02 5 19 5.18 −2 19 32.68
6 7 25 0.00 8 25 0.56 7 25 26.76 4 20 1.45 7 20 4.59 −1 23 38.77

9 5 2 10 31 0.31 11 31 0.00 11 31 23.29 6 27 0.45 11 27 3.58 9 29 34.07
6 13 32 0.61 14 32 0.00 14 32 26.61 11 29 1.86 13 27 4.45 11 31 39.53

10 2 10 31 0.62 11 31 0.35 10 30 23.78 9 26 1.85 11 25 4.53 6 27 36.07
6 13 31 0.00 14 31 0.04 13 31 27.38 10 27 1.16 13 26 5.92 9 29 41.88

10 3 5 2 −1 21 0.28 −1 21 0.28 −2 21 20.63 −5 15 1.07 −2 15 1.66 −4 17 25.66
6 2 22 0.12 2 21 0.26 1 21 23.34 −4 16 1.49 0 16 4.11 −2 18 30.55

10 2 −1 20 0.22 −1 20 0.22 −2 20 20.79 −6 14 0.90 −2 14 1.95 −4 15 26.58
6 2 22 0.51 2 21 0.29 1 21 23.55 0 15 3.92 0 15 3.92 −2 18 31.76

6 5 2 5 28 0.30 5 27 0.14 4 27 21.28 1 22 0.43 5 22 3.36 0 25 29.26
6 8 29 0.40 8 27 0.77 8 28 24.03 2 23 0.73 7 23 3.97 3 24 34.05

10 2 5 27 0.42 5 26 0.00 5 26 21.46 0 20 0.11 5 21 4.12 1 21 30.43
6 8 29 0.85 8 27 0.56 7 27 24.34 6 22 3.37 7 22 4.13 3 23 35.47

9 5 2 11 35 0.60 11 33 0.00 11 33 21.82 7 28 0.97 11 28 3.21 9 30 32.12
6 14 37 1.24 14 33 0.71 14 35 24.57 8 30 2.55 13 29 3.82 12 33 36.98

10 2 11 34 0.67 11 32 0.01 10 32 22.06 6 27 0.30 11 27 3.29 8 28 33.63
6 14 37 2.40 14 33 0.38 14 34 24.96 12 31 1.57 13 28 4.37 10 30 38.71

15 3 5 2 −1 23 0.13 −1 23 0.13 −2 23 20.01 −3 17 0.00 −1 17 1.61 −3 17 24.19
6 2 25 0.02 2 24 0.17 1 25 22.27 −3 17 1.85 2 18 3.56 −2 23 28.38

10 2 −1 23 0.14 −1 23 0.14 −2 23 20.02 −4 16 0.44 −1 16 2.23 −3 17 24.53
6 2 25 0.02 2 24 0.11 1 25 22.29 −3 17 0.95 0 17 2.36 −1 20 28.97

6 5 2 5 30 0.16 5 29 0.31 4 30 20.44 3 24 1.01 6 24 2.97 2 27 27.36
6 8 32 0.20 8 30 0.43 7 31 22.75 3 24 2.16 8 24 4.10 4 29 31.47

10 2 5 30 0.17 5 29 0.27 4 30 20.47 2 23 0.54 6 23 3.30 0 25 28.06
6 8 32 0.27 8 30 0.38 7 31 22.79 3 24 1.08 7 24 2.59 5 26 32.35

9 5 2 11 35 0.39 11 35 0.18 10 35 20.87 9 31 0.46 12 30 3.36 10 35 30.15
6 14 37 0.50 14 36 0.63 13 37 23.20 9 31 2.07 14 30 4.28 13 36 34.19

10 2 11 35 0.73 11 35 0.20 10 35 20.89 8 29 1.41 12 29 2.89 7 32 30.96
6 14 37 0.21 14 36 0.57 13 37 23.25 9 31 1.07 13 30 2.06 12 34 35.22

20 3 5 2 −1 23 0.09 −1 23 0.09 −2 24 19.99 −3 17 0.97 −1 17 2.14 −4 21 23.43
6 2 26 0.06 2 25 0.01 1 26 22.19 −2 18 2.10 2 19 2.71 −1 24 27.20

10 2 −1 23 0.09 −1 23 0.09 −2 24 19.99 −3 17 0.56 −1 17 1.76 −4 21 23.62
6 2 26 0.06 2 25 0.00 1 26 22.19 −2 18 1.34 2 19 2.15 −1 24 27.52

6 5 2 5 30 0.13 5 29 0.34 4 30 20.39 3 24 2.17 6 24 4.16 2 27 26.31
6 8 32 0.36 8 31 0.37 7 32 22.61 4 25 3.14 8 25 3.73 5 30 30.05

10 2 5 30 0.13 5 29 0.34 4 30 20.39 3 24 1.79 6 24 3.82 2 27 26.59
6 8 32 0.37 8 31 0.37 7 32 22.61 4 25 2.50 8 25 3.22 4 29 30.45

9 5 2 11 36 0.18 11 35 0.43 10 36 20.77 9 30 2.11 12 30 4.39 9 34 28.88
6 14 38 0.39 14 37 0.46 13 38 23.04 10 31 3.33 14 31 3.82 13 38 32.54

10 2 11 36 0.18 11 35 0.43 10 36 20.77 9 30 1.65 12 30 3.94 9 34 29.26
6 14 38 0.39 14 37 0.46 13 38 23.04 10 31 2.52 14 31 3.12 12 36 33.09

ble 6 presents a representative set of our results for a fixed
shelf life with ρ = 2. We observe that H1 performs better
than H2 in most cases. In particular, note that for the geo-
metric demand, H1 is uniformly better than H2. This may
be explained by the overestimation of the reorder levels by
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Fig. 5. Illustration of α% bounds for positive lead time—fixed shelf life.

H2 which is also observed in the reported results of Lian
and Liu (2001). For unit demands, out of 48 cases, H1 dom-
inates H2 in 24 of them, H2 dominates H1 in 15 of them and
in the remaining nine cases they perform equally well. Al-
though it is hard to arrive at a general conclusion for this
case, the proposed heuristic tends to behave better when the
lead time is reasonably small compared to the mean shelf
life. We also observe that both heuristics perform better for
unit demands, where the average deviation from the opti-
mal are 0.34 and 0.29% for H1, H2, respectively whereas
the corresponding figures are 1.60 and 3.62% for geometric
demand.

Another issue of interest is the sensitivity of the set of
(s, S) pairs to deviations from the optimal costs. In particu-
lar, we ask the following question: which set of (s, S) values
allows for at most an α% deviation from the optimal cost?
To this end, we obtained numerical results from the simula-
tion model, from which we obtained the set of (sα, Sα) values
that result in costs within α% of the minimal cost. A large
number of experiments for different choices of α, L values
and shelf life and demand distributions are carried out and
the results are displayed in Figs. 5 and 6 for α = 1, 2, 5 for

fixed and gamma shelf lives respectively. We observe that
the number of (sα, Sα) points increases significantly with α

as expected. Furthermore, when the shelf life is random,
the increase in this set is more notable, indicating a more
flat function around (s∗, S∗). Similarly, the cost rate func-
tion of the geometric demand is observed to be more flat
than that of the unit demand. Finally, although it can not
be generalized, an observation regarding the location of the
optimal (s∗, S∗) values is worth mentioning. For both fixed
and random shelf lives, the (s∗, S∗) pair tends to be placed
toward the right side of the region constructed by (sα, Sα).
This behavior may provide a better explanation for the per-
formance of both heuristics. In particular, for positive lead
times, both H1 and H2 add a non-negative quantity to the s0
value obtained from the zero lead time model. The heuris-
tic of Lian and Liu (2001) adds an overestimated quantity
obtained as the expected perished units for the cycle, which
probably pushed the modified s0 value far beyond the opti-
mal, whereas our heuristic adds a smaller quantity based on
the remaining shelf life of the items, which possibly better
estimates s∗ by inflating s0 more appropriately and produces
better results.
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Fig. 6. Illustration of α% bounds for positive lead time—gamma shelf life.

6. Conclusions

In this study, we considered a continuous review (s, S)-type
policy for perishable goods with a random shelf life and
renewal batch demands. Under the assumption of instanta-
neous replenishment, we developed a model for items with
a general shelf life distribution, which is also suitable when
the items in a batch can perish at a random time during
their fixed shelf lives due to imperfect storage conditions.
An explicit expression for the average cost rate function is
obtained and the quasi-convexity of it is shown for unit
demands. For positive lead times a heuristic is also pro-
posed. An extensive numerical study is conducted to study
the performance of the model and the suggested heuristic.
We observed that significant reduction in the cost function
is obtained by explicitly taking into account the random-
ness of the shelf life. Furthermore, we demonstrated that
the system costs may differ drastically among various shelf
life distributions, which implies that a precise estimation of
the shelf life distribution is desirable. The numerical exper-
iments indicated that the proposed heuristic for a positive
lead time performs better than an available alternative in
most of the tested cases with a pronounced difference for
batch demands. Although both heuristics perform reason-

ably well for unit demands, exact analysis for positive lead
times still needs further research.
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Gürler, Ü. and Özkaya, B.Y. (2003) A note on “continuous review per-
ishable inventory systems: models and heuristics”. IIE Transactions,
35, 321–323.

Johnston, J.W., Hewett, E.W. and Hertog, M.L.A.T.M. (2002) Posthar-
vest softening of apple (Malus domestica) fruit: a review. New
Zealand Journal of Crop and Horticultural Science, 10, 145–160.

Kalpakam, S. and Arivarignan, G. (1988) A continuous review perishable
inventory model. Statistics, 19, 389–398.

Kalpakam, S. and Sapna, K.P. (1994) Continuous review (syS) inventory
system with random lifetimes and positive leadtimes. Operations Re-
search Letters, 16, 115–119.



(s,S) policy for random shelf life perishables 777

Kalpakam, S. and Sapna, K.P. (1996) A lost sales (S − 1, S) perishable
inventory system with renewal demand. Naval Research Logistics,
43, 129–142.

Kalpakam, S. and Shanthi, S. (2001) A perishable inventory system with
modified (S − 1, S) policy and arbitrary processing times. Comput-
ers & Operations Research, 28, 453–471.

Lian, Z. and Liu, L. (2001) Continuous review perishable inventory sys-
tems: models and heuristics. IIE Transactions, 33, 809–822.

Liu, L. (1990) (s. S) continuous review inventory models for inventory
with random lifetimes. Operations Research Letters, 9, 161–169.

Liu, L. and Lian, Z. (1999a) (s,S) continuous review models for products
with fixed lifetimes. Operations Research, 47, 150–158.

Liu, L. and Lian, Z. (1999) A discrete-time model for perishable inventory
systems. Annals of Operations Research, 87, 103–116.

Liu, L. and Shi, D. (1999) An (s. S) model for inventory with exponential
lifetimes and renewal demands. Naval Research Logistics, 46, 39–56.

Liu, L. and Yang, T. (1999) An (s. S) random lifetime inventory model
with a positive lead time. European Journal of Operations Research,
113, 52–63.

Moorthy, A.K. Narasimhulu, Y.C. and Basha, I.R. (1992) On perish-
able inventory with markov chain demand quantities. International
Journal of Information and Management Sciences, 3, 29–37.

Nahmias, S. (1975) Optimal ordering policies for perishable inventory-II.
Operations Research, 23, 735–749.

Nahmias, S. (1976) Myopic approximations for the perishable inventory
problem. Management Science, 22, 1002–1008.

Nahmias, S. (1977a) On ordering perishable inventory when both demand
and lifetime are random. Management Science, 24, 82–90.

Nahmias, S. (1977b) Higher-order approximations for the perishable in-
ventory problem. Operations Research, 25, 630–640.

Nahmias, S. (1982) Perishable inventory theory: a review. Operations Re-
search, 30, 681–707.

Nahmias, S. and Pierskalla, W.P. (1975) Optimal ordering policies for a
product that perishes in two periods subject to stochastic demand.
Naval Research Logistics Quarterly, 20, 207–229.

Nahmias, S. and Wang, S.A. (1979) A heuristic lot size reorder point
model for decaying inventories. Management Science, 25, 90–97.

Perry, D. and Posner, M.J.M. (1998) An (S − 1, S) inventory system
with fixed shelf life and constant lead times. Operations Research,
46, S65–S71.

Raafat, F. (1991) Survey of literature on continuously deteriorating inven-
tory models. Journal of the Operational Research Society, 42, 27–37.

Ravichandran, N. (1995) Stochastic analysis of a continuous review per-
ishable inventory system with positive lead time and Poisson de-
mands. European Journal of Operational Research, 84, 444–457.

Ross, S. (1983) Stochastic Processes, Wiley, New York, NY.
Schmidt, C.P. and Nahmias, S. (1985) (S − 1, S) policies for perishable

inventory. Management Science, 31, 719–728.
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Appendix

We first present a result below needed for other derivations.
The details of all proofs in this section can be obtained from
the authors.

Lemma A1. Let k be a non-negative integer. Then,

(i) E[Xk+1I(Xk < τ < Xk+1)]

=
∫ ∞

x=0
G(x) {xdFk+1(x) − (x + µ)dFk(x)} ,

(ii) E[XkI(Xk < τ < Xk+1)]

=
∫ ∞

x=0
x [Wτ−X1 (x) − G(x)

]
dFk(x),

(iii) E[XkI(Xk+1 < τ )]

=
∫ ∞

x=0
xW τ−X1 (x)dFk(x),

(iv) E[τ I(Xk < τ < Xk+1)]

=
∫ ∞

x=0
x [Fk(x) − Fk+1(x)] dG(x).

where Wτ−X1 (x) = ∫ ∞
t=0 G(x + t)dF(t) is the d.f. of τ − X1,

the remaining shelf life of a batch after the first demand.

Proof. Only the proofs of the first two parts will be pro-
vided, since the others follow similarly. We use the joint
distribution function of Xk, Xk+1 and τ given as

HXk,Xk+1,τ (x, y, t)

=
∫ x

z=0
F(y − z)dFk(z)G(t) x, y, t ≥ 0, y > x.

with

dHXk,Xk+1,τ (x, y, t) = dFk(x)dF(y − x)dG(t)
x, y, t ≥ 0, y > x.

(i) E[Xk+1I(Xk < τ < Xk+1)] =
∫ ∫ ∫

x<t<y
ydH(x, y, t)

=
∫ ∫

x<y
y[G(y) − G(x)]dF(y − x)dFk(x)

=
∫ ∞

y=0
yG(y)dFk+1(y)

−
∫ ∞

x=0

∫ ∞

t=0
(x + t)G(x)dF(t)dFk(x)

=
∫ ∞

x=0
xG(x) [dFk+1(x)−dFk(x)] −µ

∫ ∞

x=0
G(x)dFk(x).

(ii) E[XkI(Xk < τ < Xk+1)]

=
∫ ∫ ∫

x<t<y
xdG(t)dF(y − x)dFk(x)

=
∫ ∫

x<y
x[G(y) − G(x)]dF(y − x)dFk(x)

=
∫ ∞

x=0
x

∫ ∞

t=0
G(x + t)dF(t)dFk(x)−

∫ ∞

x=0
xG(x)dFk(x)

=
∫ ∞

x=0
x [Wτ−X1 (x) − G(x)

]
dFk(x).

�

Proof of Lemma 1. The event {r1 = x} is decomposed as
disjoint events given by

{IXl0
= x, Xl0−1 < τ, Dl0−1 = S} ∪ {IXl0

= x, Xl0

< τ, Dl0−1 < S} ∪ {IXN(τ )+1 = x, DN(τ ) < S}
≡ A1 ∪ A2 ∪ A3,
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where A1 corresponds to the realization where the inventory
depletes by demand and hits exactly the zero level before
perishing, A2 corresponds to the event that the inventory
drops below zero before perishing and without staying at the
zero level and A3 corresponds to the case where a positive
number of items perish in a cycle.

P(A1) =
∑

k

P (Xk < τ, Dk = S, Dk+1 = S − x)

= v(−x)

[
S∑

k=0

P(Xk < τ )vk(S)

]
,

P(A2) =
∑

k

P(Xk < τ, Dk−1 ≤ S − 1, Dk = S − x)

=
S∑

k=1

P(Xk < τ )

[
S−1∑

i=k−1

vk−1(i)v(S − i − x)

]
,

P(A3) =
∑

k

P(Xk < τ < Xk+1, Dk ≤ S − 1, dk+1 = −x)

= v(−x)
S−1∑
k=0

P(Xk < τ < Xk+1)Vk(S − 1),

Pr1 (x) = P(A1) + P(A2) + P(A3)

= v(−x)

[
S∑

k=0

P(Xk < τ )vk(S)

]

+
S∑

k=1

P(Xk < τ )

[
S−1∑

i=k−1

vk−1(i)v(S − i − x)

]

+ v(−x)
S−1∑
k=0

P(Xk < τ < Xk+1)Vk(S − 1).

Adjusting the indices of the summations and noting that
VS(S − 1) = 0 for S ≥ 0, we obtain:

Pr1 (x) = v(−x)

[
S∑

k=0

P(Xk < τ )[Vk(S) − Vk(S − 1)]

+ [P(Xk < τ ) − P(Xk+1 < τ )]Vk(S − 1)

]

+
S∑

k=1

P(Xk < τ )

[
S−1∑

i=k−1

vk−1(i)v(S − i − x)

]

= v(−x)

[
S∑

k=0

P(Xk < τ )Vk(S)

−
S∑

k=0

P(Xk+1 < τ )Vk(S − 1)

]

+
S∑

k=1

P(Xk < τ )

[
S−1∑

i=k−1

vk−1(i)v(S − i − x)

]
.

The result follows by writing P(Xk < τ ) = ∫ ∞
u=0 Fk(u)dG(u).

�

Derivation of Equation (4). Referring to Equation (2), we
have that:

E[Xl0 I(Xl0−1<τ, Dl0−1 = S)]=
S∑

k=0

E [Xk+1I(Xk < τ )] vk(S)

=
S∑

k=0

E[Xk+1I(Xk < τ < Xk+1)] [Vk(S) − Vk(S − 1)]

+
S∑

k=0

E[Xk+1I(Xk+1 < τ )], (A1)

E[Xl0 I(Xl0 < τ, Dl0−1 ≤ S − 1)]

=
S∑

k=1

E [XkI(Xk < τ, Dk−1 ≤ S − 1, Dk > S)]

=
S∑

k=1

E [XkI(Xk < τ )] [Vk−1(S − 1) − Vk(S)] , (A2)

E[XN(τ )+1I(DN(τ ) ≤ S − 1)]

=
S−1∑
k=0

E [Xk+1I(Xk < τ < Xk+1, Dk ≤ S − 1)]

=
S∑

k=0

E [Xk+1I(Xk < τ )] Vk(S − 1)

−
S∑

k=0

E [XkI(Xk < τ )] Vk(S − 1). (A3)

E[CL1(s, S)] is the sum of Equations (A1) to (A3). Appli-
cation of Lemma A1 part (i) gives E[CL1(s, S)] as

E[CL1(s, S)]

=
S∑

k=0

Vk(S)

{ ∫ ∞

x=0
xG(x)[dFk+1(x) − dFk(x)]

−µ

∫ ∞

x=0
G(x)dFk(x)

}

+
S∑

k=1

{
vk(S)

∫ ∞

x=0
xḠ(x)dFk+1(x) + [Vk−1(S − 1)

− Vk(S)]
∫ ∞

x=0
xḠ(x)dFk(x)

}
.

After some algebra, we write the above expression as

µ

S∑
k=1

[(k + 1)vk(S) + kVk−1(S − 1) − kVk(S)]

− µ

S∑
k=0

Vk(S)
∫ ∞

x=0
G(x)dFk(x)

+ µv0(S) +
S∑

k=0

Vk(S − 1)
∫ ∞

x=0
xG(x)dFk+1(x)

−
S∑

k=1

Vk−1(S − 1)
∫ ∞

x=0
xG(x)dFk(x).
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Noting that for S > 0, v0(S) = 0, V0(S − 1) = V0(S) = 1
and

S∑
k=1

[(k + 1)vk(S) + kVk−1(S − 1) − kVk(S)] =
S∑

k=0

Vk(S).

(A4)

Also, for S ≥ 0,

S∑
k=0

Vk(S − 1)
∫ ∞

x=0
xG(x)dFk+1(x)

−
S∑

k=1

Vk−1(S − 1)
∫ ∞

x=0
xG(x)dFk(x) = 0. (A5)

Hence, for S > 0, we have that:

E[CL1(s, S)]

= µ

S∑
k=0

Vk(S) − µ

S∑
k=0

Vk(S)
∫ ∞

x=0
G(x)dFk(x)

= µ

S∑
k=0

Vk(S)
∫ ∞

x=0
Ḡ(x)dFk(x).

For S = 0, v0(S) = 1 and the left-hand side of Equation
(A4) is zero since the upper limit of the sum is greater than
the lower one. In conjunction with Equation (A5) we con-
clude that for S = 0 it also holds that:

E[CL1(s, S)] = µ

S∑
k=0

Vk(S)
∫ ∞

x=0
Ḡ(x)dFk(x).

�

Derivation of Equation (5). Let p1(k|r1) be the probability
that n2 = k demands occur in subcycle 2 for a given r1. Then

p1(k | r1) = Vk−1(r1 − s − 1) − Vk(r1 − s − 1),

and

E[n2|r1] =
r1−s∑
k=1

kp1(k | r1) =
r1−s−1∑

k=0

Vk(r1 − s − 1).

Then, E[CL2(s, S)] is given as follows:

E[CL2(s, S)]

=
−1∑

x=s+1

E[CL2(s, S)|r1 = x]Pr1 (x)

= µ

−1∑
x=s+1

Pr1 (x)

[
x−s−1∑

k=0

Vk(x − s − 1)

]
. (A6)

�

Derivation of Equation (9).

E[HCi]

= h
S−1∑

k=i−1

(S − k)vi−1(k)E[(Xi − Xi−1)I(Xi < τ )]

+ h
S−1∑

k=i−1

(S − k)vi−1(k)E[(τ − Xi−1)I(Xi−1 < τ < Xi)].

Lemma A1 and the relation
∑S−1

k=i−1(S − k)vi−1(k) =∑S−1
k=i−1 Vi−1(k) implies that:

E[HCi] = h
S−1∑

k=i−1

Vi−1(k)
[ ∫ ∞

u=0
uḠ(u)

[
dFi(u) − dFi−1(u)

]

+
∫ ∞

u=0
u
[
F̄ i(u) − F̄ i−1(u)

]
dG(u)

]
Finally, applying integration by parts to the first integral,
we get:

E[HCi]

= h
S−1∑

k=i−1

Vi−1(k)
[

uḠ(u)[Fi(u) − Fi−1(u)]|∞0

−
∫ ∞

u=0
[Fi(u) − Fi−1(u)][Ḡ(u)du − udG(u)]

]

+ h
S−1∑

k=i−1

Vi−1(k)

×
∫ ∞

u=0
u
[

F̄ i(u) − F̄ i−1(u)
]

dG(u)

= h
S−1∑

k=i−1

Vi−1(k)
∫ ∞

u=0
[Fi−1(u) − Fi(u)]Ḡ(u)du.

�
Derivation of Equations (10), (14) and (15).

E[PCi]
= πE[(S − Di−1)I(Xi−1 < τ ≤ Xi, S − Di−1 > 0)]

= π

S−1∑
k

(S − k)vi−1(k)E[I(Xi−1 < τ ≤ Xi)]

= π

S−1∑
k=i−1

Vi−1(k)[P(Xi−1 < τ ) − P(Xi < τ )]

= π

S−1∑
k=i−1

Vi−1(k)
∫ ∞

u=0
[Fi−1(u) − Fi(u)]dG(u).

E[USCi|r1]
= bE[(D̃i−1I(D̃i−1 < r1 − s, D̃i ≥ r1 − s)]

= b
r1−s−1∑
k=i−1

kP(d̃i ≥ r1 − s − k)P(D̃i−1 = k)

= b
r1−s−1∑
k=i−1

kV̄ (r1 − s − k − 1)vi−1(k).

E[TDSCi|r1]
= ρE[(X̃ i − X̃ i−1)(D̃i−1 − r1)I(D̃i−1

≤ r1 − s − 1)] = ρµ

r1−s−1∑
k=i−1

(k − r1)vi−1(k).
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Results follow after summing over the index i. �

Proof of Lemma 2. Let dx be sufficiently small such that
x + dx < 0:

{r1 ∈ (x, x + dx]} ≡ {IXl0
∈ (x, x + dx], Xl0 < τ, Dl0−1 ≤ S}

∪ {
IXN(τ )+1 ∈ (x, x + dx], DN(τ ) < S

}
≡ A2 ∪ A3.

Note that the event A1 of discrete demand case drops here
since its probability is zero:

P(A2) =
∞∑

k=1

P(IXk ∈ (x, x + dx], Xk < τ, Dk−1 ≤ S)

=
∞∑

k=1

[ ∫ S

u=0
[V (S − x − u + dx) − V (S − x − u)]

× dVk−1(u)
] ∫ ∞

z=0
Ḡ(z)dFk(z).

P(A3) =
∞∑

k=1

P
(
Xk < τ < Xk+1, Dk < S, IXk+1 ∈ (x, x + dx]

)

= [V (−x) − V (−x − dx)]
∞∑

k=0

Vk(S)

×
∫ ∞

z=0
Ḡ(z)[dFk(z) − dFk+1(z)].

Applying integration by parts, we get:

P(r1 ∈ (x, x + dx])

=
∞∑

k=1

∫ S

u=0
[V (S − x − u + dx)

− V (S − x − u)]dVk−1(u)
∫ ∞

z=0
Fk(z)dG(z) + [V (−x)

− V (−x − dx)]
∞∑

k=0

Vk(S)
∫ ∞

z=0
[Fk(z) − Fk+1(z)]dG(z).

The result follows after dividing both sides by dx and taking
the limit as dx → 0. �

Derivation of Equation (17).

E[Xl0 I(Xl0 < τ, Dl0−1 ≤ S, Dl0 > S)]

=
∞∑

k=1

E[XkI(Xk < τ, Dk−1 ≤ S, Dk > S)]

=
∞∑

k=1

E[XkI(Xk < τ )]P(Dk−1 ≤ S < Dk)

=
∞∑

k=1

E[XkI(Xk < τ )][Vk−1(S) − Vk(S)]. (A7)

E[XN(τ )+1I(XN(τ ) < τ < XN(τ )+1, DN(τ ) < S)]

=
∞∑

k=0

E[Xk+1I(Xk < τ < Xk+1, Dk < S)]

=
∞∑

k=0

E[Xk+1I(Xk < τ < Xk+1)]P(Dk < S)

=
∞∑

k=0

Vk(S)[E[Xk+1I(Xk < τ )] − E[Xk+1I(Xk+1 < τ )]].

(A8)

E[CL1(s, S)] is the sum of Equations (A7) and (A8) which
is given by:

E[CL1(s, S)] =
∞∑

k=1

E[Xk+1 − XkI(Xk < τ )]Vk(S) + µV0(S)

=
∞∑

k=1

∫ ∫ ∫
x<t,x<y

(y − x)dG(t)dF(y − x)

× dFk(x) + µV0(S)

=
∞∑

k=1

∫ ∞

x=0

∫ ∞

u=0
uḠ(x)dF(u)dFk(x) + µV0(S)

= µ

∞∑
k=1

∫ ∞

x=0
Ḡ(x)dFk(x) + µV0(S)

= µ

∞∑
k=0

∫ ∞

x=0
Ḡ(x)dFk(x),

where the last equation follows from
∫ ∞

x=0 Ḡ(x)dF0(x) = 1.
Integration by parts yields the result.

Derivation of Equation (18).
Noting that there is no upper limit for n2 for continuous
demand, we have that:

E[n2|r1] =
∞∑

k=1

kp1(k|r1) =
∞∑

k=1

k[Vk−1(r1 − s) − Vk(r1 − s)]

=
∞∑

k=0

Vk(r1 − s).

Hence, E[CL2(s, S)] is given by:

E[CL2(s, S)] =
∫ 0

x=s
E[CL2(s, S)|r1 = x]dFr1 (x)

= µ

∫ 0

x=s
E[n2|x]dFr1 (x)

= µ

∫ 0

x=s

∞∑
k=0

Vk(x − s)dFr1 (x).

Proof of Lemma 4. Suppose that x∗ is a strict local min-
imum of φ on X . By Definition 1, there exists a subset
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A = {x : |x − x∗| ≤ ε, ε > 0} ⊂ X such that ∀x ∈ A we
have:

φ(x) > φ(x∗). (A9)

Suppose that x∗ is not a strict global minimum. Then there
exists an x̄ /∈ A such that:

φ(x̄) ≤ φ(x∗). (A10)

For φ to be quasi-convex in x, ∀γ ∈ [0, 1]:

φ(γ x̄ + (1 − γ )x∗) ≤ max(φ(x̄), φ(x∗)). (A11)

Because there exists a γ ∈ [0, 1] such that γ x + (1 − γ )x∗ ∈
A, we have a contradiction for Equation (A9) by Equation
(A11). �
Proof of Lemma 5. We want to show L1(γ ) ≤ R1(γ ),
where:

L1(γ ) = γ E[CL(s1, S1)] + (1 − γ )E[CL(s2, S2)],
R1(γ ) = E[CL(γ s1 + (1 − γ )s2, γ S1 + (1 − γ )S2)].

where (s1, S1), (s2, S2) ∈ (Z− × Z+), and γ ∈ [0, 1] subject
to (γ s1 + (1 − γ )s2, γ S1 + (1 − γ )S2) ∈ (Z−, Z+). In order
that L1(γ ) ≤ R1(γ ), we need to show that L2(γ ) ≤ R2(γ )
where:

L2(γ ) = γ

[
S1∑

k=1

P(τ > Xk) −
S2∑

k=1

P(τ > Xk)

]

+
S2∑

k=1

P(τ > Xk)

R2(γ ) =
γ S1+(1−γ )S2∑

k=1

P(τ > Xk).

Suppose S1 > S2. Then,

L2(γ ) = γ

[
S1∑

k=S2+1

P(τ > Xk)

]
+

S2∑
k=1

P(τ > Xk),

R2(γ ) =
γ (S1−S2)+S2∑

k=S2+1

P(τ > Xk) +
S2∑

k=1

P(τ > Xk).

When γ = 0, 1 L2(γ ) = R2(γ ) holds and L2(γ ) is increasing
and linear in γ . To check the behavior of R2(γ ), consider the

difference �1(γ ) = R2(γ + ε) − R2(γ ) where ε = 1/(S1 −
S2) > 0. Then,

�1(γ ) =
(γ+ε)(S1−S2)+S2∑

k=γ (S1−S2)+S2+1

P(τ > Xk),

�1(γ + ε) =
(γ+2ε)(S1−S2)+S2∑
k=γ (S1−S2)+S2+1

P(τ > Xk).

Since P(τ > Xk) is increasing in k, we have �1(γ + ε) <

�1(γ ) which means that R2(γ ) is increasing and concave in
γ . Combining the linearity of L2(γ ) and concavity of R2(γ ),
we have R2(γ ) ≥ L2(γ ) ∀γ ∈ [0, 1]. The case S1 < S2 is sim-
ilar, except that L2(γ ) is decreasing and linear and R2(γ ) is
decreasing and concave in γ . Then, R2(γ ) ≥ L2(γ ) holds
∀γ ∈ [0, 1]. Finally S1 = S2 implies L2(γ ) = R2(γ ), which
completes the proof of part (i). For part (ii), we see that
C1(s) in Equation (19) is convex in (s, S) since it is constant
in S and quadratic in s with a non-negative leading coef-
ficient. Since {Xk} is a stochastically increasing sequence,
C2(S) in Equation (20) is convex due to increasing first-
order difference. The convexity of C3(S) in Equation (21)
follows from concavity of

∑S
k=1 P(τ > Xk). �
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