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Abstract: By the Pauli exclusion principle, no quantum state can be occupied by more
than one electron. One can state this as a constraint on the one electron density matrix
that bounds its eigenvalues by 1. Shortly after its discovery, the Pauli principle was
replaced by anti-symmetry of the multi-electron wave function. In this paper we solve a
longstanding problem about the impact of this replacement on the one electron density
matrix, that goes far beyond the original Pauli principle. Our approach uses Berenstein
and Sjamaar’s theorem on the restriction of an adjoint orbit onto a subgroup, and allows
us to treat any type of permutational symmetry.
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1. Introduction

The Pauli exclusion principle, discovered in 1925, claims that no quantum state can
be occupied by more than one electron. In terms of the electron density matrix1 ρ

1 There is no agreement on a proper normalization of the one-electron matrix. To avoid confusion we call
it electron density matrix for Dirac’s normalization to the number of particles Tr ρ = N , and reserve the term
reduced state for the probability normalization Tr ρ = 1.

http://dx.doi.org/10.1007/s00220-008-0552-z
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this amounts to the inequality 〈ψ |ρ|ψ〉 ≤ 1, that bounds its eigenvalues by one. The
following year Heisenberg and Dirac replaced the Pauli principle by skew symmetry of
a multi-electron wave function [11, Ch. 4].

The subject of this study is the impact of this replacement on the electron density
matrix. The latter determines the light scattering and therefore quite literally represents
a visible state of the electron system. The impact goes far beyond the original Pauli
principle. As an example, consider a three electron system ∧3H6 with one-electron
space H6 of dimension 6. Then the spectrum λ of the electron density matrix, arranged
in non-increasing order, is bounded by the following (in)equalities discovered by Borland
and Dennis [3]:

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1, λ4 ≤ λ5 + λ6. (1)

The authors established the sufficiency of these constraints and refer for a complete
proof to M.B. Ruskai and R.L. Kingsley.2 It worth reading their comment:

We have no apology for consideration of such a special case. The general
N-representability problem is so difficult and yet so fundamental for many branches
of science that each concrete result is useful in shedding light on the nature of
general solution.

In spite of some bogus claims [29], refuted in [32], this result had stood for more than
three decades as the only known solution of the N -representability problem beyond two
electrons ∧2Hr and two holes ∧r−2Hr . For the latter systems the problem is easy and
the constraints amount to double degeneracy of the spectrum, starting from the head
λ2i−1 = λ2i for two electrons and from the tail λr−2i = λr−2i−1 for two holes [5],
where we set λi = 0 for i > r , and λi = 1 for i < 1.

Here we solve this longstanding problem. The content of the paper is as follows.
In Sect. 2 we recast the Berenstein-Sjamaar theorem [1, Thm 3.2.1] into a usable

form (Theorem 1). This provides a theoretical basis for our study.
We start Sect. 3 by a variation of the above problem, called ν-representability,

that takes into account both spin and orbital occupation numbers. Mathematically this
amounts to replacing the exterior power ∧N H by a representation Hν defined by a Young
diagram ν of order N . Theorem 2 gives a formal solution of the ν-representability pro-
blem. We derive from it the majorization inequality λ � ν, that plays the rôle of the Pauli
principle. This inequality is necessary and sufficient for λ to be occupation numbers of
an unspecified mixed state (Theorem 3). Theorem 4 deals with a class of systems where
the majorization inequality alone provides a criterion for pure ν-representability. This
includes the so-called closed shell, meaning a system of electrons of total spin zero.
The corresponding Young diagram ν consists of two columns of equal length. For this
system all constraints on the occupation numbers are given by the Pauli type inequality
λ ≤ 2. Next in Theorem 5 we calculate the topological coefficients cvw(a) that governed
the constraints on the occupation numbers in Theorem 2. This gives it the full strength
we need in the next section.

Section 4 starts with analysis of pure ν-representability for a toy example of two-row
diagrams, that allows us to illustrate the basic technique (Theorem 6). These are excep-
tional systems where the constraints on the occupation numbers are given by a finite set

2 Recently M.B. Ruskai published the proof [33] derived from known constraints on the spectra of Hermitian
matrices A, B, and C = A + B. Conceptually the N -representability problem is close to the Hermitian
spectral problem [15,16], but a direct connection between them, beyond sporadic coincidences, is unlikely.
R.L. Kingsley’s independent solution apparently has never been published.
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of inequalities independent of the rank. Then we return to the original N -representability
problem, that appears to be the most difficult one. For example, in contrast to Theorem 6,
no finite system of inequalities can describe N -representability for a fixed N > 1 and
arbitrary big rank (Corollary 3 to Proposition 5). This forces us to restrict either the
rank, as we do in the last section, or the type of the inequalities. Here we focus on the
inequalities with 0/1 coefficients. It turns out that under some natural conditions such
an inequality should be either of the form

λi1 + λi2 + · · · + λiN−1 ≤ N − 2, (2)

with
∑

k(ik − k) = r − N + 1, or of the form

λi1 + λi2 + · · · + λi p ≤ N − 1, (3)

with p ≥ N and
∑

k(ik − k) = ( p
N

)
. We call them Grassmann inequalities of the first

and second kind respectively. A surprising result is that these inequalities actually hold
true with very few exceptions (Theorems 7 and 8).

In the simplest case N = 3 we get from (2) inequalities

λk+1 + λr−k ≤ 1, 0 ≤ k < (r − 1)/2

that hold for any even rank r ≥ 6. This constraint prohibits more than one electron to
occupy two symmetric orbitals and supersedes the original Pauli principle. For r = 6,
due to the normalization

∑
i λi = 3, the inequalities degenerate into Borland-Dennis

equalities (1). For odd rank the first inequality k = 0 should be either skipped or replaced
by the weaker one λ1 + λr ≤ 1 + 2

r−1 .
We treat Grassmann inequalities of the second kind (3) only for lowest levels

p = N , N + 1. For N = 3 and p = N + 1 they amount to four inequalities:

λ2 + λ3 + λ4 + λ5 ≤ 2, λ1 + λ3 + λ4 + λ6 ≤ 2,
λ1 + λ2 + λ5 + λ6 ≤ 2, λ1 + λ2 + λ4 + λ7 ≤ 2, (4)

that hold for arbitrary rank r and give all the constraints for r ≤ 7. For r = 6 they turn
into Borland-Dennis conditions (1).

In Sect. 5 we briefly discuss a connection of the ν-representability with representation
theory, that provides information complementary to Theorem 2. A combination of the
two approaches leads to an algorithm for solution of the problem for any fixed rank.
The algorithm, along with other tools, has been used in calculations reported in the last
Sect. 6. Eventually this led to a complete solution of the N -representability problem for
rank r ≤ 10. However, we provide a rigorous justification only for r ≤ 8. We also give
an example of constraints on the spin and orbital occupation numbers for a system of
three electrons of total spin 1/2.

The first sections may be mathematically more demanding than the rest of the paper.
We recommend books [7–9] as general references on Schubert calculus, Lie algebra,
and representation theory.

The theoretical results of the paper belong to the second author. They were often
inspired by calculations, that at this stage couldn’t be accomplished by a computer
without intelligent human assistance and insight.
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2. A Review of the Berenstein-Sjamaar Paper

Let M be a compact connected Lie group with the Lie algebra m and its dual coadjoint
representation m∗. For coadjoint orbit O ⊂ m∗ of group M and a Cartan subalgebra
t ⊂ m consider the composition � : O ↪→ m∗ → t∗ known as the moment map. By
Kostant’s theorem its image is a convex polytope spanned by the W -orbit of some weight
µ ∈ t∗ which can be taken from a fixed positive Weyl chamber t∗+. Here W = N (t)/Z(t)
is the Weyl group of M . This gives a parameterization of the coadjoint orbits Oµ by the
dominant weights µ ∈ t∗+.

Example 1. In this paper we will mostly deal with the unitary group U(n) whose Lie
algebra u(n) consists of all Hermitian3 n × n matrices. Let us identify u(n) with its dual
via the invariant trace form (A, B) = Tr(AB). Then the (co)adjoint orbit Oµ consists
of all Hermitian matrices A of spectrum µ : µ1 ≥ µ2 ≥ · · · ≥ µn and the moment
map � : Oµ → t is given by orthogonal projection into the Cartan subalgebra of
diagonal matrices t. Kostant’s theorem in this case amounts to Horn’s observation that
the diagonal entries of Hermitian matrices of spectrum µ form a convex polytope with
vertices wµ obtained from µ by permutations of the coordinates µi . This is equivalent
to the majorization inequalities

d1 ≤ µ1,

d1 + d2 ≤ µ1 + µ2,

d1 + d2 + d3 ≤ µ1 + µ2 + µ3, (5)

· · · · · · · · ·
d1 + d2 + · · · + dn = µ1 + µ2 + · · · + µn

for the diagonal entries d : d1 ≥ d2 ≥ · · · ≥ dn of matrix A. We will use for them a
shortcut d � µ.

Consider now an immersion f : L → M of another compact Lie group L and the
induced morphisms f∗ : l ↪→ m and f ∗ : m∗ → l∗ of the Lie algebras and their
duals. In the paper [1] Berenstein and Sjamaar found a decomposition of the projection
f ∗(Oµ) ⊂ l∗ of an M-orbit Oµ ⊂ m∗ into L-orbits Oλ ⊂ f ∗(Oµ). Here we paraphrase
their main result in a form suitable for the intended applications.

Fix Cartan subalgebras tL ↪→ tM , and for every test spectrum a ∈ tL consider the
inclusion of the adjoint orbits of groups L and M ,

ϕa : Oa ↪→ O f∗(a), (6)

through a and f∗(a) respectively. Topologically the orbits are (generalized) flag varieties.
They carry a hidden complex structure coming from the representation

Oa = L/ZL(a) = LC/Pa, (7)

where Pa ⊂ LC is a parabolic subgroup of the complexified group LC whose Lie algebra
pa is spanned by tL and the root vectors Xα such that 〈α, a〉 ≥ 0. One can say this in
another way:

Pa = {g ∈ LC | lim
t→−∞ etage−ta exists},

which makes it clear that f : Pa → Pf∗(a).

3 Hereafter we treat u(n) as the algebra of Hermitian, rather than skew-Hermitian, operators at the expense
of a modified Lie bracket [X, Y ] = i(XY − Y X).



The Pauli Principle Revisited 291

We will use the parabolic subgroups to construct canonical bases in cohomologies
H∗(Oa) and H∗(O f∗(a)). Let TL ⊂ B ⊂ Pa be a Borel subgroup containing a maximal
torus TL with Lie algebra tL . The flag variety Oa = LC/Pa splits into a disjoint union
of Schubert cells BvPa/Pa , parameterized by the left cosets v ∈ WL/WZL (a) or in
practice by representatives of minimal length 	 = 	(v) in these cosets. We actually
prefer to deal with shifted cells v−1 BvPa/Pa = BvPa/Pa depending on the Borel
subgroups Bv ⊃ TL modulo conjugation by the Weyl group of the centralizer W (ZL (a)).
The closure of BvPa/Pa is known as the Schubert variety, and its cohomology class
σv ∈ H2	(v)(Oa) is called the Schubert cocycle. These cocycles form the canonical
basis of the cohomology ring H∗(Oa).

Inclusion (6) induces a morphism of the cohomologies

ϕ∗
a : H∗(O f∗(a)) → H∗(Oa), (8)

given in the canonical bases by the coefficients cvw(a) of the decomposition

ϕ∗
a : σw →

∑

v

cvw(a)σv. (9)

They play a crucial rôle in the next theorem. We extend them by zeros if either v ∈ WL or
w ∈ WM is not the minimal representative of a coset in WL/WZL (a) or WM/WZ M ( f∗(a))
respectively.

Theorem 1. In the above notations the inclusion Oλ ⊂ f ∗(Oµ) is equivalent to the
following system of linear inequalities

〈λ, va〉 ≤ 〈µ,w f∗(a)〉 (a, v, w)

for all a ∈ tL , v ∈ WL , w ∈ WM such that cvw(a) �= 0.

Proof. This is not the way Berenstein and Sjamaar stated their result. Instead, for some
generic a0 ∈ tL they fix positive Weyl chambers t+

L � a0 and t+
M � f∗(a0) and use them

to define Schubert cocycles σv ∈ H∗(Oa) and σw ∈ H∗(O f∗(a)) for all other a ∈ t+
L .

Hence their Schubert cocycles σw are canonical in the above sense iff f∗(a) and f∗(a0)

are in the same Weyl chamber. The set of such a ∈ t+
L form a convex polyhedral cone

called the principle cubicle. It is determined by a0, and different choices of a0 produce
a polyhedral decomposition of the positive Weyl chamber t+

L into cubicles.
For every cubicle Berenstein and Sjamaar gave a system of linear constraints on the

dominant weights λ,µ, so that all together they provide a criterion for the inclusion
Oλ ⊂ f ∗(Oµ). For the principal cubicle the constraints are simplest and are as follows
[1, Thm 3.2.1]:

v−1λ ∈ f ∗(w−1µ− C), for cvw(a0) �= 0, (10)

where C is a cone spanned by the positive roots in t∗M . Note that f ∗(C) is the cone dual to
the principal cubicle and therefore the above condition can be recast into the inequalities

〈v−1λ, a〉 ≤ 〈 f ∗(w−1µ), a〉 ⇐⇒ 〈λ, va〉 ≤ 〈µ,w f∗(a)〉, (11)

that hold for all a from the principle cubicle provided that cvw(a0) �= 0. The coefficients
cvw(a) are actually constant inside the cubicle, and therefore the last condition can be
changed to cvw(a) �= 0. Thus we arrive at the inequalities (a, v, w) for the principle
cubicle. Other inequalities (a, v, w) follow by choosing another cubicle as the principle
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one. They are equivalent to the remaining more complicated inequalities in [1, Thm
3.2.1], but look different since Berenstein and Sjamaar use other non-canonical Schubert
cocycles. ��
Example 2. Quantum marginal problem [17]. Let’s illustrate the above theorem with
immersion of unitary groups

f : U(HA)× U(HB) → U(HAB), gA × gB → gA ⊗ gB,

where HAB = HA ⊗HB . As we have seen in Example 1 the coadjoint orbit of U(HAB)

consists of the isospectral Hermitian operators ρAB : HAB understood here as mixed
states. The projection

f ∗(ρAB) = ρA ⊗ 1 + 1 ⊗ ρB

amounts to reduced operators ρA : HA and ρB : HB implicitly defined by the equations

TrHA(ρA X A) = TrHAB (ρAB X A), TrHB (ρA X B) = TrHAB (ρAB X B) (12)

for all Hermitian operators X A : HA and X B : HB . This means that ρA, ρB are just
the visible states of the subsystems HA, HB . In this setting Theorem 1 tells us that
all constraints on the decreasing spectra λAB = Spec(ρAB), λA = Spec(ρA), and
λB = Spec(ρB) are given by the inequalities

∑

i

aiλ
A
u(i) +

∑

j

b jλ
B
v( j) ≤

∑

k

(a + b)↓k λ
AB
w(k), (13)

for all test spectra a : a1 ≥ a2 ≥ · · · ≥ an , b : b1 ≥ b2 ≥ · · · ≥ bm from the Cartan
subalgebras tA, tB and permutations u, v, w such that cuv

w (a, b) �= 0. Here (a + b)↓
denotes the sequence ai + b j arranged in decreasing order. The order determines the
canonical Weyl chamber containing f∗(a, b). The pairs (a, b) with fixed order of terms
ai + b j in (a + b)↓ form a cubicle.

The adjoint orbit Oa ⊂ u(HA) is a classical flag variety understood as the set of
Hermitian operators X A : HA of spectrum a = Spec X A. Denote it by Fa(HA). Then
the morphism (6) is given by the equation

ϕab : Fa(HA)× Fb(HB) → Fa+b(HAB), (X A, X B) → X A ⊗ 1 + 1 ⊗ X B, (14)

and the coefficients cuv
w (a, b) are determined by the induced morphism of the cohomo-

logies

ϕ∗
ab : H∗(Fa+b(HAB)) → H∗(Fa(HA))⊗ H∗(Fb(HB))

σw →
∑

u,v

cuv
w (a, b) · σu ⊗ σv. (15)

One can find the details of their calculation in [17]. Note that cuv
w (a, b) = 1 for identical

permutations u, v, w. Hence we get for free the following basic inequality:
∑

i

aiλ
A
i +

∑

j

b jλ
B
j ≤

∑

k

(a + b)↓k λ
AB
k , (16)

valid for all test spectra a, b.
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3. One Point ν-Representability

In this section we apply the above results to the morphism f : U(H) → U(Hν) given
by an irreducible representation Hν of group U(H) with a Young diagram ν of order
N = |ν|. For a column diagram we return to the N -fermion system ∧N H, while a
row diagram corresponds to the N -boson space SN H. However, the main reason to
consider the general para-statistical representations Hν is not a uniform treatment of
fermions and bosons, but taking into account spin. Observe that the state space of a single
particle with spin splits into the tensor product H = Hr ⊗ Hs of the orbital Hr and the
spin Hs degrees of freedom. The total N -fermion space decomposes into spin-orbital
components as follows [35]:

∧N (Hr ⊗ Hs) =
∑

|ν|=N

Hν
r ⊗ Hνt

s , (17)

where νt stands for the transpose diagram. In many physical systems, like electrons
in an atom or a molecule, the total spin is a well defined quantity that singles out a
specific component of this decomposition. Theorem 1 applied to the component gives
all constraints on the possible spin and orbital occupation numbers, see the details in
n◦ 3.1.1 below.

3.1. Physical interpretation. Let’s now relate Theorem 1 to the N -representability pro-
blem and its ramifications indicated above. We’ll refer to the latter as theν-representability
problem.

It is instructive to think about X ∈ u(H) as an observable and treat ρ ∈ u(H)∗ as a
mixed state with the duality pairing given by the expectation value of X in state ρ,

〈X, ρ〉 = TrH Xρ (18)

(forget for a while about the positivity ρ ≥ 0 and normalization Tr ρ = 1).
We want to elucidate the physical meaning of the projection f ∗ : u(Hν)∗ → u(H)∗

uniquely determined by the equation

〈 f∗(X), ρν〉 = 〈X, f ∗(ρν)〉, X ∈ u(H), ρν ∈ u(Hν)∗.

In the above setting (18) it reads as follows:

TrHν (Xρν) = TrH(X f ∗(ρν)), ∀X ∈ u(H). (19)

A good point to start with is Schur’s duality between irreducible representations of the
unitary U(H) and the symmetric SN groups,

H⊗N =
∑

|ν|=N

Hν ⊗ Sν . (20)

The latter group acts on H⊗N by permutations of the tensor factors, and its irreducible
representations Sν show up in the right-hand side. One can treat H⊗N as a state space
of N -particles, and for identical particles all physical quantities should commute with
SN . Looking into the right-hand side of (20) we see that such quantities are linear
combinations of operators ρν ⊗ 1 acting in the component Hν ⊗ Sν and equal to zero
elsewhere. In the case of a genuine mixed state ρν , i.e. a nonnegative operator of trace
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1, one can treat (ρν ⊗ 1)/ dim Sν as a mixed state of N identical particles obeying some
para-statistics of type ν. Let ρi : H be its i th reduced state. Since ρν ⊗ 1 commutes with
SN , the reduced state ρ = ρi is actually independent of i . However, occasionally we
retain the index i just to indicate the tensor component where it operates.

Proposition 1. In the above notations

f ∗(ρν) = Nρ. (21)

Proof. We have to check that (21) fits Eq. (19):

TrHν (Xρν) = TrHν⊗Sν X
ρν ⊗ 1

dim Sν = TrH⊗N X
ρν ⊗ 1

dim Sν =
∑

i

TrH Xiρi = N TrH Xρ,

where Xi is a copy of X acting in the i th component of H⊗N , so that

TrH⊗N Xi
ρν ⊗ 1

dim Sν = TrH Xiρi

by definition (12) of the reduced state. ��
A general ν-representability problem concerns the relationship between the spectrum

µof a mixed stateρν and spectrumλof its particle density matrix Nρ. The latter spectrum
is known as the occupation numbers4 of the system in state ρν . Formally the constraints
on the spectra are given by Theorem 1.

Remark 1. The above construction allows for a given mixed state ρν to define the higher
order reduced matrices. Their characterization would have almost unlimited applica-
tions. Indeed, behavior of most systems of physical interest is governed by two-particle
interaction. As a result, the energy of a state becomes a linear functional of its two-point
reduced matrix. To minimize the energy and to find the correlation matrix of the ground
state one has to elucidate all the constraints that a two-point reduced matrix should
satisfy. This problem and the whole program are known as the Coulson challenge5 [6].
In the form just described it may be unfeasible even for quantum computers [23]. For
other approaches and the current state of the art see [26]. This problem is far beyond
the scope of our paper. Nevertheless, the characterization of one point reduced matrices
given below imposes also new constraints on the higher reduced states.

3.1.1. Constraints on spin and orbital occupation numbers Let’s return to a system of
N fermions, this time of smallest possible spin s = 1/2, dim Hs = 2. In this case
spin-orbital decomposition (17) involves only terms

Hν
r ⊗ Hνt

s (22)

with at most a two-column diagram ν. The sizes of the columns α ≥ β are determined
by equations

α + β = N , α − β = 2J, (23)

4 More precisely, the occupation numbers of natural orbitals. The latter are defined as eigenvectors of the
particle density matrix.

5 Also known as two-particle N -representability or, following D. Herschbach, a holy grail of theoretical
chemistry.
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where J is the total spin of the system, so that Hνt

s = HJ is just the spin J representation
of the group SU(Hs) = SU(2).

Consider now a pure N -fermion state of total spin J

ψ ∈ Hν
r ⊗ HJ ,

where the diagram ν is determined by Eqs. (23). Let ρν and ρ J be its reduced states in
the orbital and spin components respectively. The basic fact is that the reduced states are
isospectral Spec ρν = Spec ρ J . Hence Spec ρν can be identified with the spin occupation
numbers. On the other hand Theorem 1, in view of Proposition 1, relates Spec ρν with
the orbital occupation numbers given by the spectrum of the particle density matrix
Nρ. In this way one can produce all constraints on allowed spin and orbital occupation
numbers, provided that a solution of the ν-representability problem is known for two-
column diagrams. We address this issue in Sects. 3.2 and 3.3. See also Corollary 1 in
Sect. 3.2.

3.2. Formal solution of the ν-representability problem. Henceforth we treat the lower
index r as the rank of the Hilbert space Hr . Recall that the character of the representation
Hν

r , i.e. the trace of a diagonal operator

z = diag(z1, z2, . . . , zr ) ∈ U(Hr ), (24)

in some orthonormal basis e of Hr , is given by Schur’s function Sν(z1, z2, . . . , zr ). It
has a purely combinatorial description in terms of the so called semistandard tableaux
T of shape ν. The latter are obtained from the diagram ν by filling it with numbers
1, 2, . . . , r strictly increasing in columns and weakly in rows. Then the Schur function
can be written as a sum of monomials zT = ∏

i∈T zi ,

Sν(z) =
∑

T

zT ,

corresponding to all semistandard tableaux T of shape ν. The monomials are actually
the weights of representation Hν

r , meaning that

z · eT = zT eT (25)

for some basis eT of Hν
r parameterized by the semistandard tableaux. Denote by t ⊂

u(Hr ) and tν ⊂ u(Hν
r ) the Cartan subalgebras of real diagonal operators in the bases e

and eT respectively, so that the differential of the above group action z : eT → zT eT
gives the morphism

f∗ : t → tν, f∗(a) : eT → aT eT , (26)

where aT := ∑
i∈T ai . As in Example 2 we treat the orbits Oa and O f∗(a) as flag

varieties Fa(Hr ) and Faν (Hν
r ) consisting of Hermitian operators of spectra a : a1 ≥

a2 ≥ · · · ≥ ar and aν respectively. Here aν consists of the quantities aT arranged in the
non-increasing order

aν := {aT | T = semistandard tableau of shape ν}↓. (27)

Finally, we need the morphism

ϕa : Fa(Hr ) → Faν (Hν
r ), X → f∗(X), (28)
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together with its cohomological version

ϕ∗
a : H∗(Faν (Hν

r )) → H∗(Fa(Hr )), (29)

given in the canonical bases by coefficients cvw(a):

ϕ∗
a : σw →

∑

v

cvw(a)σv. (30)

Theorem 2. In the above notations all constraints on the occupation numbers λ of the
system Hν

r in a state ρν of spectrum µ are given by the inequalities

∑

i

aiλv(i) ≤
∑

k

aνkµw(k) (31)

for all test spectra a and permutations v,w such that cvw(a) �= 0.

Proof. In view of Proposition 1, this is what Theorem 1 tells. One has to remember that
the left action of a permutation on “places” is inverse to its right action on indices. That
is why the permutations v and w, acting on a and f∗(a) = aν in Theorem 1, move to
the indices of λ and µ in the inequality (31). ��

The coefficient cvw(a) depends only on the order in which quantities aT appear in the
spectrum aν . The order changes when the test spectrum a crosses a hyperplane

HT |T ′ :
∑

i∈T

ai =
∑

j∈T ′
a j .

The hyperplanes cut the set of all test spectra into a finite number of polyhedral cones
called cubicles. For each cubicle one has to check the inequality (31) only for its extremal
edges. As a result, the ν-representability amounts to a finite system of linear inequalities.

Remark 2. Let’s emphasize once again the difference between the Berenstein-Sjamaar
Theorem [1, Thm 3.2.1] and its version used in this paper. In the settings of Theorem 2
it manifests itself in the way the quantities aT are ordered in the spectrum aν , or which
parabolic subgroup is used for definition of Schubert cocycles. Berenstein and Sjamaar
choose a specific order of tableaux T , while we rely on the natural order of the quantities
aT = ∑

i∈T ai . The latter choice allows to treat the inequalities uniformly, and to avoid a
rather cumbersome transformation every time the test spectrum passes from one cubicle
to another.

Recall from Sect. 3.1.1 that the theorem also describes a relationship between the
spin and orbital occupation numbers. We keep for them the above notations µ and λ
respectively.

Corollary 1. All constraints on spin and orbital occupation numbers of N-electron
system in a pure state of total spin J are given by the inequalities (31), applied to
two column diagram ν determined by Eqs. (23), and bounded to mixed states ρν of rank
not exceeding dimensionality 2J + 1 of the spin space.

We postpone the calculation of the coefficients cvw(a) to Sect. 3.3 and focus instead
on some general results that can be deduced from the theorem as it stands.
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3.2.1. Basic inequalities Being a ring homomorphism,ϕ∗
a maps unit into unitϕ∗

a (1) = 1,
that is cvw(a) = 1 for identical permutations v,w. Hence the following basic inequality

∑

i

aiλi ≤
∑

k

aνkµk

holds for all test spectra a. Let’s look at it more closely for a pure state ρν = |ψ〉〈ψ | in
which case the right-hand side is maximal and the inequality takes the form

∑

i

aiλi ≤ aν1 = max
T

∑

i∈T

ai =
∑

i

aiνi , (32)

where ν1 ≥ ν2 ≥ · · · ≥ 0 are rows of ν. The maximum in the right-hand side is attained
for the tableau T of shape ν whose i-row is filled by i .

The normalization
∑

i λi = N = ∑
j ν j allows to shift the test spectra into the posi-

tive domain a1 ≥ a2 ≥ · · · ≥ 0, so that they become nonnegative linear combinations
of the fundamental weights

ωk = (1, 1, . . . , 1
︸ ︷︷ ︸

k

, 0, 0, . . . , 0). (33)

Hence it is enough to check (32) for a = ωk , that gives the majorization inequality
λ � ν, cf. Example 1. Thus we arrive at the first claim of the following result that
characterizes occupation numbers of system Hν in an unspecified mixed state.

Theorem 3. The occupation numbers of the system Hν in an arbitrary mixed state satisfy
the majorization inequality

λ � ν, (34)

and any such λ can be realized as the occupation numbers of some mixed state.

Proof. The second claim follows from two observations:

1. The occupation numbers of a coherent state ψ ∈ Hν , that is a highest vector of the
representation, are equal to ν.

2. The set of allowed occupation numbers, written in any order, form a convex set.

Indeed, the polytope given by the majorization inequality (34) is just a convex hull of
vectors obtained from ν by permutations of coordinates, cf. Example 1. Hence by 1 and
2 it consists of legitimate occupation numbers.

Proof of 1. Consider a decomposition of the complexified Lie algebra

u(H)⊗ C = gl(H) = n− + h + n+,

into a diagonal Cartan subalgebra h = t ⊗ C accompanied with lower- and upper-
triangular nilpotent subalgebras n∓. By definition n+ annihilates the highest vector
ψ ∈ Hν of weight ν. Hence 〈ψ |X±|ψ〉 = 〈X∓ψ |ψ〉 = 0 for all X± ∈ n±. Then
by Eq. (19)

〈ψ |X±|ψ〉 = TrHν (X±|ψ〉〈ψ |) = TrH(X± f ∗(|ψ〉〈ψ |)) = 0, ∀X± ∈ n±.
This means that ρ = f ∗(|ψ〉〈ψ |) is a diagonal matrix. On the other hand tψ = 〈t, ν〉ψ
for t ∈ t, hence as above

〈t, ν〉 = 〈ψ |t |ψ〉 = TrHν (t |ψ〉〈ψ |) = TrH(t f ∗(|ψ〉〈ψ |)) = TrH(tρ) = 〈t, ρ〉,
that is Spec ρ = ν.
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Proof of 2. Let ρν1 , ρν2 be mixed states, with the particle densities ρ1, ρ2, and the occupa-
tion numbers λ1, λ2. We apply to ρ1, ρν1 a unitary rotation ρ1 → Uρ1U∗, ρν1 → Uρν1 U∗
that transforms orthonormal eigenvectors of ρ1 into that of ρ2 in a prescribed order. The
resulting new operators ρ1, ρ2 commute and have the original spectra λ1, λ2. Then the
particle density matrix ρ = p1ρ1 + p2ρ2 of the convex combination ρν = p1ρ

ν
1 + p2ρ

ν
2

has spectrum λ = p1λ1 + p2λ2. ��
For a column diagram ν the majorization inequality λ � ν amounts to the Pauli

exclusion principle λi ≤ 1. In general, we refer to it as the Pauli constraint. Note that
the above proof shows that equality in (34) is attained for coherent states only. The
second part of Theorem 3 extends Coleman’s result [5] for ∧N H.

Recall, that the theorem solves the ν-representability problem for unspecified mixed
states. We will see later that for pure states the answer in general is much more com-
plicated. Nevertheless, there are surprisingly many systems for which the majorization
inequality alone is sufficient for pure ν-representability. We address them in the next
item.

3.2.2. Pure moment polytope One of the most striking features of Theorem 2 is the
linearity of the constraints (31). As a result, the allowed spectra (λ, µ) form a convex
polytope, called (noncommutative) moment polytope. The convexity still holds for any
fixed µ = Spec ρν , and in particular for the occupation numbers λ of all pure states.
We refer to the latter case as the pure moment polytope. It sits inside the positive Weyl
chamber, and its multiple kaleidoscopic reflections in the walls of the chamber generally
form a nonconvex rosette, consisting of all legitimate occupation numbers written in
an arbitrary order. It can be convex only if all constraints on the occupation numbers
are given by the majorization inequality λ � ν alone. Here we describe a class of
representations Hν with this property.

This happens, for example, for a system of N ≥ 2 bosons. In this case ν is a row
diagram and the majorization inequality imposes no constraints on λ. By Theorem 3 this
means that every nonnegative spectrum λ of trace N represents occupation numbers of
some mixed state. However for bosons one can easily find a pure state that does the job:

ψ =
∑

i

√
λi e

⊗N
i ∈ SN H,

where ei is an orthonormal basis of H. This makes the bosonic N -representability pro-
blem trivial.

A more interesting physical example constitutes the so-called closed shell, meaning
a system of electrons of total spin zero. The corresponding diagram ν consists of two
columns of equal length. We will see shortly that in this case the Pauli constraint λ ≤ 2
shapes the pure moment polytope.

Observe that it is enough to construct pure states whose occupation numbers are
generators of the cone cut out of the Weyl chamber by the majorization inequality
λ � ν. Then the convexity does the rest.

Recall that in the proof of Theorem 3 we have already identified ν with the occu-
pation numbers of a coherent state. Due to the majorization inequality λ � ν, the
entropy of its reduced state is minimal possible. For that reason coherent states are
generally considered closest to classical ones [30]. At the other extreme one finds
the so-called completely entangled states ψ ∈ Hν whose particle density matrix ρ =
f ∗(|ψ〉〈ψ |) is scalar and the reduced entropy is maximal [19]. By definition (19) we have



The Pauli Principle Revisited 299

TrH(Xρ) = TrHν (X |ψ〉〈ψ |) = 〈ψ |X |ψ〉, so that the completely entangled states can
be described by the equation

〈ψ |X |ψ〉 = 0, ∀ X ∈ su(H). (35)

Let’s call a system Hν
r exceptional if the SU(Hr )-representation Hν

r is equivalent to one
of the following: Hr , its dual H∗

r , and, for odd rank r , ∧2Hr , ∧2H∗
r . The Young diagram

ν of an exceptional system can be obtained from an r × m rectangle by adding an extra
column of length 1, r − 1, 2, r − 2 respectively.

One readily realizes that the exceptional systems contain no completely entangled
states, say because the reduced matrix of ψ ∈ ∧2Hr has an even rank.

Proposition 2. In every non-exceptional system Hν there exists a completely entangled
state.

Proof. The result is actually well known, but in a different context. The entanglement
equation (35) is nothing but the stationarity condition for the length of vector 〈ψ |ψ〉
with respect to the action of the complexified group SL(H). It is known [34] that every
stationary point is actually a minimum, and an SL(H)-orbit contains a minimal vector
if and only if the orbit is closed. As a result, we end up with the problem of existence of
a nonzero closed orbit, or, what is the same, the existence of a nonconstant polynomial
invariant. The proposition just reproduces a known answer to the latter question [34].
��

By admitting other simple Lie groups we find only two more exceptional repre-
sentations: the standard representation of the symplectic group Sp(n) and a halfspinor
representation of Spin(10).

Now we can solve the pure ν-representability problem for a wide class of systems,
including the above mentioned closed shell.

Theorem 4. Suppose that all columns of Young diagram ν are multiple, meaning that
every number in the sequence of column lengths νt

1 ≥ νt
2 ≥ νt

3 ≥ · · · appears at least
twice. Then all constraints on the occupation numbers of the system Hν in a pure state
are given by the majorization inequality λ � ν alone.

Proof. We’ll proceed by induction on the height of the diagram ν. The triviality of the
bosonic N -representability problem provides a starting point for the induction.

Let now λ be a vertex of the polytope cut out of the positive Weyl chamber by the
majorization inequality λ � ν. Note that the latter includes the equation Tr λ = Tr ν.
Then the following alternative holds:

1. Either all nonzero components of λ are equal,
2. Or one can split λ and ν into two parts λ = λ′|λ′′, ν = ν′|ν′′ containing the first

p components and the remaining ones, both satisfying the inequalities λ′ � ν′,
λ′′ � ν′′.

Indeed, the second claim states that the pth majorization inequality in (5) turns into an
equation. On the other hand, if all the majorization inequalities are strict, and λ contains
different nonzero entries, then one can linearly vary these entries preserving the non-
increasing order of λ and the majorization λ � ν. As result we get a line segment in the
polytope containing λ, which is impossible for a vertex.

We have to prove that every vertex λ represents occupation numbers of some pure
state. Consider the above two cases separately.
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Case 1. Let λ contain r equal nonzero entries and Hr ⊂ H be a subspace of dimension
r . The conditions of the theorem ensure that the system Hν

r is non-exceptional, hence by
Proposition 2 it contains a state ψ ∈ Hν

r with occupation numbers equal to the nonzero
part of λ. In the bigger system Hν ⊃ Hν

r its occupation numbers will be extended by
zeros.

Case 2. Let the system have rank r = p + q. Choose a decomposition Hr = Hp ⊕ Hq
and consider a restriction of the representation Hν

r onto subgroup U(Hp)× U(Hq)

Hν
r =

∑

µ,π

cνµπHµ
p ⊗ Hπ

q , (36)

where cνµπ are the omnipresent Littlewood-Richardson coefficients. Observe that

cν
ν′ν′′ = 1, and therefore Hν′

p ⊗ Hν′′
q ⊂ Hν

r . By the induction hypothesis there exist

statesψ ′ ∈ Hν′
p andψ ′′ ∈ Hν′′

q with occupation numbers λ′, λ′′ and particle densities ρ′,
ρ′′ respectively. Then decomposable state ψ = ψ ′ ⊗ ψ ′′ has particle density ρ′ ⊕ ρ′′,
and its occupation numbers are equal to λ = λ′|λ′′. ��
Let’s extract for reference a useful corollary from the last part of the proof.

Corollary 2. Suppose that the Littlewood-Richardson coefficient cνµπ is nonzero. Then
merging the occupation numbers λ′, λ′′ of the systems Hµ

p , Hπ
q form legitimate occupa-

tion numbers of the system Hν
p+q .

Remark 3. The restriction on the column’s multiplicities of diagram ν is needed only
to ensure that the components of any splitting ν = ν′|ν′′|ν′′′| . . . are non-exceptional.
The latter condition holds for any two-row diagram [α, β], β �= 1 for dim H ≥ 3. This
gives examples of systems beyond Theorem 4, say for ν = [3, 2], whose pure moment
polytope is given by the majorization inequality alone. More such diagrams can be
produced as follows: take ν as in Theorem 4 and remove one cell from its last row. This
works when the last row contains at least three cells and the rank of the system is bigger
than the height of ν. A complete classification of all such systems is still missing.

3.2.3. Dadok-Kac construction In the last two theorems we encounter the problem of
constructing a pure state with given occupation numbers. The problem lies at the very
heart of the ν-representability and one shouldn’t expect an easy solution. Nevertheless,
there is a combinatorial construction that produces a state with diagonal density matrix,
whose spectrum can be easily controlled. It has been used first by Borland and Dennis
[3] to forecast the structure of the moment polytope for small fermionic systems. Later
on Müller [27] formalized and advanced their approach to the limit. It fits into a general
Dadok-Kac construction [10] that works for any representation.

Below we follow the notations introduced at the beginning of Sect. 3.2. Let
x = diag(x1, x2, . . . , xr ) be a typical element from the Cartan subalgebra t ⊂ u(Hr ).
For a given semi-standard tableau T call the linear form ωT : x → xT = ∑

i∈T xi
the weight of the basic vector eT ∈ Hν

r . We also need nonzero weights of the adjoint
representation αi j : x → xi − x j , i �= j called roots. Let’s turn the set of semi-standard
tableaux of shape ν into a graph by connecting T and T ′ each time ωT − ωT ′ is a root,
i.e. the contents of T and T ′, considered as multi-sets, differ by exactly one element.
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Proposition 3. Let T be a set of semi-standard tableaux of shape ν containing no connec-
ted pairs. Then every state ψ = ∑

T ∈T cT eT ∈ Hν with support T has a diagonal
particle density matrix with entries

λi =
∑

T �i

|cT |2, (37)

where every tableau T is counted as many times as the index i appears in it.

Proof. The proof refines the arguments used in Claim 1 of Theorem 3, from which we
borrow the notation. As in the above theorem we have to prove 〈ψ |X |ψ〉 = 0 for every
X ∈ n+ + n−. It is enough to consider root vectors Xα that form a basis of n+ + n−. Then

〈ψ |Xα|ψ〉 =
∑

T,T ′∈T

cT ′cT 〈eT ′ |Xα|eT 〉.

Since XαeT has weight α + ωT , it is orthogonal to eT ′ , except for ωT ′ = ωT + α. The
latter is impossible for T, T ′ ∈ T, and therefore the reduced state of ψ is diagonal. A
straightforward calculation gives the diagonal entries (37). ��

We’ll have a chance to use this construction in Sect. 4.1.
Note that for a fixed support T the set of unordered spectra (37) form a convex

polytope. It is not known when this approach exhausts the whole moment polytope. The
smallest fermionic system where it fails is ∧3H8, see Sect. 6.

3.3. Calculation of the coefficients cvw(a). To progress further and to give Theorem 1
full strength one has to calculate the coefficients cvw(a). Berenstein and Sjamaar left this
problem mostly untouched. However, in the ν-representability settings, highlighted in
Theorem 2, this can be done very explicitly.

3.3.1. Canonical generators To proceed we first need an alternative description of the
cohomology of the flag variety Fa(Hr ) [2]. Recall that the latter is understood here as
the set of Hermitian operators in Hr of given spectrum a. To avoid technicalities, we
assume the spectrum to be simple, a1 > a2 > · · · > ar . Let Ei be the eigenbundle on
Fa(Hr ) whose fiber at X ∈ Fa(Hr ) is the eigenspace of operator X with eigenvalue
ai . Their Chern classes xi = c1(Ei ) generate the cohomology ring H∗(Fa(Hr )) and we
refer to them as the canonical generators. The elementary symmetric functions σi (x) of
the canonical generators are the characteristic classes of the trivial bundle Hr and thus
vanish. This identifies the cohomology with the ring of coinvariants

H∗(Fa(Hr )) = Z[x1, x2, . . . , xr ]/(σ1, σ2, . . . , σr ). (38)

This approach to the cohomology is more functorial and for that reason leads to an easy
calculation of the morphism (29),

ϕ∗
a : H∗(Faν (Hν)) → H∗(Fa(H)).

Recall that the spectrum aν consists of the quantities aT = ∑
i∈T ai arranged in

decreasing order, where T runs over all semi-standard tableaux of shape ν. We define
xT = ∑

i∈T xi in a similar way.
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Proposition 4. Let xi and xνk be the canonical generators of H∗(Fa(H))and H∗(Faν (Hν))

respectively. Then

ϕ∗
a (x

ν
k ) = xT , when aνk = aT . (39)

In other words, ϕ∗
a (x

ν
k ) is obtained from aνk by the substitution ai → xi .

Proof. The eigenbundle Ei is equivariant with respect to the adjoint action X → u Xu∗ of
the unitary group U(H). Therefore it is uniquely determined by the linear representation
of the centralizer D = Z(X) in a fixed fiber Ei (X) or by its character εi : D → S

1 = {z ∈
C

∗ | |z| = 1}. In the eigenbasis e of the operator X the centralizer becomes a diagonal
torus with typical element z = diag(z1, z2, . . . , zr ) and the character εi : z → zi .

Let now Xν = ϕa(X), Dν = Z(Xν), and eT be the weight basis of Hν , introduced
in Sect. 3.2, parameterized by the semi-standard tableaux T of shape ν and arranged
in the order of eigenvalues aν . Then the character of the pull-back ϕ−1

a (Eνk ) is just the
weight

∏
i∈T εi of the kth vector eT , where the tableau T is determined from the equation

aνk = aT , cf. (25). Thus ϕ−1
a (Eνk ) = ⊗

i∈T Ei , and we finally get

ϕ∗
a (x

ν
k ) = ϕ∗

a (c1(Eνk )) = c1(ϕ
−1
a (Eνk )) = c1(

⊗

i∈T

Ei ) =
∑

i∈T

xi = xT .

��

Remark 4. Formula (39) may look ambiguous for a degenerate spectrum a, while in fact
it is perfectly self-consistent. Indeed, consider a small perturbation ã, resolving multiple
components of a, and the natural projection

π : Fã(H) → Fa(H)

that maps X̃ = ∑
i ãi |ei 〉〈ei | into X = ∑

i ai |ei 〉〈ei |, where ei is an orthonormal eigen-
basis of X̃ . It is known [2] that π induces the isomorphism

π∗ : H∗(Fa(H)) � H∗(Fã(H))W (D), (40)

where the right-hand side denotes the algebra of invariants with respect to permutations
of the canonical generators x̃i with the same unperturbed eigenvalue ai = α. Such
permutations form the Weyl group W (D) of the maximal torus D̃ = Z(X̃) in D = Z(X).
For example, characteristic classes of the eigenbundle Eα with the multiple eigenvalue
α = ai correspond to elementary symmetric functions of the respective variables x̃i .

Equation (39), as it stands, depends on a specific ordering of the unresolved spectral
values ai and aνk . However, when ϕ∗

a is applied to invariant elements with respect to the
above Weyl group, the ambiguity vanishes.

Note also that the Schubert cocycle σw ∈ H∗(Fã(H)) is invariant with respect to
W (D) if and only ifw is the shortest representative in its left coset modulo W (D). Such
cocycles form the canonical basis of cohomology H∗(Fa(H)).
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3.3.2. Schubert polynomials To calculate the coefficients cvw(a) we have to return to
the Schubert cocycles σw and express them via the canonical generators xi . This can be
accomplished by the divided difference operators

∂i : f (x1, x2, . . . , xn) → f (. . . , xi , xi+1, . . .)− f (. . . , xi+1, xi , . . .)

xi − xi+1
(41)

as follows. Write a permutation w ∈ Sn as a product of the minimal number of transpo-
sitions si = (i, i + 1),

w = si1si2 · · · si	 . (42)

The number of factors 	(w) = #{i < j | w(i) > w( j)} is called the length of the
permutation w. The product

∂w := ∂i1∂i2 · · · ∂i	

is independent of the reduced decomposition and in terms of these operators the Schubert
cocycle σw is given by the equation

σw = ∂w−1w0
(xn−1

1 xn−2
2 · · · xn−1), (43)

where w0 = (n, n − 1, . . . , 2, 1) is the unique permutation of maximal length.
The right-hand side of Eq. (43) makes sense for independent variables xi and in this

setting it is called the Schubert polynomial Sw(x1, x2, . . . , xn), deg Sw = 	(w). They
were first introduced by Lascoux and Schützenberger [21,22] who studied them in a
series of papers. See [24] for further references and a concise exposition of the theory.
We borrow from [21] the following table, in which x, y, z stand for x1, x2, x3:

w Sw w Sw w Sw w Sw
3210 x3 y2z 2301 x2 y2 2031 x2 y + x2z 1203 xy
2310 x2 y2z 3021 x3 y + x3z 2103 x2 y 2013 x2

3120 x3 yz 3102 x3 y 3012 x3 0132 x + y + z
3201 x3 y2 1230 xyz 0231 xy + yz + zx 0213 x + y
1320 x2 yz + xy2z 0321 x2 y + x2z + xy2 0312 x2 + xy + y2 1023 x
2130 x2 yz 1302 x2 y + xy2 1032 x2 + xy + xz 0123 1

Extra variables xn+1, xn+2, . . . added to (43) leave the Schubert polynomials unal-
tered. For that reason they are usually treated as polynomials in an infinite ordered
alphabet x = (x1, x2, . . .). With this understanding every homogeneous polynomial can
be decomposed into Schubert components as follows:

f (x) =
∑

	(w)=deg( f )

∂w f · Sw(x).

Applying this to the polynomial

ϕ∗
a (Sw(x

ν)) = Sw(ϕ
∗
a (x

ν)) =
∑

	(v)=	(w)
cvw(a) · Sv(x),

and using Proposition 4 we finally arrive at the following result.
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Theorem 5. For the ν-representability problem the coefficients of the decomposition
ϕ∗

a (σw) = ∑
v cvw(a)σv are given by the formula

cvw(a) = ∂vSw(x
ν) |xνk →xT , (44)

where the tableau T is derived from equation aνk = aT , and the operator ∂v acts on the
variables xi , replacing xνk via specialization xνk → xT = ∑

i∈T xi .

Note that this equation is independent of an ordering of the unresolved spectral values
aνk . Indeed, the Schubert polynomial Sw(xν) is symmetric in the respective variables
xνk , provided that w is the minimal representative in its left coset modulo the centralizer
of the spectrum aν in the symmetric group. Only such permutations correspond to the
Schubert cocycles σw ∈ H∗(Faν (Hν)), cf. Remark 4.

4. Beyond the Basic Constraints

Here we use the above results to derive some general inequalities for the pure
ν-representability problem beyond the Pauli constraint λ � ν. We start with a
complete solution of the problem for two-row diagrams, and then turn to the initial
N -representability problem that appears to be the most difficult one.

4.1. Two-row diagrams. For the two-row diagram ν = [α, β] the majorization inequa-
lity λ � ν just tells us that λ1 ≤ α. As we know, for β �= 1 it shapes the whole
moment polytope, see Remark 3 to Theorem 4. Here we elucidate the remaining case
ν = [N − 1, 1], and thus solve the pure ν-representability problem for all two-row
diagrams. The result can not be extended to three-row diagrams, nor even to three fer-
mion systems, where the number of independent inequalities increases with the rank,
see Corollary 3 below. For convenience and future reference we collect all known facts
in the next theorem.

Theorem 6. For a system Hν
r of rank r ≥ 3 with the two-row diagram ν = [α, β],

α + β = N, all constraints on the occupation numbers of a pure state are given by the
following conditions:

1. Basic inequality: λ1 ≤ α for β �= 1.
2. Inequality: λ1 − λ2 ≤ N − 2 for ν = [N − 1, 1], N > 3.
3. Inequalities: λ1 − λ2 ≤ 1, λ2 − λ3 ≤ 1 for ν = [2, 1].
4. Even degeneracy: λ2i−1 = λ2i for ν = [1, 1].
Proof. We have already addressed Cases 1 and 4 in Remark 3 and the Introduction
respectively.
Case 2. Necessity. To prove the inequality λ1 − λ2 ≤ N − 2 we have to put it into the
form of Theorem 2:

∑

i

aiλv(i) ≤
∑

k

aνkµw(k). (45)

This suggests the test spectrum a = (1, 0, 0, . . . , 0,−1) and the shortest permutation v
that transforms it into (1,−1, 0, 0, . . . , 0), which is the cyclic one v = (2, 3, 4, . . . , r).
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Thus we get the left-hand side of the inequality. To interpret its right-hand side N − 2,
notice that the spectrum aν starts with the terms

aν = (N − 1, N − 1, . . . , N − 1
︸ ︷︷ ︸

r−2

, N − 2, . . .),

corresponding to semi-standard tableaux T with first row of ones and the indices 2, 3,
. . . , r filling a unique place in the second row. Since for pure state µ = (1, 0, 0, . . . , 0),
then the shortest permutation w that produces N − 2 in the right-hand side of (45) is
also cyclic, w = (1, 2, 3, . . . , r − 1). The corresponding Schubert polynomial is just
the monomial

Sw(x
ν) = xν1 xν2 · · · xνr−2.

This is a special case of Grassmann permutations discussed in the next Sect. 4.2.
Specialization xνk → xT of Theorem 5 transforms it into the product

P(x) =
r−1∏

i=2

[(N − 1)x1 + xi ].

Taking the reduced decomposition v = s2s3 · · · sr−1 we infer

cvw(a) = ∂vP(x) = ∂2∂3 · · · ∂r−1 P(x).

The right-hand side is a constant, and the operators ∂i do not touch x1. Hence we can
put x1 = 0, that gives

cvw(a) = ∂2∂3 · · · ∂r−1(x2x3 · · · xr−1) = 1.

Since cvw(a) �= 0, the inequality follows from Theorem 2.

Case 2. Sufficiency. By the convexity it is enough to construct extremal states whose
occupation numbers are vertices of the polytope cut out of the Weyl chamber by the
inequality λ1 − λ2 ≤ N − 2 and the normalization Tr λ = N . The vertices are given
first of all by the fundamental weights normalized to trace N

ωk = (N/k, N/k, . . . , N/k
︸ ︷︷ ︸

k

, 0, 0, . . . , 0)

that generate the edges of the Weyl chamber, except for ω1 forbidden by the constraint
λ1 − λ2 ≤ N − 2. The latter is replaced by the intersections τk of segments [ω1, ωk]
with the hyperplane λ1 − λ2 = N − 2,

τk = (N − 2 + 2/k, 2/k, . . . , 2/k
︸ ︷︷ ︸

k

, 0, 0, . . . , 0).

Here we tacitly assume that N > 3, since otherwise ω2 would be also forbidden. The
same condition ensures that the system Hν

k is non-exceptional for k ≥ 2, hence ωk are
occupation numbers of some pure states by Proposition 2.

To deal with the remaining vertices τk we invoke the Dadok-Kac construction,
Sect. 3.2.3 and observe that the state

ψk = 1 k k · · · k
k

+
1√
2

∑

2≤i<k

i i k · · · k
k
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has disconnected support and the occupation numbers τk , k ≥ 2. Here for clarity we
write tableau T instead of the weight vector eT and skip an overall normalization factor.

Case 3. Here we only briefly sketch the proof which follows a similar scheme. The
second inequality in the form λ2 −λ3 ≤ N −2 holds for all N , but it becomes redundant
for N > 3. It can be deduced from Theorem 2 by calculation of the coefficient cvw(a)
for the same a and w as above, but with another permutation v = (1, 2)(3, 4, . . . , r).
Then, keeping the notations of Case 2, we get

cvw(a) = ∂3∂4 · · · ∂r−1∂1 P(x1, x2, . . . , xr−1)

= ∂3∂4 · · · ∂r−1
P(x1, x2, . . . , xr−1)− P(x2, x1, . . . , xr−1)

x1 − x2
.

The operators ∂k , k ≥ 3 do not affect the variables x1, x2. Therefore in the fraction
we can pass to the limit x1, x2 → 0 equal to (N − 2)x3x4 · · · xr−1, which gives
cvw(a) = N − 2 �= 0.

To prove sufficiency of the above inequalities we again have to look at the vertices
of a polytope cut out of the Weyl chamber by the constraints λ1 − λ2 ≤ 1, λ2 − λ3 ≤ 1,
Tr λ = 3. This time, along with ωk, k ≥ 3 and τk, k ≥ 2, there are vertices of another
type

ηk = (1 + 1/k, 1 + 1/k, 1/k, 1/k, . . . , 1/k
︸ ︷︷ ︸

k

, 0, 0, . . . , 0)

for k ≥ 3. They represent occupation numbers of the following states with disconnected
support:

ψk = √
k + 1 1 1

2
+

√
2 2 2

3
+

∑

3<i≤k

2 i
i

.

��
Remark 5. Two-row diagrams naturally appear in the description of bosonic systems,
like photons where polarization plays the rôle of spin. Representation with diagram
can be applied both for bosons and fermions. In this case we calculated all constraints
on the spin and orbital occupation numbers for small ranks, see Sect. 6.1. It appears that
the constraints are stable and independent of the rank.

4.2. Grassmann inequalities. Let’s return to the initial pure N -representability problem
for system ∧N Hr and consider a constraint on its occupation numbers with 0/1 coeffi-
cients,

λi1 + λi2 + · · · + λi p ≤ b, (46)

called the Grassmann inequality. For example, all constraints (4) for the system ∧3H7
are Grassmannian. We assume that the Grassmann inequality is essential, meaning that
it defines a facet of the moment polytope. Then it should fit into the form of Theorem 2
with

a = (1, 1, . . . , 1
︸ ︷︷ ︸

p

, 0, 0, . . . , 0)
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and the Grassmann permutation or shuffle

v = [i1, i2, . . . , i p, j1, j2, . . . , jq ] := [I, J ], (47)

where I and J are increasing sequences of lengths p and q, p + q = r . This is the
shortest permutation that produces the left-hand side of inequality (46). Our terminology
stems from the observation that for the test spectrum a the flag variety Fa(H) reduces
to the Grassmannian Grq

p(H) consisting of all subspaces in H of dimension p and
codimension q.

It is instructive to think about the Grassmann permutation v = [I, J ] geometrically
as a path � connecting the SW and N E corners of the p × q rectangle, with the kth unit
step running to the North for k ∈ I and to the East for k ∈ J . The path cuts out of the
rectangle a Young diagram γ at its N W corner. We’ll refer to I and J as the vertical and
horizontal sequences of the diagram γ ⊂ p × q and denote the corresponding shuffle
by vγ = [I, J ]. The length of the shuffle vγ is equal to the size |γ | of the diagram γ and
its Schubert polynomial reduces to the much better understood Schur function

Svγ (x) = Sγ (x1, x2, . . . , x p).

Observe that γp−k+1 = ik − k, and the size of the Young diagram γ is related to its
vertical sequence by the equation

|γ | =
∑

1≤k≤p

(ik − k). (48)

To get the strongest inequality (46) we choose w to be a cyclic6 permutation

w = (1, 2, . . . , 	 + 1) = [2, 3, . . . , 	 + 1, 1, 	 + 2, 	 + 3 . . . , r ]
of length 	 = 	(v) = |γ | for which the right-hand side b = (∧N a)	+1 of (45) is minimal
and equal to the (	 + 1)st term of the non-increasing sequence

∧N a = {aK := ak1 + ak2 + · · · + akN | 1 ≤ k1 < k2 < · · · < kN ≤ r}↓.
The sequence consists of nonnegative numbers m, each taken with multiplicity

(
p

m

)(
q

N − m

)

.

Recall that w also should be the minimal representative in its left coset modulo the
stabilizer of ∧N a. For the cyclic permutation this amounts to the inequality (∧N a)	 >
(∧N a)	+1 = b, which tells us that the first 	 terms of ∧N a contain all the components
bigger than b. The number of such terms is bounded by the inequality

∑

m>b

(
p

m

)(
q

N − m

)

= 	 = |γ | ≤ pq. (49)

To avoid sporadic constraints, assume that the inequality we are looking for is stable,
i.e. remains valid for an arbitrary big rank r . Then the left-hand side should be linear in
q = r − p and the sum contains at most two terms: m = N and m = N − 1. Thus we
end up with two possibilities:

6 Actually w is always cyclic for an essential pure ν-representability inequality. We’ll address this issue
elsewhere.
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1. b = N − 2, p = N − 1, 	 = r − p, that gives the inequality

λi1 + λi2 + · · · + λiN−1 ≤ N − 2, (50)

with
∑

k(ik − k) = r − p.
2. b = N − 1, p ≥ N , 	 = ( p

N

)
, that gives the inequality

λi1 + λi2 + · · · + λi p ≤ N − 1, (51)

with
∑

k(ik − k) = ( p
N

)
.

We will refer to them as the Grassmann inequalities of the first and second kind respecti-
vely. For the inequalities of the first kind the sum

∑
k(ik −k) = r − p increases with the

rank, and therefore some of the involved occupation numbers should move away from
the head of the spectrum. In contrast, the constraints of the second kind deal only with
a few leading occupation numbers that are independent of the rank. We analyze them
below for p = N + 1 and postpone the more peculiar first kind to the next section. The
final result is that these inequalities actually hold true with very few exceptions.

The cyclic permutationw is a special type of shuffle with the column Young diagram
of height 	. The corresponding Schur function is just the monomial

Sw(y) = y1 y2 . . . y	.

Applying to Sw the specialization of Theorem 5 we arrive at the product

P(x) =
∏

1≤k1<k2<···<kN ≤p

(xk1 + xk2 + · · · + xkN ) =
∑

γ

cγ Sγ (x1, x2, . . . , x p). (52)

Being symmetric, it can be expressed via Schur functions and, by Theorem 2, each time
Sγ (x) enters into the decomposition with nonzero coefficient cγ �= 0 we get inequality

λi1 + λi2 + · · · + λi p ≤ N − 1, (53)

where i1 < i2 < · · · < i p is the vertical sequence of Young diagram γ ⊂ p × q,
|γ | = ( p

N

)
.

The product P(x) represents the top Chern class of the exterior power ∧N Ep of the
tautological bundle Ep on the Grassmannian Grq

p and the decomposition (52) has been
discussed in this context [20]. However, known results are very limited.

Example 3. For N = 2 and any p ≥ N the product

P(x) =
∏

1≤i< j≤p

(xi + x j ) = Sδ(x1, x2, . . . , x p)

is just the Schur function with a triangular Young diagram δ = [p − 1, p − 2, . . . , 0],
see [25]. This gives for the two fermion system ∧2H the inequality

λ1 + λ3 + λ5 + λ7 · · · ≤ 1, (54)

that, due to the normalization
∑

i λi = 2, degenerates into equality and implies even the
degeneracy λ2i−1 = λ2i of the occupation numbers.

On the other hand, for arbitrary N and minimal value p = N we get

P(x) = x1 + x2 + · · · + xN = S�(x).
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The vertical sequence of the one-box diagram gives a nontrivial inequality

λ1 + λ2 + · · · + λN−1 + λN+1 ≤ N − 1 (55)

that forces the N th electron into the N th orbital, when the preceding orbitals are fully
occupied. We improve it below.

In the rest of this section we focus upon the next case p = N + 1 that provides an
infinite series of inequalities. Observe that in this setting a row diagram γ of length
N + 1 = ( p

N

)
produces a false inequality

λ1 + λ2 + · · · + λN + λ2N+2 ≤ N − 1, (56)

that fails for a coherent state given by one Slater determinant e1∧e2∧. . .∧eN . Similarly,
the column inequality

λ2 + λ3 + . . . + λN+2 ≤ N − 1 (57)

fails for even N . Indeed, in this case the system ∧N HN+2 ⊂ ∧N Hr is non-exceptional
and hence, by Proposition 2, the spectrum

λ = 1

N + 2
(N , N , . . . , N
︸ ︷︷ ︸

N+2

, 0, 0 . . . , 0)

represents legitimate occupation numbers violating the inequality.
Quite unexpectedly, all the other diagrams produce a valid constraint. In plain

language the result can be stated as follows:

Theorem 7. The occupation numbers of the N-fermion system ∧N H in a pure state
satisfy the following constraint:

λi1 + λi2 + · · · + λiN+1 ≤ N − 1

each time
∑

k(ik − k) = N + 1, except for inequality (56) and, for even N, inequality
(57).

Proof. For p = N + 1 the decomposition (52) takes the form

P(x) =
∏

1≤i≤N+1

(x1 + x2 + · · · + x̂i + · · · + xN+1) =
∏

1≤i≤N+1

(σ1 − xi )

=
∑

0≤k≤N+1

(−1)kσ N+1−k
1 σk =

∑

γ

cγ Sγ (x1, x2, . . . , xN+1),

where σk(x) = S[1k ](x) are elementary symmetric functions, or what is the same Schur
functions for the column diagram [1k].

For Young diagrams τ ⊂ γ denote by t (γ /τ) the number of standard tableaux of
skew shape γ /τ . Then

cγ =
∑

k≥0

(−1)k t (γ /[1k]). (58)

Indeed, the coefficient at Sγ in σ N+1−k
1 σk = SN+1−k

[1] S[1k ] is equal to the number of

ways to build γ from the column diagram [1k] by adding cells one at a time. Numbering
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the cells in the order of their appearance gives a standard tableaux of shape γ /[1k]
that encodes the whole building process. Thus the coefficient is t (γ /[1k]) and Eq. (58)
follows.

For a column diagram γ we infer from the last equation

cγ =
N+1∑

k=0

(−1)k =
{

0, N ≡ 0 mod 2,
1, N ≡ 1 mod 2.

Henceforth we assume that γ is not a column. Let’s combine successive even and odd
terms of the sum (58)

cγ =
∑

i≥0

[t (γ /[12i ])− t (γ /[12i+1])]. (59)

We claim that

t (γ /[1k])− t (γ /[1k+1]) = t (γ /[2, 1k−1]), (60)

where meaningless terms understood as zeros, e.g. the right-hand side for k = 0.
Indeed, the building process can be described as an extension of the partially filled

tableau

1
2
·
·
·
k

to a full standard tableau of shape γ . One can put the number k + 1 either just below k or
next to 1. For the first choice the number of ways to complete the tableau is t (γ /[1k+1]),
while for another one the number is t (γ /[2, 1k−1]). Hence t (γ /[1k]) = t (γ /[1k+1]) +
t (γ /[2, 1k−1]).

Combining the last two equations we arrive at the following representation of the
coefficient cγ as a sum of nonnegative terms

cγ =
∑

i>0

t (γ /[2, 12i−1]). (61)

For a row diagram all terms vanish, while otherwise t (γ /[2, 1]) �= 0. Hence cγ > 0 if
the diagram is neither a row nor a column. The result now follows from Theorem 2. ��
Example 4. For N = 3 the theorem gives four inequalities listed below together with
the corresponding diagrams

: λ2 + λ3 + λ4 + λ5 ≤ 2, : λ1 + λ3 + λ4 + λ6 ≤ 2,

: λ1 + λ2 + λ5 + λ6 ≤ 2, : λ1 + λ2 + λ4 + λ7 ≤ 2.

(62)
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They are valid for arbitrary rank r and give all constraints on the occupation numbers
for r ≤ 7. Observe also an improved version of the inequality (55)

λ1 + λ2 + · · · + λN−1 + λN+1 + λ2N+1 ≤ N − 1, (63)

coming from the diagram [N , 1], and another inequality

λ2 + λ3 + · · · + λN+2 ≤ N − 1,

originated from a column diagram and valid only for odd N .

Remark 6. We have considered above only Grassmann inequalities of the lowest levels
p = N , N + 1. The higher levels provide further improvements. For example, the
inequalities (55) and (63) are just the first terms of an infinite series corresponding to
increasing values of p,

λi1 + λi2 + λi3 + · · · + λi p ≤ N − 1, (64)

where ik = k+
( k−1

N−1

)
. For N = 2 this gives the inequality (54) and the double degeneracy

of the occupation numbers, while for N = 3 we get the inequality

λ1 + λ2 + λ4 + λ7 + λ11 + λ16 + · · · ≤ 2,

where the differences between the successive indices are natural numbers 1, 2, 3, 4, . . ..
The details will be given elsewhere.

4.3. Grassmann inequalities of the first kind. Formally we have such an inequality

λi1 + λi2 + · · · + λiN−1 ≤ N − 2 (65)

each time the Schur function Sγ = Svγ enters into the decomposition

P(x) =
∏

N≤ j≤r

(x1 + x2 + · · · + xN−1 + x j ) =
∑

	(v)=	
cvSv(x). (66)

Here γ is a Young diagram of size 	 = r − N + 1 with the vertical sequence formed
by the indices in the above inequality, and vγ is the corresponding shuffle. In contrast
to the previous case, the product is not a symmetric function and its decomposition into
Schubert polynomials is a challenge.

Let’s try a simple case of a row diagram that produces the inequality

λ1 + λ2 + · · · + λN−2 + λr ≤ N − 2. (67)

A close look shows that it fails for odd 	 = r − N + 1 = 2m − 1 for the spectrum

λ = (1, 1, . . . , 1
︸ ︷︷ ︸

N−2

, 1/m, 1/m, . . . , 1/m
︸ ︷︷ ︸

2m

)

obtained by merging the occupation numbers of the systems ∧N−2HN−2 and ∧2H2m ,
see Corollary 2 of Theorem 4. Nevertheless

Proposition 5. The inequality (67) holds for even 	 = r − N + 1. In this case the Schur
function with a row diagram enters into the decomposition (66) with unit coefficient.
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Proof. The row diagram γ corresponds to the cyclic permutation

v = vγ = (r, r − 1, . . . , N , N − 1) = sr−1sr−2 · · · sN−1,

where si = (i, i + 1) are transpositions. We have to calculate the coefficient cv of the
decomposition (66) given by the equation

cv = ∂vP(x) = ∂r−1∂r−2 · · · ∂N−1 P(x).

The operator ∂v does not affect the variables xi , i < N − 1, so we can set them to zero
and deal with the polynomial

P0(x) =
∏

N≤i≤r

(xN−1 + xi ) =
∑

N≤i1<i2<···<ik≤r

x	−k
N−1xi1 xi2 · · · xik .

We claim that

∂vx	−k
N−1xi1 xi2 · · · xik =

{
(−1)k for is = r − k + s,

0 otherwise.
(68)

Let’s start with the second case i1 ≤ r − k = 	+ N − k − 1. In the following calculation
we set to zero all variables that are not affected by the subsequent operators ∂ j . With
this convention we get

∂i1−2∂i1−3 · · · ∂N−1x	−k
N−1xi1 xi2 · · · xik = x	+N−k−i1

i1−1 xi1 xi2 · · · xik . (69)

The resulting monomial is divisible by an si1−1-invariant factor xi1−1xi1 that commutes
with the operator ∂i1−1. Hence everything vanishes in the next step as a result of the
action ∂i1−1 and setting xi1−1 = 0.

In the case i1 = r − k + 1 = 	 + N − k the right-hand side of (69) is just the product
of the last k variables xr−k+1xr−k+2 · · · xr and application of the remaining operators ∂ j ,
r − k ≤ j ≤ r − 1 gives (−1)k .

Finally, from Eq. (68) we infer

cv =
∑

0≤k≤	
(−1)k =

{
1, 	 is even,
0, 	 is odd,

(70)

and the result follows from Theorem 2. ��
Remark 7. The inequality (67) is most appealing for N = 3,

λ1 + λr ≤ 1, (71)

where it supersedes the Pauli principle λ1 ≤ 1 for even r . Note that for the three
electron system one- and two-point density matrices are isospectral and therefore the
above inequality holds for both of them. We first came across this result reading paper
[14], where the authors observed that if the 2-point density matrix of a three fermion
system in state ψ ∈ ∧3Hr has an eigenvalue equal to one, then the corresponding
eigenform ω ∈ ∧2Hr can’t have the full rank r . This is trivial for odd r , since rank of
ω is always even. For even rank this follows from (71). Moreover, in the latter case the
stateψ ∈ ∧3Hr itself has rank less than r . M.B. Ruskai also conjectured inequality (71)
in her analysis of three fermion and three hole systems [33].
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Observe the following result, anticipated by many experts. It may appear not so trivial
if compared with Theorems 4 and 6.

Corollary 3. No finite set of inequalities gives all constraints on occupation numbers of
N-fermion system ∧N H, N > 1 of arbitrary big rank.

Proof. Indeed, a finite set Q of linear inequalities Lα(λ) ≤ bα includes only finitely
many occupation numbers λi , i < M . Every inequality that follows from Q is a nonne-
gative combination of the inequalities from Q, the ordering conditions λi − λi−1 ≤ 0,
and a multiple of the normalization equation

∑r
i=1 λi = N .

Suppose now that the inequality of Proposition 5,

λ1 + λ2 + · · · + λN−2 + λr ≤ N − 2, (72)

can be deduced from the system Q for some r � M and even 	 = r − N + 1. The
coefficients at λi in the left side for i ≥ M should come from the following linear
combination with non-negative coefficients ai ,

a1(λ2 − λ1) + a2(λ3 − λ2) + · · · + ar−1(λr − λr−1)− arλr =
−λ1a1 + λ2(a1 − a2) + · · · + λr−1(ar−2 − ar−1) + λr (ar−1 − ar ),

amended with a multiple of the normalization equation. The Abel transformation shown
in the second line implies that the coefficients ai should form an arithmetical progression
ai = ai + b for M ≤ i < r , while ar = ar + b − 1 ≥ 0.

Suppose now that a ≥ 0. Then the same combination of inequalities from Q that
produces (72) and the same coefficients ai for i < r together with ar = ar + b ≥
0, ar+1 = a(r +1)+b−1 ≥ 0 would give a false inequality of rank r +1 obtained from
(72) by replacing r → r + 1. Recall that the inequality (72) fails for odd 	 = r − N + 1.
For a ≤ 0 a similar consideration gives a false inequality of rank r − 1. ��

Proposition 5 can be extended to two-row diagrams γ = [	−k, k]. For three fermions
this leads to the constraints

λk+1 + λr−k ≤ 1, for k + 1 < r − k, (73)

that prohibit more than one electron to occupy two complementary orbitals. It holds
both for even and odd r for k > 0. The corresponding coefficients cγ = c(	, k) of the
decomposition (66) satisfy the recurrence relation c(	, k) = c(	−1, k)+ c(	−1, k −1)
and form the left half of the Pascal triangle

0
1 −1

0 0 0
1 0 0 −1

0 1 0 −1 0
1 1 1 −1 −1 −1

0 2 2 0 −2 −2 0
1 2 4 2 −2 −4 −2 −1

0 3 6 6 0 −6 −6 −3 0
1 3 9 12 6 −6 −12 −9 −3 −1

with apex at 	 = −1, and the 0/1 boundary condition for k = 0 set by Eq. (70). We
return to the Pascal recurrence relation in a more general framework below, see Eq. (79).
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Observe a zero in the forth line of the Pascal triangle, corresponding to diagram . In
general, a column diagram should have zero coefficient, because it produces inequality

λ1 + λ2 + · · · + λ̂N−	 + · · · + λN ≤ N − 2 (74)

that fails for a coherent state given by one Slater determinant.
It turns out that the Grassmann inequality of the first kind (65) holds for all diagrams,

except for a column and an odd row. To wit

Theorem 8. The occupation numbers of N-fermion system ∧N Hr in a pure state satisfy
the following constraint:

λi1 + λi2 + · · · + λiN−1 ≤ N − 2 (75)

each time
∑

k(ik −k) = r − N +1, except for inequality (74) and, for odd 	 = r − N +1,
inequality (67).

Proof. We have to show that the Schur function Sγ (x) = Svγ (x) enters into the decom-
position

Pr (x) =
∏

N≤ j≤r

(x1 + x2 + · · · + xN−1 + x j ) =
∑

	(v)=	
cvSv(x), (76)

provided that γ ⊂ p × q is neither a column nor an odd row. Here p = N − 1,
q = 	 = |γ | = r − p.

Note first of all, that the coefficients of this decomposition are nonnegative for v ∈ Sr
and can be positive only for shuffles v = vγ . The first claim holds in general for the
coefficients cwv (a) of Theorem 2,

ϕ∗
a (σw) =

∑

v

cvw(a)σv,

since the cycle ϕ−1
a (σw) ⊂ Fa(Hr ) is effective. Here v runs over representatives of

minimal length in left coset modulo stabilizer of a. To include all permutations v ∈ Sr
one has to deal with a small perturbation ã that resolves multiple entries of a. However,
since ϕ−1

ã (σw) ⊂ Fã(Hr ) is pull back of ϕ−1
a (σw) ⊂ Fa(Hr ) via natural projection

π : Fã(Hr ) → Fa(Hr ) defined in Remark 4, then decomposition of ϕ−1
ã (σw) and

ϕ−1
a (σw) involve the same Schubert cycles σv . This prove the second claim. Let’s add as

a warning, that the decomposition (76) actually contains Schubert polynomials Sv with
permutations v /∈ Sr .

The rest of the proof is purely algebraic. We’ll proceed by induction on r keeping N
fixed. For the first meaningful case r = N + 1, 	 = 2, as we know, only the row diagram

appears in the decomposition.
Suppose now the induction hypothesis holds for Pr (x), and consider the next poly-

nomial,

Pr+1(x) = (x1 + x2 + · · · + xN−1 + xr+1)Pr (x)

= (x1 + x2 + · · · + xN−1 + xr+1)
∑

	(v)=	
cvSv(x). (77)
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We can find its Schubert components using a version of Monk’s formula,

(α1x1 + α2x2 + α3x3 · · · )Sv(x) =
∑

	(vti j )=	(v)+1

(αi − α j )Svti j ,

where ti j = (i, j), i < j < ∞ is a transposition, see [24, p. 86]. For a typical term of
(77) this gives

(x1 + x2+ · · · +xN−1 + xr+1)Sv

=
∑

1≤i<N≤ j �=r+1

Svti j −
∑

N≤ j �=r+1

sgn(r + 1 − j)Svt j,r+1, (78)

where the sums include only those transpositions t for which 	(vt) = 	(v) + 1. We are
interested in the terms uγ = vt ∈ Sr+1 that are shuffles coming from a Young diagram
γ ⊂ p × (	 + 1) of size 	 + 1. Let’s single out the row diagram for which Proposition 5
gives the coefficient cγ . The remaining shuffles uγ do not move the last index r + 1, and
therefore permutation v = uγ ti, j has a bigger length than uγ for j ≥ r + 1. Hence a
non-row Schur component Sγ in (78) comes from the sum

∑

1≤i<N≤ j≤r

Svti j

for v = uγ ti j , 	(v) = 	(uγ ) − 1 = |γ | − 1. Then v ∈ Sr , and Sv(x) enters into
decomposition (76) only for a shuffle v = vτ . In this case the relation vτ = uγ ti j
just means that τ is obtained from γ by removing a cell. As a result, we arrive at the
recurrence relation

cγ =
∑

γ /τ=cell

cτ , (79)

that holds for all non-row diagrams γ . This implies that cγ > 0 if one can obtain an
even row from γ by removing cells one at a time from a non-row diagram. This can be
done for any diagram different from a column or an odd row. The inequality (75) now
follows from Theorem 2. ��
Example 5. For a four fermion system ∧4Hr the theorem gives inequality

λi + λ j + λk ≤ 2,

that holds for odd rank r ≥ 7 and pairwise distinct indices satisfying equation i + j +k =
r + 3. For even r one has to exclude the row inequality λ1 + λ2 + λr ≤ 2.

For two-row diagrams Eq. (79) amounts to the Pascal recurrence relation discussed
in Remark 7. In general, it allows to get an explicit formula for the coefficient cγ that
is surprisingly similar to the one given in the proof of Theorem 8, where we borrow the
notations.

Corollary 4.

cγ =
∑

k≥0

(−1)k t (γ /[k]) =
∑

i>0

t (γ /[2i, 1]), (80)

where the second equality holds for diagrams γ different from rows and columns.
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Proof. Applying Eq. (79) recurrently in conjunction with Proposition 5 we find out
that cγ is equal to the number of ways to obtain an even row from γ by removing
cells one at a time from a non-row diagram. If γ is not a row or a column, then the
last step in the process will be [2i, 1] → [2i]. Encoding the process by the standard
tableaux, we arrived at the second formula. The first one follows from the identity
t (γ /[2i, 1]) = t (γ /[2i])− t (γ /[2i + 1]), cf. the proof of Theorem 8, and holds for all
diagrams. ��

5. Connection with Representation Theory

The solution of the ν-representability problem suggested by Theorem 2 is not feasible,
except for very small systems. For example, for four fermions ∧4H8 we confront an
immense symmetric group of degree

(8
4

) = 70. Besides, listing of the extremal edges
for systems of this size is all but impossible. A representation theoretical interpretation
of the ν-representability discussed below often allows to mollify or circumvent these
difficulties.

Let’s consider a composition of the Schur functors H → Hν called a plethysm

[Hν]µ =
∑

|λ|=|ν|·|µ|
mµ
λHλ. (81)

It splits into U(H) irreducible components Hλ of multiplicity mµ
λ . It is instructive to

treat the diagrams λ and µ as spectra. We are interested in their asymptotic behavior
for mµ

λ �= 0 and |µ| → ∞. Therefore we normalize them to a fixed size µ̃ = µ/|µ|,
λ̃ = λ/|µ|, so that Tr µ̃ = 1 and Tr λ̃ = N = |ν|.
Theorem 9. Every time mµ

λ �= 0 the couple (̃λ, µ̃) belongs to the moment polytope of the
system Hν , i.e. there exists its mixed state ρν of spectrum µ̃, with occupation numbers λ̃.
Moreover every point of the moment polytope is a convex combination of such spectra
(̃λ, µ̃) of a bounded size |µ| ≤ M < ∞.

The theorem is a special case of Mumford’s description of the moment polytope, see his
Appendix in [28]. It also holds in more general Berenstein-Sjamaar settings [1].

5.1. Practical algorithm. For a fixed M the convex hull of the spectra (̃λ, µ̃) from Theo-
rem 9 gives an inner approximation to the moment polytope, while any set of inequalities
of Theorem 2 amounts to its outer approximation. This suggests the following approach
to the mixed ν-representability problem, which combines both theorems.

1. Find all irreducible components Hλ ⊂ [Hν]µ for |µ| ≤ M .
2. Calculate the convex hull of the corresponding spectra (̃λ, µ̃) that gives an

inner approximation P in
M ⊂ P for the moment polytope P.

3. Identify the facets of P in
M that are given by the inequalities of Theorem 2.

They cut out an outer approximation Pout
M ⊃ P.

4. Increase M and continue until P in
M = Pout

M .

The algorithm became practical by generosity of the authors of LiE package [4], who
made it publicly available. It allows to handle plethysms efficiently. We also benefit from
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Convex package by Franz [13], who apply a similar approach to the quantum marginal
problem for three qutrits [12,17].

One can incorporate in the algorithm additional constraints on the spectrum of the
mixed state ρν . In many problems this is just a restriction on the rank rk ρν ≤ p, that
bounds the number of rows of µ. For example, a pure state ρν = |ψ〉〈ψ | has rank one,
the corresponding diagram µ = [m] reduces to a row, and the plethysm amounts to the
symmetric power Sm(Hν). More generally, for spin-orbital occupation numbers of a
system of electrons of total spin J , we have to deal with mixed states of rank 2J + 1, see
Corollary 1 to Theorem 2, and respectively with the diagrams µ of at most that height.

5.2. Particle-hole duality. Here is another application of Theorem 9. Recall, that we
arrived at the ν-representability problem from the spin-orbital decompositions (17) of
Sect. 3. In this setting the Young diagram ν comes together with a rectangular frame
r × s ⊃ ν, where r and s are dimensions of the orbital and spin spaces respectively.
Let ν∗ be the complementary diagram to ν in the frame r × s, that is ν∗

i = s − νr+1−i .
One can think about the representation Hν∗

r as describing the holes of the system Hν
r .

These are dual systems with a natural pairing Hν
r ⊗ Hν∗

r → Hr×s
r = det(Hr )

⊗s , that
can be extended to a pairing of the plethysms [Hν

r ]µ ⊗ [Hν∗
r ]µ → det(Hr )

⊗sm , where
m = |µ|. The latter duality means that if Hλ

r is a component of [Hν
r ]µ, then Hλ∗

r is a
component of [Hν∗

r ]µ of the same multiplicity. Here λ∗ is the complementary diagram
to λ ⊂ r × sm. In view of Theorem 9 this implies

Corollary 5. The moment polytope of the hole system Hν∗
r is obtained from the moment

polytope of Hν
r by the transformation (λ, µ) → (λ∗, µ), where λ∗

i = s − λr+1−i .

6. Analysis of Some Small Systems

Here we take the challenge to explore all the constraints on the occupation numbers.
This is clearly a mission impossible. It moves us from a garden of the carefully selected
species we dealt with in the preceding sections, into the midst of a wild jungle with no
order or end in sight.

To succeed in this environment we try the algorithm of Sect. 5.1 first. However, due
to computer limitation, it can be accomplished only for very small systems. For the pure
N -representability problem these are the systems for which Borland and Dennis made
their prophesy 35 yeas ago [3]. To move further we use any tool available, from a
clever guess to numerical optimization. The final outcome of this endeavour are all
the constraints for the systems of rank not exceeding 10. For r ≤ 8 we provide a
rigorous proof below. We also have a proof for the system ∧3H9 based on other ideas,
not discussed here. For the remaining cases the constraints are complete only beyond a
reasonable doubt. To resolve the doubt one has to verify independently that the vertices of
the constructed polytope are legitimate occupation numbers. We did this using a variety
of methods for most of the vertices, but some still evaded all efforts. For the latter we
resort to numerical optimization to check that they indeed can be approached very closely
within the moment polytope. The biggest system we treated ∧5H10 is bounded by 161
inequalities.

We are ready to bet a bottle of decent wine for every additional essential constraint
found.
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Table 1. N -representability inequalities for system ∧3H6

Inequalities v ∈ S6 w ∈ S20 cvw(a)
λ1 + λ6 ≤ 1 (2 6 5 4 3) 1
λ2 + λ5 ≤ 1 (1 2 5 4 3) (1 2 3 4 5) 1
λ3 + λ4 ≤ 1 (1 3)(2 4) 1
λ4 ≤ λ5 + λ6 (1 4 3 2) (1 2 3 4) 1

Table 2. N -representability inequalities for system ∧3H7

Inequalities v ∈ S7 w ∈ S35 cvw(a)
λ2 + λ3 + λ4 + λ5 ≤ 2 (1 2 3 4 5) 1
λ1 + λ3 + λ4 + λ6 ≤ 2 (2 3 4 6 5) (1 2 3 4 5) 1
λ1 + λ2 + λ4 + λ7 ≤ 2 (3 4 7 6 5) 1
λ1 + λ2 + λ5 + λ6 ≤ 2 (3 5)(4 6) 1

6.1. Spin and orbital occupation numbers. Let’s start with a simple example of constraints
on spin µ and orbital λ occupation numbers for a system of three electrons of the
total spin J = 1/2. By Corollary 1 to Theorem 2 the problem is equivalent to mixed
ν-representability for ν = and Spec ρν = (µ1, µ2). A calculation based on the
algorithm of Sect. 5.1 shows that the constraints amount to 5 inequalities

λ1 − λ2 ≤ 1 + µ2, λ2 − λ3 ≤ 1 + µ2, λ1 − λ3 ≤ 2 − µ2,

λ1 − λ2 − λ3 ≤ 1, 2λ1 − λ2 + λ4 ≤ 4 − µ2,

that apparently are independent of the rank. We test them for r = 4, 5. Recall that λ
and µ are arranged in non-increasing order and are normalized to the traces 3 and 1
respectively.

6.2. Pure N-representability. The known solution for two fermions, together with the
particle-hole duality of Sect. 5.2, bound the pure N−representability problem to the
range 3 ≤ N ≤ r/2. For rank r ≤ 8 this leaves us with systems ∧3H6, ∧3H7, ∧3H8,
and ∧4H8.

For three of them ∧3H6, ∧3H7 and ∧4H8 the algorithm of Sect. 5.1 runs flawlessly
and terminates at M = 4, 8, 10, respectively. The independent constraints grouped by
the test spectra a, together with the coefficients cvw(a), and cycle decomposition of the
permutations v,w are given in Tables 1–3.

The remaining system ∧3H8 is much harder to resolve.

6.2.1. System ∧3H8 We managed to decompose plethysm Sm(∧3H8) up to degree
m = 24, but still have had a discrepancy between the inner and the outer approximations
to the moment polytope. Actually all facets of P in

24, except for one, fit Theorem 2. For
the remaining facet

λ1 + λ5 + λ6 ≥ 1

we use a numerical minimization of the linear form L(λ) = λ1 +λ5 +λ6 over all particle
density matrices. It turns out that the form attains its minimum, equal to 27

28 , at the vertex

1

28
(15, 15, 15, 15, 6, 6, 6, 6). (82)
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Table 3. N -representability inequalities for system ∧4H8

Inequalities v ∈ S8 w ∈ S70 cvw(a)

λ1 ≤ 1 (1) (1) 1
λ5 − λ6 − λ7 − λ8 ≤ 0 (1 5 4 3 2) 1
λ1 − λ2 − λ7 − λ8 ≤ 0 (2 3 4 5 6) 1
λ1 − λ3 − λ6 − λ8 ≤ 0 (3 4 5 7 6) 1
λ1 − λ4 − λ6 − λ7 ≤ 0 (4 5 8 7 6) (1 2 3 4 5) 1
λ1 − λ4 − λ5 − λ8 ≤ 0 (4 6)(5 7) 1
λ3 − λ4 − λ7 − λ8 ≤ 0 (1 3 2)(4 5 6) 1
λ2 − λ4 − λ6 − λ8 ≤ 0 (1 2)(4 5 7 6) 1
λ2 + λ3 + λ5 − λ8 ≤ 2 (1 2 3 5 4) 1
λ1 + λ3 + λ6 − λ8 ≤ 2 (2 3 6 5 4) 1
λ1 + λ2 + λ7 − λ8 ≤ 2 (3 7 6 5 4) 1
λ1 + λ2 + λ3 − λ4 ≤ 2 (4 5 6 7 8) (1 2 3 4 5) 1
λ1 + λ4 + λ5 − λ8 ≤ 2 (2 4)(3 5) 1
λ1 + λ2 + λ5 − λ6 ≤ 2 (3 5 4)(6 7 8) 1
λ1 + λ3 + λ5 − λ7 ≤ 2 (2 3 5 4)(7 8) 1

Table 4. N -representability inequalities for system ∧3H8

Inequalities v ∈ S8 w ∈ S56 cvw(a)

λ2 + λ3 + λ4 + λ5 ≤ 2 (1 2 3 4 5) 1
λ1 + λ2 + λ4 + λ7 ≤ 2 (3 4 7 6 5) (1 2 3 4 5) 1
λ1 + λ3 + λ4 + λ6 ≤ 2 (2 3 4 6 5) 1
λ1 + λ2 + λ5 + λ6 ≤ 2 (3 5)(4 6) 1
λ1 + λ2 − λ3 ≤ 1 (3 4 5 6 7 8) 1
λ2 + λ5 − λ7 ≤ 1 (1 2 5 4 3)(7 8) 1
λ1 + λ6 − λ7 ≤ 1 (2 6 5 4 3)(7 8) (1 2 3 4 5 6) 1
λ2 + λ4 − λ6 ≤ 1 (1 2 4 3)(6 7 8) 1
λ1 + λ4 − λ5 ≤ 1 (2 4 3)(5 6 7 8) 1
λ3 + λ4 − λ7 ≤ 1 (1 3)(2 4)(7 8) 1
λ1 + λ8 ≤ 1 (2 8 7 6 5 4 3) (1 2 3 4 5 6 7) 1
λ2 − λ3 − λ6 − λ7 ≤ 0 (1 2)(3 4 5 8 7 6) 1
λ4 − λ5 − λ6 − λ7 ≤ 0 (1 4 3 2)(5 8 7 6) (1 2 3 4 5 6 7) 1
λ1 − λ3 − λ5 − λ7 ≤ 0 (3 4 6)(5 8 7) 1
λ2 + λ3 + 2λ4 − λ5 − λ7 + λ8 ≤ 2 (1 4 8 7 5) 1
λ1 + λ3 + 2λ4 − λ5 − λ6 + λ8 ≤ 2 (1 4 8 6 7 5 2) (1 2 3 . . . 10 11) 1
λ1 + 2λ2 − λ3 + λ4 − λ5 + λ8 ≤ 2 (1 2)(3 4 8 5 6 7) 1
λ1 + 2λ2 − λ3 + λ5 − λ6 + λ8 ≤ 2 (1 2)(3 5 4 8 6 7) 1
λ1 + λ2 − 2λ3 − λ4 − λ5 ≤ 0 (3 6 4 7 5 8) (1 2 3 . . . 11 12) 1
λ1 − λ2 − λ3 + λ6 − 2λ7 ≤ 0 (2 6)(3 4 5 8 7) 1
λ1 − λ3 − λ4 − λ5 + λ8 ≤ 0 (2 8 5 7 4 6 3) (1 2 3 . . . 12 13) 1
λ1 − λ2 − λ3 − λ7 + λ8 ≤ 0 (2 8 7 3 4 5 6) 1
2λ1 − λ2 + λ4 − 2λ5 − λ6 + λ8 ≤ 1 (2 4 3 8 5 7 6) 1
λ3 + 2λ4 − 2λ5 − λ6 − λ7 + λ8 ≤ 1 (1 4)(2 3 8 5) 1
2λ1 − λ2 − λ4 + λ6 − 2λ7 + λ8 ≤ 1 (2 6)(3 8 7 4) (1 2 3 . . . 12 13) 1
2λ1 + λ2 − 2λ3 − λ4 − λ6 + λ8 ≤ 1 (3 8)(4 5 7 6) 1
λ1 + 2λ2 − 2λ3 − λ5 − λ6 + λ8 ≤ 1 (1 2)(3 8)(5 7 6) 1
2λ1 − 2λ2 − λ3 − λ4 + λ6 − 3λ7 + λ8 ≤ 0 (2 6 4 5 3 8 7) 1
−λ1 + λ3 + 2λ4 − 3λ5 − 2λ6 − λ7 + λ8 ≤ 0 (1 4 2 3 8 5)(6 7) (1 2 3 . . . 14 15) 1
2λ1 + λ2 − 3λ3 − 2λ4 − λ5 − λ6 + λ8 ≤ 0 (3 8)(4 7) 1
λ1 + 2λ2 − 3λ3 − λ4 − 2λ5 − λ6 + λ8 ≤ 0 (1 2)(3 8)(4 7 5) 1

Adding this vertex gives a polytope P where all facets are covered by Theorem 2. Thus
P is the genuine moment polytope for ∧3H8 given by 31 independent inequalities listed
in Table 4.
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Table 5. Vertices of the moment polytope of ∧4H8 and the corresponding extremal states

Extremal states Vertices

[1234] (1 : 1 : 1 : 1 : 0 : 0 : 0 : 0)
[1234] + [1256] + [3456] (1 : 1 : 1 : 1 : 1 : 1 : 0 : 0)
[1234] + [1256] (2 : 2 : 1 : 1 : 1 : 1 : 0 : 0)
[1234] + [1256] + [1357] + [1467] + [2367] + [2457] + [3456] (1 : 1 : 1 : 1 : 1 : 1 : 1 : 0)
[1234] + [1256] + [1357] + [1467] (2 : 1 : 1 : 1 : 1 : 1 : 1 : 0)√

2[1234] + [1256] + [1357] + [2367] (2 : 2 : 2 : 1 : 1 : 1 : 1 : 0)√
2[1234] + [1256] + [1357] + [2457] + [3456] (2 : 2 : 2 : 2 : 2 : 1 : 1 : 0)√
3[1234] +

√
2[1256] + [1357] + [2457] (3 : 3 : 2 : 2 : 2 : 1 : 1 : 0)√

2[1234] +
√

2[1256] + [1357] + [1467] + [2367] + [2457] (3 : 3 : 2 : 2 : 2 : 2 : 2 : 0)√
2[1234] + [1256] + [1357] (4 : 3 : 3 : 2 : 2 : 1 : 1 : 0)

[1234] + [5678] (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1)√
2[1234] + [1256] + [1278] + [1357] + [1368] (3 : 2 : 2 : 1 : 1 : 1 : 1 : 1)

[1234] + [1256] + [1278] (3 : 3 : 1 : 1 : 1 : 1 : 1 : 1)√
3[1234] + [1256] + [1357] + [1458] + [2358] + [2457] + [3456] (3 : 3 : 3 : 3 : 3 : 1 : 1 : 1)√
2[1234] +

√
2[1256] + [1357] + [1368] + [1458] + [1467] (4 : 2 : 2 : 2 : 2 : 2 : 1 : 1)

2[1234] +
√

2[1256] + [1357] + [1458] + [2358] + [2457] (4 : 4 : 3 : 3 : 3 : 1 : 1 : 1)
2[1234] +

√
2[1256] + [1357] + [1368] + [2358] + [2367] (4 : 4 : 4 : 2 : 2 : 2 : 1 : 1)√

2[1234] + [1256] + [1357] + [1458] (5 : 3 : 3 : 3 : 3 : 1 : 1 : 1)√
3[1234] + [1256] + [1357] + [2358] (5 : 5 : 5 : 3 : 3 : 1 : 1 : 1)

[1234] + [1256] + [1278] + [1357] + [1368] + [1458] + [1467] (7 : 3 : 3 : 3 : 3 : 3 : 3 : 3)√
3[1234] +

√
2[1256] + [1357] + [1368] (7 : 5 : 5 : 3 : 3 : 3 : 1 : 1)√

3[1234] + [1256] + [1278] + [1357] + [1368] + [2358] + [2367] (7 : 7 : 7 : 3 : 3 : 3 : 3 : 3)

We are actually unhappy with employing of numerical optimization, that can produce
no rigorous result. Nevertheless, it provides a helpful hint about missed vertices. After
some guesses and trials we found the state

ψ = 2[123] +
√

10[145] +
√

5[347] +
√

2[356] +
√

2[258] + 2[368] + [178],
whose occupation numbers give the vertex (82). This provides a rigorous proof of the
completeness the above constraints. Here [i jk] = ei ∧ e j ∧ ek is the Slater determinant
or, in our general notations, weight vector eT corresponding to the semi-standard tableau
T transpose to [i jk]. Six triplets [i jk] in the support of ψ , excluding one [356] typeset
in boldface, form a disconnected set. They are remnants of our failed attempt to produce
the missed vertex by the Dadok-Kac construction in Sect. 3.2.3. Extra tableau [356]
in the support increases the number of adjustable parameters, but makes the problem
nonlinear.

For those people who don’t trust a computer assisted proof we give an extremal state
for every vertex of the moment polytope for the systems ∧3H7, ∧3H8, and ∧4H8 listed
in Tables 5-6. They are sufficient for a computer independent proof, provided that one
takes for granted the values of the coefficients cvw(a) in Tables 2–4.

6.2.2. Systems of rank 9 and 10 The results here are less definite. Only for the smallest
system ∧3H9 do we have a rigorous justification of completeness for the system of 52
independent inequalities. For the next one, ∧4H9, we found 60 constraints, that give a
polytope with 103 vertices. For all of them, except for two:

[16, 16, 16, 6, 6, 6, 6, 6, 6]/21, [20, 14, 14, 14, 14, 4, 4, 4, 4]/23,



The Pauli Principle Revisited 321

Table 6. Vertices of the moment polytope of ∧3H8 and the corresponding extremal states. The first ten lines
give the same data for ∧3H7

Extremal states Vertices

[123] (1 :1 :1 :0 :0 :0 :0 :0)
[123]+[145] (2 :1 :1 :1 :1 :0 :0 :0)
[123]+[145]+[246]+[356] (1 :1 :1 :1 :1 :1 :0 :0)√

2[123]+[145]+[246] (3 :3 :2 :2 :1 :1 :0 :0)
[123]+[145]+[167]+[246]+[257]+[347]+[356] (1 :1 :1 :1 :1 :1 :1 :0)√

2[123]+[167]+[246]+[257]+[145] (2 :2 :1 :1 :1 :1 :1 :0)√
2[123]+√

2[145]+[246]+[257]+[347]+[356] (2 :2 :2 :2 :2 :1 :1 :0)
[123]+[145]+[167] (3 :1 :1 :1 :1 :1 :1 :0)√

2[123]+[145]+[246]+[347] (3 :3 :3 :3 :1 :1 :1 :0)√
3[123]+√

2[145]+[246]+[257] (5 :5 :3 :3 :3 :1 :1 :0)
[178]+[368]+[258]+[567]+[347]+[246]+[145]+[123] (1 :1 :1 :1 :1 :1 :1 :1)√

2[178]+[368]+[567]+[246]+√
2[145]+√

2[123] (2 :1 :1 :1 :1 :1 :1 :1)√
2[178]+[258]+[567]+√

2[246]+[145]+√
3[123] (2 :2 :1 :1 :1 :1 :1 :1)√

3[123]+√
3[145]+[246]+√

2[347]+[356]+√
2[258] (3 :3 :3 :3 :3 :1 :1 :1)√

3[178]+√
2[567]+[347]+[246]+2[145]+√

5[123] (4 :2 :2 :2 :2 :2 :1 :1)
[178]+[246]+[145]+√

2[123] (4 :3 :2 :2 :1 :1 :1 :1)
[178]+[258]+[246]+[145]+√

2[123] (4 :4 :2 :2 :2 :2 :1 :1)
[258]+[567]+[145]+√

3[123] (4 :4 :3 :3 :1 :1 :1 :1)√
2[145]+[246]+[347]+[356]+√

2[368] (4 :4 :4 :4 :2 :1 :1 :1]√
2[178]+[246]+[145]+√

2[123] (5 :3 :2 :2 :2 :2 :1 :1)
[368]+[347]+√

2[145]+√
3[123] (5 :5 :3 :3 :2 :1 :1 :1)

2[123]+√
10[145]+√

5[347]+√
2[356]+√

2[258]+2[368]+[178] (5 :5 :5 :5 :2 :2 :2 :2)
[178]+[567]+√

2[145]+√
3[123] (6 :3 :3 :3 :2 :2 :1 :1)

2[123]+√
2[246]+√

3[356]+√
5[567]+2[258] (6 :5 :5 :5 :2 :2 :1 :1)√

2[178]+[258]+√
2[246]+[145]+√

3[123] (6 :6 :3 :3 :3 :2 :2 :2)
2
√

2[145]+√
2[246]+√

2[347]+√
3[356]+√

3[368] (6 :6 :4 :4 :4 :1 :1 :1)
2
√

3[123]+√
6[145]+√

2[356]+2[567]+√
3[258]+√

3[178] (7 :5 :5 :5 :2 :2 :2 :2)√
2[145]+2[246]+[347]+[356]+√

2[368] (7 :7 :4 :4 :4 :2 :1 :1)√
3[246]+√

2[347]+√
6[258]+2[368]+2

√
2[178]+[124] (9 :5 :5 :5 :3 :3 :3 :3)√

3[258]+[567]+√
2[347]+√

2[246]+2[123] (9 :6 :4 :4 :4 :3 :3 :3)
3[145]+√

6[246]+3[347]+2[356]+√
3[258]+√

14[368] (9 :8 :8 :8 :3 :3 :3 :3)√
2[178]+[258]+√

3[246]+√
2[145]+√

5[123] (9 :9 :5 :5 :3 :3 :3 :2)
2[123]+√

2[246]+√
2[356]+√

3[567]+√
3[258]+√

2[368] (9 :9 :9 :9 :4 :4 :2 :2)
2
√

2[145]+√
6[246]+√

6[347]+√
5[356]+√

2[258]+3[368] (10 :10 :10 :10 :4 :4 :3 :3)√
5[178]+[347]+√

2[246]+√
2[145]+2[123] (11 :6 :6 :5 :5 :5 :2 :2)√

3[178]+[258]+2[246]+√
2[145]+√

6[123] (11 :11 :6 :6 :4 :4 :3 :3)√
3[178]+√

2[567]+[246]+2[145]+√
5[123] (12 :6 :6 :5 :5 :5 :3 :3)

[123]+√
3[145]+2[347]+2[356]+√

3[258]+√
3[368] (12 :12 :7 :7 :4 :4 :4 :4)

we have proved rigorously that they belong to the moment polytope. The remaining two
vertices were checked only numerically. It turns out that the same two vertices would
provide the completeness of 125 constraints for ∧4H10. The occupation numbers of the
remaining systems ∧3H10 and ∧5H10 are bounded by 93 and 161 inequalities, but many
vertices are still waiting a confirmation by non-numerical methods.

The facets and vertices of the moment polytopes for all systems of rank ≤ 10
are available as electronic supplementary material in the online version of this article
doi:10.1007/s00220-008-0552-z.

http://dx.doi.org/10.1007/s00220-008-0552-z
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