
60

Access Pattern-Based Code Compression
For Memory-Constrained Systems

OZCAN OZTURK

Bilkent University

MAHMUT KANDEMIR

Pennsylvania State University

and

GUANGYU CHEN

Microsoft Corporation

As compared to a large spectrum of performance optimizations, relatively less effort has been
dedicated to optimize other aspects of embedded applications such as memory space requirements,
power, real-time predictability, and reliability. In particular, many modern embedded systems
operate under tight memory space constraints. One way of addressing this constraint is to compress
executable code and data as much as possible. While researchers on code compression have studied
efficient hardware and software based code compression strategies, many of these techniques do
not take application behavior into account; that is, the same compression/decompression strategy is
used irrespective of the application being optimized. This article presents an application-sensitive
code compression strategy based on control flow graph (CFG) representation of the embedded pro-
gram. The idea is to start with a memory image wherein all basic blocks of the application are
compressed, and decompress only the blocks that are predicted to be needed in the near future.
When the current access to a basic block is over, our approach also decides the point at which
the block could be compressed. We propose and evaluate several compression and decompression
strategies that try to reduce memory requirements without excessively increasing the original
instruction cycle counts. Some of our strategies make use of profile data, whereas others are fully
automatic. Our experimental evaluation using seven applications from the MediaBench suite and
three large embedded applications reveals that the proposed code compression strategy is very

The preliminary version of this article appeared in Proceedings of DATE’05 [Ozturk et al. 2005].
This article extends the DATE paper by giving more detailed information about the algorithms,
comparing it to a previously proposed method, and presenting an experimental analysis of the
proposed approach.
This work is supported in part by NSF Career Award #0093082 and by a grant from GSRC.
Authors’ addresses: O. Ozturk, Computer Engineering Department, Bilkent University, 06800,
Ankara, Turkey; M. Kandemir, Computer Science and Engineering Department, Pennsylvania
State University, University Park, PA 16802; G. Chen, One Microsoft Way Redmond, WA 98052-
6399.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/09-ART60 $5.00 DOI 10.1145/1391962.1391968 http://doi.acm.org/
10.1145/1391962.1391968

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:2 • O. Ozturk et al.

successful in practice. Our results also indicate that working at a basic block granularity, as op-
posed to a procedure granularity, is important for maximizing memory space savings.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
Memory management, Optimization

General Terms: Experimentation, Management, Design, Performance

Additional Key Words and Phrases: Embedded systems, code compression, memory optimization,
CFG, code access pattern

ACM Reference Format:
Ozturk, O., Kandemir, M., and Chen, G. 2008. Access pattern-based code compression for memory-
constrained systems. ACM Trans. Des. Autom. Elect. Syst., 13, 4, Article 60 (September 2008),
30 pages. DOI = 10.1145/1391962.1391968 http://doi.acm.org/ 10.1145/1391962.1391968

1. INTRODUCTION

Most embedded systems have tight bounds on memory space. As a consequence,
the application designer needs to be careful in limiting the memory space de-
mands of code and data. However, this is not a trivial task, especially for large-
scale embedded applications with complex control structures and data access
patterns. One potential solution to the memory space problem is to use data
and code compression.

Prior research in code compression has studied both static and dynamic com-
pression techniques, focusing in particular on efficient implementation strate-
gies [Abali et al. 2001; Benini et al. 2002, 1999; Lekatsas et al. 2000b, 2000a;
Ernst et al. 1997; Cooper and McIntosh 1999; Lingappan et al. 2005; Lekatsas
et al. 2004; Lekatsas et al. 2005; Shogan and Childers 2004; Cooper and Harvey
1998; Wolfe and Chanin 1992; Ros and Sutton 2004; Xie et al. 2003; Debray and
Evans 2002; Tunstall 1967; Lin et al. 2004; Benveniste et al. 2001; Yang et al.
2000; Lee et al. 1999]. One potential problem with most of these techniques is
that the compression and decompression decisions are taken in an application-
insensitive manner; that is, the same compression/decompression strategy is
employed for all applications independent of their specific instruction access
patterns.

In this article, we propose a control flow graph (CFG) centric approach to
reducing the memory space consumption of executable binaries. The main idea
behind this approach is to keep basic blocks of the application in the compressed
form as much as possible, without increasing the original execution cycle counts
excessively. An important advantage of doing so is that the executable code oc-
cupies less memory space at a given time, and the saved space can be used
by some other (concurrently executing) applications.1 The proposed approach
achieves this by tracking the basic block accesses (also called the instruction
access pattern) at runtime, and invoking compressions/decompressions based
on the order in which the basic blocks are visited. On the one hand, we try

1Alternately, in embedded systems that execute a single application, the memory space saved can
enable the use of a smaller memory, thereby impacting both form factor and overall cost. As a third
option, saved memory space can be used to increase energy savings in banked memory architectures
currently employed in some embedded systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:3

to save as much memory space as possible. On the other hand, we do not
want to degrade the performance of the application significantly by perform-
ing frequent compressions and decompressions, which could potentially occur
in the critical path during execution. This article makes the following major
contributions:

—It proposes a basic block compression strategy called the k-edge algorithm
that can be used for compressing basic blocks whose current executions are
over.

—It proposes a set of basic block pre-decompression strategies, wherein a basic
block is decompressed before it is actually needed, in an attempt to reduce
the potential performance penalty that could be imposed by the online de-
compression.

—It extensively evaluates the proposed compression and decompression strate-
gies using MediaBench [Lee et al. 1997], three large embedded applications,
and SimpleScalar [Austin et al. 2002]. It also compares our approach to a
previously proposed compiler-directed compression/decompression method.

—It demonstrates that an adaptive strategy which tunes compression/
decompression policies based on the behavior of each basic block gener-
ates further memory space savings. Such an adaptive strategy can be im-
plemented either using profile data (if the input set is known) or through
collecting access pattern statistics at runtime (if the input set is not known).

Our experimental analysis shows that the proposed approach reduces the
overall memory requirements of seven MediaBench [Lee et al. 1997] executa-
bles and three other embedded applications significantly. We also present a sen-
sitivity analysis where we investigate the impact of varying several simulation
parameters. It should be noted that the proposed approach could work with any
software-based compression/decompression algorithm. Our results also reveal
that working at a basic block granularity (as opposed to a procedure/function
granularity) is critical for maximizing memory space savings.

The rest of this article is organized as follows. Section 2 discusses the related
work on code compression. Section 3 summarizes the basic concepts related to
the control flow graph based code representation, and the assumptions we made
about our execution environment. Section 4 and Section 5 discuss the basic
block compression and decompression strategies, respectively, proposed in this
paper. Section 6 gives the details of our implementation and presents our algo-
rithms formally. Section 7 presents the results from our experimental evalua-
tion. Section 8 discusses an adaptive scheme, and evaluates it experimentally.
Section 9 concludes the paper by summarizing its major contributions.

2. RELATED WORK

Code compression has received a lot of attention in the last decade or so.
The work in the area can be roughly divided into two categories: efficient
compression/decompression strategies and efficient employment of compres-
sion/decompression. The scheme proposed here falls into the second category.
Beszedes et al. [2003] present a good overview of broad range of methods used

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:4 • O. Ozturk et al.

in code compression. This survey also provides an extensive assessment criteria
for evaluating the methods and offer a basis for comparison.

Many embedded systems rely on special hardware to execute compressed
code, such as Thumb for ARM processors (http://www.win.tue.nl/cs/ps/rikvdw/
papers/ARM95.pdf), CodePack [Kemp et al. 1998] for PowerPC processors, and
MIPS16 [Kissel 1997] for MIPS processors. The advantage of this approach is
that it does not incur any space overhead for storing decompressed code or extra
time for decompressing. However, the requirement for special hardware limits
its general applicability. Lefurgy et al. [2000] propose a hybrid approach that
decompresses the compressed code at the granularity of individual cache lines.
Decompression is mostly carried out by the software with the assistance of spe-
cial hardware instructions to manipulate the instruction cache lines. Lefurgy
et al. [1999] lso investigate the performance penalty of a hardware-managed
code compression in IBM’s PowerPC 405. They combine many previously pro-
posed code compression techniques. Kirovski et al. [1997] present a procedure-
based compression strategy that requires little or no hardware support. Their
scheme compresses procedures individually and uses a directory structure to
bind the procedures at runtime. They also employ a block of ordinary RAM
as the cache to store the decompressed procedures. This cache is managed ex-
plicitly by the software. Alternatively Lucco et al. [Lucco 2000] discard the
decompressed function when it is no longer on the call stack. This follows from
the observation that at this point we can be certain that it will not be returned
to. Ros and Sutton [2005] describe a post-compilation technique to the reassign-
ment of general purpose scratch registers to improve Hamming distance based
code compression. Specifically, registers are renumbered based on the frequency
of use by isomorphic instructions. Das et al. [2005] employ code compression on
variable length instruction set processors using a dictionary based algorithm.
Bonny and Henkel [2006; 2007] use code compression to improve the code den-
sity. They implement this by compressing the necessary Look-up Tables that
can become significant in size if the application is large. Seong and Mishra
[2006, 2007] propose application-specific bitmask selection and bitmask-aware
dictionary selection techniques for bitmask-based code compression.

There has been a significant amount of work that explores the compress-
ibility of program representations [Hoogerbrugge et al. 1999]. The resulting
compressed form either must be decompressed (or compiled) before execu-
tion [Ernst et al. 1997; Franz 1997; Franz and Kistler 1997], or can be exe-
cuted without decompression [Cooper and McIntosh 1999; Fraser et al. 1984].
The approaches in the first category usually result in smaller memory con-
sumption for the compressed code than those in the second category at the cost
of the time and space overheads of decompression before execution. A hybrid
approach is to use an interpreter to execute the compressed code [Fraser and
Proebsting 1995; Proebsting 1995]. Compared to the direct execution approach,
the interpreter-based approach usually allows more complex coding schemes,
and thus, achieves smaller memory consumption for the compressed code. How-
ever, the interpreter itself occupies extra memory space.

The approach presented in Larin and Conte [1999] tries to extract the
pipeline decoder logic for an embedded VLIW processor in software. They

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:5

employ Huffman compressing or tailor encoding the ISA of the original pro-
gram. Drinie et al. [2003] present two preprocessing steps for code compression
that explore the syntax and semantics to improve the compression ratio. They
employ a heuristic to partition the program binary into streams with high cor-
relation. They also use code optimization by instruction rescheduling. This way
prediction probabilities can be improved. Debray et al. [1999] explore the use of
compiler techniques to achieve higher code compression ratios. They show how
equivalent code fragments can be detected and factored out without having to
resort to purely linear treatments of code sequences. Araujo et al. [1998] explore
a code compression technique called operand factorization where they try to
separate program expression trees into sequences of tree-patterns and operand
patterns. Liao et al. [1995] present a code size minimization technique for em-
bedded DSP processors. In their framework compressed data is composed of a
dictionary and a skeleton. They compress the dictionary using data compression
techniques. Wolfe and Channin [1992] employ a Line Address Table (LAT) to
access all the compressed code without changing the processor or the program.
However, using LAT causes an increase in the cache line refill time. Authors
propose using a small cache called Cache Line Address Lookaside Buffer (CLB)
to reduce the overhead by holding the most recently used entries from the LAT.
Breternitz and Smith [1997] describe a technique for execution of compressed
programs that eliminates the need for a LAT and CLB. Debray and Evans [2003]
present a code compression strategy that operates at a function granularity;
that is, functions constitute compressible units. Their work exploits the prop-
erty that for most programs, a large fraction of the code is rarely touched. Our
work is different from the previously proposed techniques in at least two as-
pects. First, our approaches operate on a finer granularity (basic block level).
Therefore, we can potentially save more memory space (when, for example, a
particular basic block chain within a large function is repeatedly executed, in
which case our approach can keep the unused memory blocks—in the function—
in the compressed form). Second, we also employ pre-decompression that helps
us reduce the potential negative impact of compression on performance.

3. PROGRAM REPRESENTATION AND TARGET ARCHITECTURE

A control flow graph (CFG) is an abstract data structure used in compilers to
represent a procedure/subprogram [Muchnick 1997]. Each node in the CFG
represents a basic block, that is, a straight-line piece of code without any jumps
or jump targets; jump targets start a block, and jumps end a block. In this
graph, jumps in the control flow are represented by directed edges. There are
two specially designated blocks: the entry block, through which control enters
into the flow graph, and the exit block, through which all control flow leaves.
The CFG is essential to several compiler optimizations based on global data
flow analysis such as def-use chaining and use-def chaining [Muchnick 1997].

It should be emphasized that a CFG is a static (and conservative) represen-
tation of an application program, and represents all the alternatives of control
flow (i.e., all potential execution paths). As an example, both arms of an if-
statement are represented in the CFG, while in a specific execution (with a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:6 • O. Ozturk et al.

Fig. 1. An example CFG fragment. Assuming that the execution takes the left branch following
B0, the 2-edge algorithm (i.e., the k-edge algorithm with k = 2) starts compressing B1 just before
the execution enters basic block B4.

particular input), only one of them could actually be taken. A cycle in the CFG
may imply that there is a loop in the application code. Figure 1 depicts an
example CFG fragment that contains two loops.

The approach proposed in this paper saves memory space by compressing
basic blocks as much as possible without unduly degrading performance. We
assume a software-controlled code memory either in the form of an external
DRAM or in the form of an on-chip SRAM (e.g., a scratchpad memory [Panda
et al. 1998; Kandemir et al. 2001; Avissar et al. 2002; Banakar et al. 2002;
Francesco et al. 2004; Udayakumaran and Barua 2003]). It must be emphasized
that our main objective in this study is to reduce the memory space require-
ments of embedded applications. Note that, if there is another level of memory
in front of the memory where our approach targets (i.e., a memory between the
target memory and the CPU), the proposed approach also brings reductions in
memory access latency (as we need to read less amount of data from the target
memory) as well as in the energy consumed in bus/memory accesses. However,
a detailed study of these issues is beyond the scope of this paper. Also note that,
our work targets embedded systems but does not specifically target real-time
constrained execution environments. However, we can use compiler analysis to
predict the performance overheads incurred by our compression based approach
and does not use our approach if the overheads are decided to exceed the allowed
performance degradation bound. Another important issue is that, while in most
of the experiments discussed in this paper we do not put a restriction on the
total memory space that could be used by the application being optimized, our
approach needs only a slight modification to address this issue. Specifically, all
that needs to be done is to check before each basic block decompression whether
this decompression could result in exceeding the maximum allowable memory
space consumption, and if so, compress one of the decompressed basic blocks
(i.e., one of the blocks that is currently in the uncompressed form). One could

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:7

use LRU or a similar strategy to select the victim basic block when necessary. In
our evaluation, we also perform experiments with scenarios when there exists
a bound on instruction memory capacity.

4. BASIC BLOCK COMPRESSION

In this section, we discuss the proposed k-edge algorithm in detail. This algo-
rithm compresses a basic block that has been visited by the execution thread
when the kth edge following its visit is traversed. It is to be noted that the k pa-
rameter can be used to tune the aggressiveness of compression. Consequently,
the k-edge algorithm actually specifies a family of algorithms (e.g., 1-edge,
2-edge, 10-edge, etc). For example, let us consider the CFG illustrated in
Figure 1. Assuming that we have visited basic block B1 and, following this,
the execution has traversed the edges marked as a and b, the 2-edge algorithm
(i.e., the k-edge algorithm with k = 2) starts compressing B1 just before the
execution enters basic block B4.

Selecting a suitable value for the k parameter is important as it determines
the tradeoff between memory space savings and performance overhead. Specif-
ically, if we use a very small k value, we aggressively compress basic blocks but
this may incur a large performance penalty for the blocks with high temporal
reuse (though it is beneficial from a memory space viewpoint). In other words,
if a basic block is revisited within a short period of time, a small k value could
entail frequent compressions and decompressions (note that a basic block can
be executed only when it is not in the compressed form). On the other hand, a
very large k value delays the compression, which may be preferable from the
performance angle (as it increases the chances of finding a basic block in the
uncompressed form during execution when it is reached). But, it also increases
the memory space consumption.

Another important issue is how one can perform compressions. Note that,
in a single-threaded execution, the compression comes in the critical path of
execution, and can slow down the overall execution dramatically. Therefore,
we propose a multi-threaded approach, wherein there exists a separate com-
pression thread (in addition to the main execution thread), whose sole job is
to compress basic blocks at the background, thereby incurring minimal impact
on performance. Specifically, the compression thread utilizes the idle cycles of
the execution thread to perform compressions. Our current implementation
slightly deviates from this scheme, as will be discussed in Section 6.

5. BASIC BLOCK DECOMPRESSION

We have at least two options for performing basic block decompressions. In the
first option, called the on-demand decompression (also called the lazy decom-
pression), a basic block is decompressed only when the execution thread reaches
it. That is, basic block decompressions are performed on a need basis. An impor-
tant advantage of this strategy is that it is easy to implement since we do not
need an extra thread to implement it. All we need is a bit per basic block to keep
track of whether the block accessed is currently in the compressed form or not.
Its main drawback is that the decompressions can occur in the critical path,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:8 • O. Ozturk et al.

and degrade performance significantly. In the second option, referred to as the
pre-decompression in this paper, a basic block is decompressed before it is ac-
tually accessed. The rationale behind this approach is to eliminate (or, at least
reduce) the potential delay that would be incurred as a result of decompres-
sion. In other words, by pre-decompressing a basic block, we are increasing the
chances that the execution thread finds the block in the uncompressed form,
thereby not losing any extra execution cycles for decompressing it. This pre-
decompression based scheme has, however, two main problems. First, we need
a decompression thread to implement it. Second, pre-decompressing a basic
block ahead of time can increase the memory space consumption.

It is easy to see that a pre-decompression based scheme can be implemented
in different ways. In this paper, we study this issue along two dimensions. First,
we have a choice in selecting the basic block(s) to pre-decompress. Second, we
have a choice in selecting the time to pre-decompress them.2 These two choices
obviously bring the associated performance/memory space tradeoffs. For exam-
ple, pre-decompressing more basic blocks increases the chances that the next
block to be visited will be in the uncompressed form (which is preferable from
the performance viewpoint provided that we are able to hide the decompres-
sion cost); but, it also increases the memory space consumption. Similarly, pre-
decompressing basic blocks early (as compared to pre-decompressing them at
the last moment) involves a similar tradeoff between performance and memory
space consumption.

In this article, we explore this two-dimensional pre-decompression search
space using two techniques. First, to determine the point at which we initiate
decompression, we use an algorithm similar to k-edge. In this algorithm (also
called k-edge), a basic block is decompressed (if it is not already in the uncom-
pressed form) when there are at most k edges that need to be traversed before it
could be reached. As before, k is a parameter whose value can be tuned for the
desired memory space performance overhead tradeoff. An example is depicted
in Figure 2. Assuming k = 3, in this figure, basic block B7 is decompressed at the
end of basic block B1 (i.e., when the execution thread exits basic block B1, the
decompression thread starts decompressing B7). This is because, from the end
of B1 to the beginning of B7, there are at most 3 edges that need to be traversed.
Second, to determine the basic block(s) to decompress, we use a prediction-based
strategy. The idea is to determine the basic block that could be accessed next
and pre-decompress it ahead of the time. In this paper, we evaluate two differ-
ent prediction-based strategies. In the first strategy, called pre-decompress-all,
we pre-decompress all basic blocks that are at most k edges away from the exit
of the currently processed block. In the second strategy, called pre-decompress-
single, we select only one basic block among all the blocks that are at most
k edges ahead of the currently processed basic block. It is to be noted that
while pre-decompress-all favors performance over memory space consumption,
pre-decompress-single favors memory space consumption over performance. To

2At this point, the similarity between pre-decompression and software-initiated data/code pre-
fetching should be noted. The two choices mentioned in the text correspond to selecting the blocks
to prefetch and timing of prefetch in the context of prefetching.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:9

Fig. 2. An example CFG fragment that can be optimized using pre-decompression.

Fig. 3. Decompression design space explored in this work. For compression, we always use the
k-edge algorithm.

demonstrate the difference between these two pre-decompression based strate-
gies, we consider the CFG fragment in Figure 2 once more, assuming this time,
for illustration purposes, that blocks B4, B5, B8, and B9 are currently in the
compressed form, all other blocks are in the uncompressed form, and the exe-
cution thread has just left basic block B0. Assuming further that k = 2, in the
pre-decompress-all strategy, the decompression thread decompresses B4, B5,
B8, and B9. In contrast, in the pre-decompress-single strategy, we predict the
block (among these four) that is to be the most likely one to be reached than
the others, and decompress only that block. Figure 3 summarizes the decom-
pression design space explored in this paper.

Figure 4 summarizes our approach that employs code compression for reduc-
ing memory space consumption. It is assumed that the highlighted path is the
one that is taken by the execution thread. In the ideal case, the decompression
thread traverses the path before the execution thread and decompresses the
basic blocks on it so that the execution thread finds them directly in the exe-
cutable state. The compression thread, on the other hand, follows the execution

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:10 • O. Ozturk et al.

Fig. 4. Cooperation between the three threads during execution. Note that the execution thread
follows the decompression thread, and the compression thread follows the execution thread.

thread and compresses back the basic blocks whose executions are over. The k
parameters control the distance between the threads. Note that the value of the
k parameter can be different for compression and decompression threads. For
example, a specific implementation can have a 2-edge compression algorithm
and 3-edge decompression algorithm.

6. IMPLEMENTATION DETAILS AND ALGORITHMS

In implementing the compression/decompression-based strategy described,
there is an important challenge that needs to be addressed. Specifically, when a
basic block is compressed or decompressed, the branch instructions that target
that block must be updated. In addition, the saved memory space (as a result
of compressions) should be made available to the use of other applications with
minimum overhead. In particular, one may not want to create too much memory
fragmentation. This is because an excessively fragmented free space either can-
not be used for allocating large objects or requires memory compaction to do so.
Therefore, our current implementation slightly deviates from the discussion so
far, in particular when compressions are concerned. Specifically, we start with
a memory image, wherein all basic blocks are stored in their compressed form.
Note that this is the minimum memory that is required to store the applica-
tion code. As the execution progresses, we decompress basic blocks (depending
on the instruction access pattern and the decompression strategy adopted, as
discussed earlier), and store the decompressed (versions of the) blocks in a sep-
arate location (and keep the compressed versions as they are). Later, when we
want to compress the block, all we need to do is to delete the decompressed
version. In this way, the compression process does not take too much time. In
addition, the memory space is not fragmented too much as the locations of the
compressed blocks do not change during execution.

We illustrate the idea using the example in Figure 5 with on-demand
decompression. The figure shows an example CFG fragment and traces the
sequence of events for a particular execution scenario. Initially, all the basic

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:11

Fig. 5. An example CFG fragment (top) and the contents of the instruction memory (bottom) when
the basic block access pattern is B0, B1, B0, B1, and B3.

blocks are in the compressed form and stored in the compressed code area. The
program counter (PC) points to the entry of the first basic block, which is B0 in
this case (1). Fetching an instruction from the compressed code area triggers
a memory protection exception. The exception handler decompresses block B0
into B′

0 and sets PC to the entry of B′
0 (2). Assuming that block B1 is the one

that follows B0, after the execution of block B0, the PC points to the entry of
block B1 (3). Since B1 is in the compressed code area, the exception handler is
invoked to decompress B1 into B′

1 and update the target address of the branch
instruction in B0 and set the PC to the entry of B′

1 (4). Let us now assume that
the execution thread next visits B0 again. Consequently, after the execution of
B′

1, we branch to the entry of B0 (5). At this time, we do not need to decom-
press B0 once again. The exception handler updates the target address of the
last branch instruction of block B′

1 to the entry of B′
0, and subsequently sets

PC to the entry of B′
0 (6). Following B′

0, the execution thread can branch to
B′

1 directly without generating any exception (7). Let us assume now that the
execution next visits B3. Consequently, the PC points to the entry of this basic
block (8). Assuming that our compression strategy uses k = 2, at this point, we
delete the decompressed version of B0 (which is B′

0), and decompress B3 into
B′

3 as illustrated in (9). It is to be noted that, when we discard a decompressed
block, we also need to update the target addresses of the branch instructions
(if any) that branch to the discarded block. For this purpose, for each decom-
pressed block, we also maintain a remember set that records the addresses of
the branch instructions that branch to this block.

Note that, in some cases, predicting the target address of a branch statically
may not always be possible and needs to be computed at runtime. If we are
unable to determine the target, we exclude the block that has the branch and
the set of possible targets of this branch instruction. For clarity reasons, we do
not go into the implementation details.

Another issue is how to keep track of the fact that k edges have been traversed
so that we can delete the decompressed version. Our current implementation

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:12 • O. Ozturk et al.

Algorithm 1 Compress(Bi , k)

1: if (k > 0) then
2: for all Bj ∈ Pred(Bi) do
3: Compress(Bj , k − 1)
4: end for
5: else if (k = 0) and (Bi .compressed = 0) then
6: compress Bi

7: Bi .compressed = 1
8: end if

Algorithm 2 Decompress(Bi , k, type)

1: if type = on-demand then
2: B-set = {Bi}
3: else
4: if k > 0 then
5: for all Bj ∈ Succ(Bi) do
6: Decompress(Bj , k − 1, type)
7: end for
8: else if k = 0 then
9: B-set = B-set + {Bi}
10: end if
11: end if

works as follows. For each basic block being executed, we identify (recursively)
the set of basic blocks that are k edges before the currently processed block in
the CFG. At each branch, the decompressed versions (if any) of the basic blocks
in this set are deleted. The experimental results to be presented in the next
section include all the memory space/performance overheads associated with
our approach.

Algorithm 1 gives the sketch of our algorithm for compressing basic blocks.
A call to Compress(Bi, k) compresses all the decompressed basic blocks {Bk}
such that to reach Bi from Bk k edges need to be traversed. This is achieved
by recursively calling Compress until all the target basic blocks are reached.
In this algorithm, Pred (Bi) returns the basic block set that consists of the
predecessors of Bi. If none of the basic blocks satisfies conditions specified in
the algorithm, Compress(Bi, k) terminates. In this algorithm, for clarity, we
do not address the possibility that there might more than one path between
two basic blocks. However, in our implementation, we consider all possible
cases.

Similarly, Algorithm 2 is used for decompressing a basic block, where the
parameter Bi is the starting basic block and the parameter type is the decom-
pression strategy. As explained earlier, there are three different decompression
strategies; on-demand, pre-single, and pre-all. The k parameter, on the other
hand, indicates the number of edges to be used for pre-decompression strategy
(not used for on-demand decompression). As in the case of compression, we use a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:13

recursive algorithm for decompression. B-set is the target basic block set which
we would like to decompress. For on-demand decompression, B-set has only one
basic block, whereas, for pre-decompression strategies, we possibly have mul-
tiple basic blocks to choose from. Succ(Bi) returns the successors of Bi, until k
is equal to 0. When k is equal to 0, the corresponding basic blocks are added
to the B-set. Consequently, by using Decompress function recursively, B-set is
formed.

Based on the Compress and Decompress functions, our BB—Compressor
algorithm iterates starting from the source node (denoted by s) of the CFG.
BB—Compressor takes the following parameters: s (the source node), kc (the
k-value for compression), kd (the k-value for decompression), and the type (pre-
decompression type). For each node that is being executed in the CFG, we
run the decompression thread (Decomp-Thread), execution thread (Execution-
Thread), and the compression thread (Comp-Thread).

The decompression thread first initializes the target basic block set to ∅.
It then calls the Decompress function to generate the target basic block set,
B-set. Depending on the decompression scheme selected, one or more basic
blocks from the B-set are decompressed. Their corresponding compressed bits
are updated accordingly. Note that, in the pre-single decompression, although
there are more than one basic block in the set, the basic block with the highest
probability is selected for decompression.

Execution thread, on the other hand, executes the current basic block and
returns the next basic block based on the execution path. Depending on the
decompression approach used, it is possible that a basic block may not be avail-
able in the decompressed form which would require us to first decompress the
basic block. This is also captured in the execution thread. The execution thread
returns the next basic block to be executed, which is assigned to temporary
variable t within the BB − Compressor algorithm.

The compression thread simply calls the Compress function with the source
basic block and the kc parameters.

Algorithm 3 BB − Compressor(s, kc, kd , type)

1: while s is not the last basic block in CFG do
2: Decomp-Thread(s,kd ,type)
3: t ← Execution-Thread(s)
4: Comp-Thread(s,kc)
5: s ← t
6: end while
7: Execution-Thread(s)

procedure Decomp-Thread(s,kd ,type)
1: B-set ← ∅
2: Decompress(s, kd , type)
3: if type = on-demand then
4: for all Bi ∈ B-set do
5: if Bi .compressed = 1 then

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:14 • O. Ozturk et al.

6: decompress(Bi)
7: Bi .compressed = 0
8: end if
9: end for
10: else if type = pre-all then
11: for all Bi ∈ B-set do
12: if Bi .compressed = 1 then
13: decompress(Bi)
14: Bi .compressed = 0
15: end if
16: end for
17: else if type = pre-single then
18: select Bi ∈ B-set such that probability(Bi) is maximum
19: decompress(Bi)
20: Bi .compressed = 0
21: end if

procedure Execution-Thread(s)
1: if s.compressed = 1 then
2: decompress(s)
3: s.compressed = 0
4: end if
5: Execute s
6: return s→next

procedure Comp-Thread(s, kc)
1: Compress(s, kc)

Algorithm 4 gives our approach that adapts the values of k based on the
memory bound at hand. In this approach, for compression and decompres-
sion, we start with initial values of k = k1∗ and k = k2∗, respectively. The
algorithm operates with these values until one of the following conditions
occurs:

—We could not perform a decompression due to insufficient memory space. In
this case, we first set k2 = k2 − 1 and check whether this solves the space
problem. If not, we keep reducing k2 until either the space problem is solved,
or we reach a k2 value of 1. Note that if we reach a value of 1 and we use
pre-decompress-single, this means that the current memory bound does not
allow us to use our approach. On the other hand, if the problem is solved
when k2 = k2 ∗ ∗, we use this value but also reduce the current value of k1 to
ease the memory space pressure further.

—Available (unused) memory space becomes larger than a preset value (�).
When this happens, we increment current values of k1 and k2 by one to
take advantage of the available memory space and improve performance by
doing so. In our default implementation, � is set to 20% of the total memory
space.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:15

Table I. Base Simulation Parameters.

Processor Core
LSQ Size 8 instructions
RUU Size 16 instructions

Fetch Width 4 instructions/cycle
Decode Width 4 instructions/cycle

Issue Width 4 instructions/cycle
Commit Width 4 instructions/cycle

Fetch Queue Width 4 instructions/cycle
Cycle Time 1 ns

Functional Units
4 Integer ALUs 4 FP ALUs

1 integer multiplier/ divider 1 FP multiplier/divider
Memory Hierarchy

Scratch-Pad Memory (SPM) 2 MB
Branch Logic

Predictor Bimodal (2048 entries)
Misprediction Penalty 3 cycles

Algorithm 4 Adapt(k1, k2, mem)

1: if mem ≤ minimum block size then
2: while (mem ≤ minimum block size) and (k2 > 1) do
3: k2 ← k2 − 1
4: end while
5: if (k2 = 1) and (type = pre-single)) then
6: I N F E ASI BLE!
7: else
8: k1 ← k1 − 1
9: end if
10: else if mem ≥ � then
11: k1 ← k1 + 1
12: k2 ← k2 + 1
13: end if

Note that this simple approach adapts the behavior of our scheme to a given
memory bound. Our current work includes using static analysis to determine
the worst case memory space usage bound and use this information to develop
better adaptation schemes.

7. EXPERIMENTAL EVALUATION

7.1 Platform, Benchmarks, and Versions

In order to collect experimental data, we used the SimpleScalar simula-
tor [Austin et al. 2002] and simulated seven applications from the MediaBench
suite [Lee et al. 1997] as well as three large embedded applications. Table I
gives the details of the base configuration used in our experiments. Note that,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:16 • O. Ozturk et al.

Table II. Benchmark Codes Used in This Study.

Number of Number of Execution Code Size Code Size
Benchmark Basic Blocks Transitions Cycles (in 106) (Uncompressed) (Compressed)

djpeg 1,751 36,926 7.68 492,356 289,621
cjpeg 1,997 77,053 20.46 456,692 285,432
adpcm 119 69,901 21.96 645,720 258,733

mpeg2dec 1,378 227,448 226.49 422,480 241,417
mpeg2enc 3,420 1,092,627 1,498.31 472,108 266,700

rasta 2,031 133,135 54.86 883,924 538,978
g.271 428 289,511 336.08 693,648 415,358
wave 5,622 2,538,067 2,934.18 898,276 611,451

splat 6,953 3,097,573 3,281.74 1,763,012 794,973
3D 3,929 1,624,080 1,959.37 798,509 544,287

the reason that we use a multiple-issue machine is that current trends in em-
bedded computing show increasing employment of powerful machines (e.g.,
Hitachi’s SH-4 (Hitachi sh-4 series risc microcomputer) and embedded Pow-
erPC core (IBM Power pc 405 cpu core) from IBM). The compression technique
used is adapted from [Debray and Evans 2003], which is a modified version of
the splitting-stream approach [Lucco 2000]. The approach presented in Debray
and Evans [2003] partitions the original program code into two parts based on
the frequency of execution. The infrequently-executed functions are placed in
a compressed code, whereas the frequently executed functions remain uncom-
pressed. The infrequently executed functions are replaced with a very short
sequence of instructions, called stub. Stub is used to invoke the decompressor
to decompress the function from the compressed region to the runtime buffer.
A table is used to keep track of function offsets within the compressed region.
Decompressor uses these offsets to access the compressed code and generate
the uncompressed function. After decompression is finished, control is trans-
ferred to the uncompressed code to execute. Our compression/decompression
strategy follows the same methodology at a finer granularity, that is we employ
the same method at the basic block level.

The important point to note is that our approach is not tied to any spe-
cific compression/decompression algorithm, and the compressor and decom-
presser can be implemented either in software or hardware. In our current
implementation, however, we use an LZO compression/decompression algo-
rithm (http://gnuwin32.sourceforge.net/packages/1zo.htm) to handle compres-
sions and decompressions. LZO is a data compression library which is suitable
for data decompression in real time. It is very fast in compression and extremely
fast in decompression. The algorithm is both thread-safe and loseless. In ad-
dition, it supports overlapping compression and in-place decompression. It is
to be emphasized that while, in this particular implementation, we chose a
software-based compression/decompression, our approach can also accommo-
date a hardware-based compressor/decompressor (e.g., similar to that proposed
in Benini et al. [2002]). In such a case, we could even perform decompressions
before the block is actually needed, thereby taking the decompression cost out
of the critical path.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:17

Table II lists the important characteristics of the applications in our ex-
perimental suite. The first seven applications are from the MediaBench suite.
In addition to these MediaBench benchmarks, we also used three large em-
bedded applications: wave, splat, and 3D. Wave is a wavelet compression code
that specifically targets medical applications; splat is a volume rendering ap-
plication, which is used in multiresolution volume visualization through hi-
erarchical wavelet splatting; and 3D is an image based modeling application
that simplifies the task of building 3D models and scenes. The second column
gives the number of basic blocks in each code, and the next one shows the num-
ber of dynamic basic block visits. The fourth column gives the execution cycle
count for the default case where no compression/decompression is adopted. The
performance results presented in the next subsection are given as the maxi-
mum percentage increases (overheads) over the values listed in this column of
Table II. The fifth and sixth columns give the executable size (in bytes) for each
application when all basic blocks are uncompressed and all basic blocks are com-
pressed, respectively. As stated earlier, our objective is to reduce the memory
space consumption as much as possible without hurting performance signif-
icantly. The memory space consumption graphs given in the next subsection
show the percentage increase in the memory space occupied by the executable
over the numbers given in the last column of this table.

In the experimental result presented below, we evaluate three different
strategies that combine the compression and decompression techniques ex-
plained earlier (see Figure 3):

—K-edge compression and on-demand decompression (denoted on-demand).
—K-edge compression, and k-edge, pre-decompress-all decompression (denoted

pre-all).
—K-edge compression, and k-edge, pre-decompress-single decompression (de-

noted pre-single). The block to be pre-decompressed in this scheme is selected
using profile data. In more detail, we profile the application, and for each basic
block, identify the most likely basic block to which the execution will transfer
next. After that, during execution we use this information to pre-decompress
only a single basic block each time we want to perform decompression.

In addition to these three strategies, we also implemented and conducted
experiments with two additional versions, which are inspired by the approach
described in Debray and Evans [2003]. The first method, denoted as on-demand-
proc, is similar to our on-demand, except that it operates at a procedure/function
granularity, as opposed to the basic block granularity. Similarly, the second
one, named pre-single-proc, is similar to pre-single, except that it works on a
procedure/function granularity. Apart from this granularity issue, these two
additional strategies use similar reasonings as our methods, regarding the de-
cisions for compression and decompression; the only difference is that, instead
of a CFG, theirs operates on a procedure call graph [Choi et al. 1993; Hall and
Kennedy 1992; Weihl 1980] representation of the program. For example, in on-
demand-proc, when k call graph edges are visited from the current procedure,
that procedure is compressed. Note that, we did not perform experiments with

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:18 • O. Ozturk et al.

Fig. 6. Memory space overheads (%) with the base simulation parameters. The percentage in-
creases are given with respect to the last column of Table II.

another possible strategy (pre-all-proc) as such a strategy would generate the
same compression/decompression patterns as the pre-single-proc method. This
is due to the fact that, in our applications, it is easy to predict the next procedure
to be invoked by the execution thread and, in most of the cases, a procedure
is followed only by a single procedure in the whole procedure call sequence,
that is, there is a very good locality as far as procedure call sequences are
concerned.

7.2 Results

Note that, the memory space consumption graphs given in this subsection show
the percentage increase in the memory space occupied by the executable over
the memory space consumption of the executable when all basic blocks are fully
compressed.

Each bar in Figure 6 shows the maximum memory space consumption in-
crease over the course of execution for a given benchmark when k = 2 for both
compression and decompression (recall that the percentage increase is with
respect to the last column of Table II). We see from this graph that all our
three schemes are very effective in reducing the instruction memory space (as
compared to the fifth column of Table II). We also see that the average mem-
ory space overheads (across all seven applications) due to on-demand, pre-all,
and pre-single are 16.1%, 24.2%, and 20.4%, respectively. The results are bet-
ter with on-demand since it tends to keep the basic blocks in the compressed
form as much as possible (by delaying decompressions). We also observed dur-
ing our experiments that the compressed basic blocks occupy the majority of
the memory space, which indicates that all the strategies do a reasonably good
job in keeping most of the basic blocks in the compressed form. The graphs in
Figure 7 plot the memory space overhead for two of our benchmarks during the
course of execution: djpeg and cjpeg. As before, all the values are normalized
with respect to the last column of Table II. In these plots, each point on the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:19

Fig. 7. Percentage memory overheads during the course of execution for two of our applications.
Top: djpeg, and Bottom: cjpeg.

x-axis corresponds to an epoch in execution timeline, and the y-axis gives the
percentage increase in memory space consumption (at that particular point on
the x-axis), with respect to the values given in the last column of Table II. We
see from these curves that our approach saves memory during the course of
execution. Returning to Figure 6, we also observe that the on demand-proc and
pre-single-proc methods incur memory space overheads of 27.4% and 34.3%, re-
spectively. Comparing these values with those obtained through our strategies,
we can conclude that operating at a basic block granularity is very important
for maximizing memory space savings. This is because, by operating at a basic
block granularity, we can better adapt to the fine grain access patterns exhibited
by the application. In fact, during our experiments, we found that only about
37% of basic blocks of a procedure are exercised, on average, during a typical
invocation. A procedure based compression/decompression method can easily

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:20 • O. Ozturk et al.

Fig. 8. Execution cycle overheads (%) with the base simulation parameters. The percentage in-
creases in execution cycles are given with respect to the fourth column of Table II.

incur extra overheads (both memory space and performance) by compressing
(and later decompressing) unused basic blocks.

After having presented the memory space savings brought by our approach,
to show how these three strategies affect the original execution cycle counts
(i.e., execution cycles of the default case), we give in Figure 8 the percentage
execution cycle overhead (increase) caused by each strategy. As against the
memory space consumption results, one can observe from Figure 8 that pre-all
generates the minimum performance overhead. Specifically, the average perfor-
mance penalties due to on-demand, pre-all, and pre-single are 17.8%, 6.1%, and
8.5%, respectively. This is because pre-all tries to decompress the basic blocks
aggressively (using the decompression thread), and in most cases, this helps the
execution thread find the next block in the uncompressed form, thereby avoid-
ing the potential performance penalty. We also note that the results with the
on-demand strategy are not good at all. In contrast, pre-single performs much
better (in fact, it comes close to pre-all) except in two benchmarks: rasta and
g.271. It can also be seen from Figure 8 that the average performance overheads
incurred by on-demand-proc and pre-single-proc are 27.8% and 24.0%, respec-
tively. Again, this extra overhead of these two schemes (over our methods) is
due to the time spent in compressing and decompressing unused basic blocks.

7.3 Sensitivity Analysis and Contribution of Overheads

In this subsection, we focus on two important variances that could potentially
change the behavior of our approach. First, we study the impact of the value of k
on our memory space consumption and performance results. Figure 9(a) shows
the memory space overhead plots for two benchmarks (adpcm and mpeg2dec)
running under pre-single with different k values for compression (the k value
used for decompression is still fixed at 2). We note from these results that the
value of the k parameter has a profound effect on memory space consumption
behavior. In particular, increasing its value leads to an increase in the memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:21

Fig. 9. (a) Impact of parameter k in compression (pre-single). (b) Impact of parameter k in decom-
pression (pre-single).

requirements as the compression thread delays basic block compressions. How-
ever, a large k value also improves performance (see Figure 9(a)). More specifi-
cally, when we move from k = 2 to k = 4, we observe 38.7% and 62.2% reduction
in performance overhead for the benchmarks adpcm and mpeg2dec, respec-
tively.

The k parameter is also important in the decompression component of our
scheme. Figure 9(b) shows the memory space consumption and percentage per-
formance overhead for two benchmarks (adpcm and mpeg2dec) with different
k values for decompression (the k value used in compression is fixed at 2). As in
the previous graph, we report results only for pre-single. One can see from this
graph that increasing the value of the k parameter increases the memory space
consumption (as we start decompressing earlier), and improves execution cycle
count.

The second issue that we studied is the impact of compiler optimizations on
the behavior of our three strategies. To do this, we changed the optimization
flag used in compiling our applications (the default flag was O2). Our exper-
imental results revealed that while the absolute memory space/performance
values change, the overall trends are the same across different optimization

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:22 • O. Ozturk et al.

Fig. 10. Contribution of overhead cycles to the overall execution cycles.

Fig. 11. Breakdown of the memory overheads under the pre-single scheme.

levels. Therefore, we do not present detailed results with different compilation
flags.

We now present the results regarding the breakdown of our overheads. The
graph in Figure 10 presents the contribution of the overhead cycles incurred by
the different approaches to the overall execution times (the last two bars will
be explained later). Each bar in this graph represents the average value when
all ten benchmarks are taken into account. The overheads include the com-
pression and decompression activities and other overheads such as spawning

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:23

Fig. 12. Selection of k values under different memory bounds for adpcm. The value above each
plot indicates the memory bound. The x-axis represents the time divided into fifteen epochs.

decompression/compression threads. In calculating these overheads, every cy-
cle spent by our algorithms due to the compression and decompression activities
and cannot be hidden during execution are accounted for (except for profiling as
it is an off-line process). As expected, the overheads constitute a larger fraction
with the on-demand and pre-single version. It needs to be emphasized how-
ever that all these overheads are already included in the performance graph
presented earlier in Figure 8.

Figure 11 shows the breakdown of the memory overheads incurred by our
approach into four categories (under the pre-single scheme). The first category
captures the decompressed blocks. The second and third categories hold the
compression and decompression threads, respectively, and the last one repre-
sents the other bookkeeping overheads incurred by our approach. We see from
this bar chart that the majority of overheads are due to the decompressed blocks
themselves, and the extra threads we employ occupy relatively much less mem-
ory space.

7.4 Results with Memory Bounds

So far we presented an approach that tries to reduce the instruction memory
occupancy as much as possible. Recall that we mentioned earlier in Section 3
that our approach can also be used when we have a bound on memory capacity.
This can have two impacts on our schemes. First, when the memory bound is not
tight, we do not need to be aggressive in compressing basic blocks. Therefore, we
can reduce the performance overheads associated with our schemes. The second
impact is that, if the memory bound is very tight, we may need to compress
more basic blocks than normally required by our schemes (with a specific k
value). Note, however, that our schemes cannot work when the memory bound
is below the total size of the basic blocks when all of them are compressed
(if such a case occurs, one option would be to send some of the basic blocks
to another level of storage). It is to be observed that satisfying the memory
bound constraint can be achieved by playing with the value of the k parameter
(during execution based on the memory bound). For example, suppose that we
are using our k-edge algorithm (during compression) with a specific k value
of k*. Because of the memory bound, during execution, we may occasionally

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:24 • O. Ozturk et al.

Fig. 13. Performance overheads under the different memory bounds with the pre-single scheme.

need to work with a smaller k value than k*. In other words, if we have a
tight memory bound, sometimes, we may need to compress basic blocks earlier
than required by the specific k-edge algorithm used (note that this can have
performance consequences as well). Similarly, during pre-decompression, if we
are working with k = k*, occasionally, we may need to use a value smaller than
k* to reduce memory consumption further. Therefore, when we have a tight
memory bound, we choose a k value (at a given point in execution), which is as
close to the k* value as possible (but smaller than k at some points in execution
due to memory bound). On the other hand, if the memory bound is relaxed,
we can be less aggressive in compressing the blocks and more aggressive in
decompressing them.

Figure 12 shows the selected k values during execution of the adpcm bench-
mark under the different memory bounds when k is set to 2 for both compression
and decompression. The graph shows the selection of the k values for compres-
sion only. One can see from this graph that it is possible to modulate the value
of the k parameter to adapt the memory bound at hand.

Figure 13 gives the performance overheads for two of our benchmarks under
the different memory bounds with the pre-single scheme. The results show
that, while the performance degradation increases with lower memory bounds,
even with the lowest bound tested, the performance degradation incurred is
less than 17% and 20% for adpcm and mpeg2dec, respectively. And, in all these
experiments, the application completed it execution successfully.

8. DISCUSSION

The discussion in the preceding subsection indicates that the memory con-
sumption and performance behavior of our strategies are closely dependent on
the value of k. In addition, the choice between pre-all and pre-single can have
a great impact on the results. One potential disadvantage of the schemes dis-
cussed so far is that they are applied to each basic block in the code in a uniform
fashion. For example, if k = 2 in the compression phase, it is applied to each

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:25

Fig. 14. An example CFG fragment that illustrates the usefulness of using different k values for
different basic blocks.

basic block indiscriminately (except for the memory bound case considered in
Section 7.4). However, it is conceivable, at least in the theoretical sense, that the
best results could be obtained if each block uses a different k value. Consider,
for example, the CFG fragment shown in Figure 14. In this graph, once basic
block B2 has been processed, the execution thread needs to visit at least 4 basic
blocks before returning to it. Therefore, it would be beneficial to set the value
of the k parameter to 1. In comparison, block B11 can be revisited soon after
its current visit. Consequently, using a larger k value (e.g., at least 2) makes
more sense for this basic block. This discussion shows that it might be beneficial
to treat different basic blocks differently as far as setting the k parameter in
compression is concerned.

One could make a similar observation when considering decompression
phase as well. For example, again considering the CFG fragment in Figure 14,
if we know that the probability of going from B0 to B1 is much higher than that
of going from B0 to B10 or B11, we can employ the pre-single strategy. If, on the
other hand, the probabilities of going to B1, B10, and B11 are more or less equal,
then one might opt to use the pre-all scheme.

In the rest of this section, the strategy that adopts these two adaptive en-
hancements is referred to as adaptive. More specifically, the adaptive strategy
sets the value of the k parameter by analyzing the situation of each block within
the CFG; that is, it customizes the k value based on the block in question. There
are two primary ways of implementing such an adaptive scheme. The first way
is profile based. In this approach, the application code is profiled3 such that,
for each basic block, the most suitable k value is identified, depending on the
frequencies of the different branches emanating from that basic block and the
structure of the CFG. The second approach used in this study for implementing

3Such profiling involves instrumenting the application code and executing it. The instrumented
code captures which edges of the associated CFG are exercised. While profiling is time consuming
in general, note that it is basically an off-line activity.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:26 • O. Ozturk et al.

Fig. 15. Memory space (a) and execution cycle (b) overheads (%) with the two different implemen-
tations of the adaptive strategy.

the adaptive method is history based. In this approach, the application code
is instrumented in such a fashion that, from each basic block, the most recent
edge taken is recorded at runtime. In this way, a history of the most recently
taken CFG edges is maintained and this history is utilized in deciding the best
k values (for compression and decompression) to be used the next time around
the same set of basic blocks are visited. Figure 15(a) shows the memory space
consumption behavior with these two implementations of the adaptive strategy
(they are named in the graph as “profile based” and “data gathering”). We can
see from this graph that these two new schemes bring similar memory savings

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:27

to those obtained through the on-demand scheme. Also, from the normalized
cycles count results presented in Figure 15(b), we observe the performance
overhead incurred by these schemes are in general lower than the on-demand
scheme. Based on these results, we can conclude that the data gathering scheme
(which does not need profiling) strikes a good balance between performance and
memory space savings. The last two bars in the graph of Figure 10 captures the
percentage contribution of the overheads to the overall execution cycles. While
the data gathering scheme incurs the largest overheads, as mentioned earlier,
all these overheads are included in the performance overhead results.

9. CONCLUDING REMARKS

Memory is one of the most precious resources in many embedded systems.
Code compression can provide substantial savings in terms of memory space
requirements. This article has proposed a novel code compression strategy that
is guided by the control flow graph (CFG) representation of an embedded pro-
gram. In this strategy, the unit of compression/decompression is a single ba-
sic block of code. Conceptually, our approach employs three threads: one for
compressing basic blocks, one for decompressing them, and one for executing
the application code. We have presented several pre-decompression techniques
wherein a basic block is decompressed before it is actually needed, in an at-
tempt to reduce the potential performance penalty caused by decompression.
We have also demonstrated that one could explore memory space performance
tradeoffs by customizing the decompression strategy for each basic block, and
an adaptive strategy could bring additional benefits. Our experimental evalu-
ation using all the applications in the MediaBench suite has shown that the
proposed code compression strategy is very successful in practice. Our ongoing
work includes integrating this approach with existing compiler-based memory
space reduction techniques.

REFERENCES

ABALI, B., FRANKE, H., POFF, D. E., SACCONE, R. A., SCHULZ, C. O., HERGER, L. M., AND SMITH, T. B.
2001. Memory expansion technology (mxt): Software support and performance. IBM J. Resea.
Devel. 45, 2.

ARAUJO, G., CENTODUCATTE, P., CARTES, M., AND PANNAIN, R. 1998. Code compression based on
operand factorization. In Proceedings of the 31st Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO’31). 194–201.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system
modeling. IEEE Comput. 35, 2, 59–67.

AVISSAR, O., BARUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme for scratch-
pad-based embedded systems. Trans. Embed. Comput. Syst. 1, 1, 6–26.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad mem-
ory: design alternative for cache on-chip memory in embedded systems. In Proceedings of the
10th International Symposium on Hardware/Software Codesign (CODES’02). 73–78.

BENINI, L., BRUNI, D., MACII, A., AND MACII, E. 2002. Hardware-assisted data compression for
energy minimization in systems with embedded processors. In Proceedings of the Conference on
Design, Automation and Test in Europe. 449.

BENINI, L., MACII, A., MACII, E., AND PONCINO, M. 1999. Selective instruction compression for
memory energy reduction in embedded systems. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED’99). 206–211.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:28 • O. Ozturk et al.

BENVENISTE, C. D., FRANASZEK, P. A., AND ROBINSON, J. T. 2001. Cache-memory interfaces in com-
pressed memory systems. IEEE Trans. Comput. 50, 11, 1106–1116.

BESZEDES, A., FERENC, R., GYIMOTHY, T., DOLENC, A., AND KARSISTO, K. 2003. Survey of code-size
reduction methods. ACM Comput. Surv. 35, 3, 223–267.

BONNY, T. AND HENKEL, J. 2006. Using lin-kernighan algorithm for look-up table compression
to improve code density. In Proceedings of the 16th ACM Great Lakes Symposium on VLSI
(GLSVLSI’06). 259–265.

BONNY, T. AND HENKEL, J. 2007. Efficient code density through look-up table compression. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE’07). 809–814.

BRETERNITZ, M. J. AND SMITH, R. 1997. Enhanced compression techniques to simplify program
decompression and execution. In Proceedings of the International Conference on Computer Design
(ICCD’97). 170.

CHOI, J.-D., BURKE, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’93). 232–245.

COOPER, K. D. AND HARVEY, T. J. 1998. Compiler-controlled memory. In Proceedings of the 8th
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII). 2–11.

COOPER, K. D. AND MCINTOSH, N. 1999. Enhanced code compression for embedded risc proces-
sors. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 139–149.

DAS, D., KUMAR, R., AND CHAKRABARTI, P. P. 2005. Dictionary based code compression for variable
length instruction encodings. In Proceedings of the 18th International Conference on VLSI Design
Held Jointly with 4th International Conference on Embedded Systems Design (VLSID’05). 545–
550.

DEBRAY, S. AND EVANS, W. 2002. Profile-guided code compression. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation. 95–105.

DEBRAY, S., EVANS, W., AND MUTH, R. 1999. Compiler techniques for code compression. Tech. rep.
TR99-07. Friday, 23.

DEBRAY, S. AND EVANS, W. S. 2003. Cold code decompression at runtime. Comm. ACM 46, 8, 54–60.
DRINIE, M., KIROVSKI, D., AND VO, H. 2003. Code optimization for code compression. In Proceedings

of the International Symposium on Code Generation and Optimization (CGO ’03). 315–324.
ERNST, J., EVANS, W., FRASER, C. W., PROEBSTING, T. A., AND LUCCO, S. 1997. Code compression.

In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation (PLDI’97). 358–365.

FRANCESCO, P., MARCHAL, P., ATIENZA, D., BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. 2004. An
integrated hardware/software approach for run-time scratchpad management. In Proceedings of
the 41st Annual Conference on Design Automation. 238–243.

FRANZ, M. 1997. Adaptive compression of syntax trees and iterative dynamic code optimization:
Two basic technologies for mobile object systems. In Selected Presentations and Invited Papers
2nd International Workshop on Mobile Object Systems—Towards the Programmable Internet
(MOS’96). 263–276.

FRANZ, M. AND KISTLER, T. 1997. Slim binaries. Comm. ACM 40, 12, 87–94.
FRASER, C. W., MYERS, E. W., AND WENDT, A. L. 1984. Analyzing and compressing assembly code.

SIGPLAN Not. 19, 6, 117–121.
FRASER, C. W. AND PROEBSTING, T. A. 1995. Custom instruction set for code compression. Unpub-

lished manuscript. http://research.microsoft.com/∼toddpro/papers/pldiz.ps.
HALL, M. W. AND KENNEDY, K. 1992. Efficient call graph analysis. ACM Lett. Program. Lang.

Syst. 1, 3, 227–242.
HOOGERBRUGGE, J., AUGUSTEIJN, L., TRUM, J., AND WIEL, R. V. D. 1999. A code compression system

based on pipelined interpreters. Softw. Pract. Exper. 29, 11, 1005–2023.
KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001. Dy-

namic management of scratch-pad memory space. In Proceedings of the 38th Conference on Design
Automation. 690–695.

KEMP, T. M., MONTOYE, R. K., HARPER, J. D., PALMER, J. D., AND AUERBACH, D. J. 1998. A decompres-
sion core for powerpc. IBM J. Resear. Dev. 42, 6, 807–812.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

Pattern-Based Code Compression For Memory-Constrained Systems • 60:29

KIROVSKI, D., KIN, J., AND MANGIONE-SMITH, W. H. 1997. Procedure based program compression.
In Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO’ 30). 204–213.

KISSEL, K. D. 1997. Mips16: High-density mips for the embedded market. In Proceedings of Real
Time Systems.

LARIN, S. Y. AND CONTE, T. M. 1999. Compiler-driven cached code compression schemes for em-
bedded ilp processors. In Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO’32). 82–92.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons systems. In Proceedings of the International
Symposium on Microarchitecture. 330–335.

LEE, J. S., HONG, W. K., AND KIM, S. D. 1999. Design and evaluation of a selective compressed
memory system. In Proceedings of the 1999 IEEE International Conference on Computer Design
(ICCD’99). 184.

LEFURGY, C., PICCININNI, E., AND MUDGE, T. 1999. Evaluation of a high performance code com-
pression method. In Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO’32). 93–102.

LEFURGY, C., PICCININNI, E., AND MUDGE, T. 2000. Reducing code size with run-time decompression.
In Proceedings of the 6th International Symposium on High-Performance Computer Architecture.
218–227.

LEKATSAS, H., HENKEL, J., CHAKRADHAR, S. T., AND JAKKULA, V. 2004. Cypress: Compression and
encryption of data and code for embedded multimedia systems. IEEE Des. Test Comput. 21, 5,
406–415.

LEKATSAS, H., HENKEL, J., JAKKULA, V., AND CHAKRADHAR, S. T. 2005. A unified architecture for adap-
tive compression of data and code on embedded systems. In Proceedings of the 18th International
Conference on VLSI Design. 117–123.

LEKATSAS, H., HENKEL, J., AND WOLF, W. 2000a. Code compression as a variable in hard-
ware/software co-design. In Proceedings of the 8th International Workshop on Hard-
ware/Software Codesign. 120–124.

LEKATSAS, H., HENKEL, J., AND WOLF, W. 2000b. Code compression for low power embedded system
design. In Proceedings of the 37th Conference on Design Automation. 294–299.

LEMPEL, ZIV, AND OBERHUMER. Lzo algorithm.
LIAO, S. Y., DEVADAS, S., AND KEUTZER, K. 1995. Code density optimization for embedded dsp

processors using data compression techniques. In Proceedings of the 16th Conference on Advanced
Research in VLSI (ARVLSI’95). 272.

LIN, C. H., XIE, Y., AND WOLF, W. 2004. Lzw-based code compression for vliw embedded systems.
In Proceedings of the Conference on Design, Automation and Test in Europe. 30076.

LINGAPPAN, L., RAVI, S., RAGHUNATHAN, A., JHA, N. K., AND CHAKRADHAR, S. T. 2005. Heterogeneous
and multi-level compression techniques for test volume reduction in systems-on-chip. In Pro-
ceedings of the 18th International Conference on VLSI Design. 65–70.

LTD. A. R. M. 1996. An introduction to thumb. http://www.win.tue.nl/cs/ps/rikvdw/papers/ARM95
.pdf

LUCCO, S. 2000. Split-stream dictionary program compression. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation. 27–34.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA.

OZTURK, O., SAPUTRA, H., KANDEMIR, M., AND KOLCU, I. 2005. Access pattern-based code compres-
sion for memory-constrained embedded systems. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE’05). 882–887.

PANDA, P. R., NICOLAU, A., AND DUTT, N. 1998. Memory Issues in Embedded Systems-on-Chip:
Optimizations and Exploration. Kluwer Academic Publishers, Norwell, MA.

PROEBSTING, T. A. 1995. Optimizing an ansi c interpreter with superoperators. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
322–332.

ROS, M. AND SUTTON, P. 2004. Code compression based on operand-factorization for vliw
processors. In Proceedings of the Conference on Data Compression. 559.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

60:30 • O. Ozturk et al.

ROS, M. AND SUTTON, P. 2005. A post-compilation register reassignment technique for improv-
ing hamming distance code compression. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for embedded systems (CASES’05). 97–104.

SEONG, S.-W. AND MISHRA, P. 2006. A bitmask-based code compression technique for embedded
systems. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’06). 251–254.

SEONG, S.-W. AND MISHRA, P. 2007. An efficient code compression technique using application-
aware bitmask and dictionary selection methods. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE’07). 582–587.

SHOGAN, S. AND CHILDERS, B. R. 2004. Compact binaries with code compression in a software
dynamic translator. In Proceedings of the Conference Design, Automation and Test in Europe.
1052–1059.

TUNSTALL, B. 1967. Synthesis of noiseless compression codes. Ph.D. thesis, Georgia Institute of
Technology, Atlanta, GA.

UDAYAKUMARAN, S. AND BARUA, R. 2003. Compiler-decided dynamic memory allocation for scratch-
pad based embedded systems. In Proceedings of the International Conference on Compilers,
Architecture and Synthesis for embedded systems (CASES’03). 276–286.

WEIHL, W. E. 1980. Interprocedural data flow analysis in the presence of pointers, procedure
variables, and label variables. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’80). 83–94.

WOLFE, A. AND CHANIN, A. 1992. Executing compressed programs on an embedded risc archi-
tecture. In Proceedings of the 25th International Symposium on Microarchitecture (MICRO 25).
81–91.

XIE, Y., WOLF, W., AND LEKATSAS, H. 2003. Profile-driven selective code compression. In Proceedings
of the Conference on Design, Automation and Test in Europe. 10462.

YANG, J., ZHANG, Y., AND GUPTA, R. 2000. Frequent value compression in data caches. In
Proceedings of the 33rd ACM/IEEE International Symposium on Microarchitecture. 258–265.

Received March 2007; revised August 2007, March 2008; accepted March 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 60, Pub. date: Sept. 2008.

