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Abstract

The unified treatment of the five module-theoretic notions, transfer, inflation, transport of structure by an
isomorphism, deflation and restriction, is given by the theory of biset functors, introduced by Bouc. In this
paper, we construct the algebra realizing biset functors as representations. The algebra has a presentation
similar to the well-known Mackey algebra. We adopt some natural constructions from the theory of Mackey
functors and give two new constructions of simple biset functors. We also obtain a criterion for semisim-
plicity in terms of the biset functor version of the mark homomorphism. The criterion has an elementary
generalization to arbitrary finite-dimensional algebras over a field.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In [3] and [4], Bouc introduced two different notions of functors. The first notion, now known
as a biset functor, is an R-linear functor from a category whose objects are finite groups to the
category of modules over the commutative ring R with unity. In this case, the morphisms between
finite groups are given by finite bisets and the composition product of bisets is given by the usual
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amalgamated product of bisets, called the Mackey product in [3]. In his paper, Bouc proved that
any biset is a composition of five types of bisets, namely composition of a transfer biset, an
inflation biset, an isomorphism biset, a deflation biset and a restriction biset. The names of these
special bisets comes from their actions on the representation ring functor and the Burnside ring
functor where the actions coincide with the transfer map, the inflation map, the transport by an
isomorphism, the deflation map and the restriction map respectively. Hence, this approach gives
a unified treatment of these five module-theoretic notions which extend the operations available
with Mackey functors. An application of the biset functors is to the Dade group of a p-group
(see [9,10]).

In [4], Bouc used the category of finite groups with morphisms given by the bisets to classify
the functors between the categories of finite G-sets. He proved that any such functor preserv-
ing disjoint unions and cartesian products corresponds to a biset, and conversely, any biset
induces a functor with these properties. However, the usual amalgamated product of bisets
does not correspond to the composition of these functors. Therefore, he obtains a restricted
product of bisets and a category of functors defined as above with different composition of mor-
phisms.

Both of these categories of functors are abelian and the corresponding simple functors are
classified by Bouc in [3] and [4]. The description of simple objects in both of the categories
are given by the same construction but the Mackey product of the first category makes the con-
struction complicated while the restricted product of the second category makes the description
explicit.

In [16], Webb considered two other kinds of functors by allowing only certain types of bisets
as morphisms. For the first one, he allows only the bisets that are free on both sides. These
functors are well known as global Mackey functors. The other case is where the right-free bisets
are allowed. He called this kind inflation functors. The main example of the inflation functors
is the functor of group cohomology. He described simple functors for both of these cases. As
we shall see below, his construction is a special case of one of our main results. A general
framework for these functors were also introduced by Bouc in [3]. Given two classes X and Y
of finite groups having certain properties, Bouc considered R-linear functors CX ,Y

R → R-mod,

called globally-defined Mackey functor in [17]. Here the category CX ,Y
R consists of all finite

groups with morphisms given by all finite bisets with left-point stabilizers in X and right-point
stabilizers in Y . The product is still the amalgamated product of bisets. Now global Mackey
functors are obtained by letting both X and Y consist of the trivial group and the biset functors
are obtained by letting them contain all finite groups, and inflation functors are obtained by letting
X consist of all finite groups and Y consist of the trivial group.

In this paper, we only consider the biset functors defined over the category restricted to a
fixed finite group. That is, we consider the category CG of subquotients of a fixed finite group G

with morphisms given by the Grothendieck group of bisets between the subquotients. The com-
position is still given by the Mackey product. Here by a subquotient, we mean a pair (H ∗,H∗)
of subgroups of G such that H∗ � H ∗. We always write H for the pair (H ∗,H∗). Now a biset
functor for G (over a commutative ring R with unity) is an R-linear functor CG → R-mod.
Note that although we consider a special case of Bouc’s biset functors, it is easy to general-
ize our results from this finite category to the infinite case since the Grothendieck group of
bisets for any two finite groups is independent of their inclusions to any larger group as subquo-
tients.

It follows from a well-known result that the category of biset functors for G over R is equiv-
alent to the module category of the algebra generated by finite bisets appearing as morphisms
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in CG. Following Barker [1], we call this algebra the alchemic algebra.2 Description of the al-
chemic algebra using Bouc’s decomposition theorem for bisets produces five types of generators
and so many relations that cannot be specified in a tractable way. Our approach to the alchemic
algebra is to amalgamate some of the variables in a way that the relations become tractable. In
order to do this, we introduce two new variables, namely tinflation which is the composition of
transfer and inflation, and destriction, composition of deflation and restriction. The fifth element
remains the same but we call it isogation. In this way, the relations become not only tractable
but also similar to the relations between the generators of the Mackey algebra.

Note that in [17], Webb specified a list of relations that works for globally-defined Mackey
functors for any choice of the classes X and Y . Our list of relations, although obtained using
the Mackey product, can also be obtained from these relations with some straightforward cal-
culations. Also in [1], Barker constructed the alchemic algebra, without specifying the relations
explicitly, for a family of finite groups closed under taking subquotients and isomorphisms. This
covers our case when the family is the family of subquotients of G.

Having the above description of the alchemic algebra, we are able to adapt some natural con-
structions from the context of the Mackey functors to the context of biset functors. Our first main
result in this direction concerns the construction of simple biset functors using the techniques
in [12]. In fact our result extends to classification and description of simple modules of certain
unital subalgebras. The study of subalgebras of the alchemic algebra is crucial since some natu-
ral constructions, such as group homology, group cohomology and modular representation rings,
are only modules over some subalgebras of the alchemic algebra. For instance, Webb’s inflation
functors are representations of such a subalgebra of the alchemic algebra. This subalgebra real-
izes the modular character ring as well as the group cohomology. Group homology is a module of
the opposite algebra of this subalgebra. In Section 4, we shall prove the following classification
theorem which extends both Bouc’s and Webb’s classification of simple functors.

Theorem 1.1. Let Π be an alcahestic subalgebra of the alchemic algebra. There is a bijective
correspondence between

(i) the isomorphism classes SΠ of simple Π -modules.
(ii) The isomorphism classes S of simple ΩΠ -modules.

Here by an alcahestic subalgebra, we mean a subalgebra of the alchemic algebra containing
a certain set of orthogonal idempotents summing up to the identity, see Section 4 for a precise
definition. The algebra ΩΠ is the subalgebra of Π generated by isogations in Π . Our theo-
rem generalizes Bouc’s and Webb’s classification theorems because in both cases ΩΠ is Morita
equivalent to the algebra

∏
H ROut(H) where the product is over subquotients of G up to iso-

morphism. Note also that globally-defined Mackey functors are always modules of a suitably
chosen alcahestic subalgebra.

This classification theorem follows easily from the correspondence theorem below. Note fur-
ther that a version of the following theorem, Corollary 4.7, gives the bijection of Theorem 1.1,
explicitly.

2 The name refers to the five elements of nature in alchemy; air, fire, water, earth and the fifth element known as
quintessence or aether. Two elements, transfer and inflation, go upwards as the two elements fire and air. Similarly
deflation and restriction go downwards as water and earth. See [1].
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Theorem 1.2. Let Π ⊂ Θ be alcahestic subalgebras of the alchemic algebra such that all de-
strictions in Θ are contained in Π . Let S be a simple Π -module. Then the induced Θ-module
indΘ

Π S := Θ ⊗Π S has a unique maximal submodule.

In Section 5, we apply this result to give two descriptions of the simple biset functors. These
descriptions are both alternatives to Bouc’s construction. Moreover our construction has an ad-
vantage that the induced module in Theorem 1.2 is smaller than a similar one used by Bouc in
the sense that it is a quotient of the latter. Also one of our descriptions explicitly gives a formula
for the action of the tinflation on the simple module. The action is similar to the action of transfer
on a simple Mackey functor, which is given by the relative trace map.

Another natural construction that we adapt from the Mackey functors is the mark morphism.
Originally the mark morphism is a morphism from the Burnside ring to its ghost ring. Boltje [2]
generalized this concept to a morphism connecting his plus constructions. It is shown in [12] that
the plus constructions are usual induction and coinduction functors and the mark morphism can
be constructed by applying a series of adjunctions. In Section 6, we further generalize the mark
morphism to biset functors in a similar way. In particular, we have a mark morphism βS associ-
ated to any simple biset functor S. Here we see another advantage of our alternative descriptions
that this mark morphism can only be constructed between the induced and coinduced modules
described in Section 5.

Our final main result is a characterization of semisimplicity of the alchemic algebra in terms
of the mark morphism. Note that the equivalence of the first two statements below is proved by
Barker [1] and Bouc, independently. Our proof is less technical than the previous two proofs
since Barker and Bouc compared the dimension of the alchemic algebra with the dimensions of
simple functors. Instead we have the following result.

Theorem 1.3. Let G be a finite group and R be a field of characteristic zero. The followings are
equivalent.

(i) The alchemic algebra for G over R is semisimple.
(ii) The group G is cyclic.

(iii) The mark morphism βS is an isomorphism for any simple biset functor S.

We end the paper by a generalization of this criterion to an arbitrary finite-dimensional algebra
over a field. This is an elementary result and it completes a well-known result on semisimplicity
of such algebras.

Theorem 1.4. Let A be a finite-dimensional algebra over a field and e be an idempotent of A.
Let f = 1 − e. Then the following are equivalent.

1. The algebra A is semisimple.
2. (a) The algebras eAe and f Af are semisimple.

(b) For any simple gAg-module V , for g ∈ {e, f }, there is an isomorphism of A-modules
Ag ⊗gAg V ∼= HomgAg(gA,V ).

Finally note that our results still hold if we change the composition product of the category CG

with the restricted product in [4] and also for globally-defined Mackey functors, with appropriate
changes.
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2. Biset functors, an overview

In this section, we summarize some basic definitions and constructions concerning biset func-
tors. First, we introduce the category of bisets. This is the standard theory of bisets and can
be found in [3]. Then we review Bouc’s definition of biset functors and Bouc’s construction of
simple functors [3].

2.1. Bisets

Let H and K be two finite groups. An (H,K)-biset is a set with a left H -action and a right
K-action such that

h(xk) = (hx)k

for all elements h ∈ H and k ∈ K .
An (H,K)-biset X is called transitive if for any elements x, y ∈ X there exists an element

h ∈ H and an element k ∈ K such that hxk is equal to y.
We can regard any (H,K)-biset as a right H × K-set with the action given by

x.(h, k) = h−1xk

for all h ∈ H and k ∈ K . Clearly, X is a transitive (H,K)-biset if and only if X is a transitive
H × K-set. Hence there is a bijective correspondence between

(i) isomorphism classes [X] of transitive (H,K)-bisets,
(ii) conjugacy classes [L] of subgroups of H × K

where the correspondence is given by [X] ↔ [L] if and only if the stabilizer of some point x ∈ X

is in [L].
Hence we can denote a transitive biset by (H × K)/L. Given finite groups H,K,M and

transitive bisets (H × K)/L and (K × M)/N , we define the product of these bisets by the
Mackey product [3], given by

(H × K)/L ×K (K × M)/N =
∑

x∈p2(L)\K/p1(N)

(H × M)/L ∗ (x,1)N

where the subgroup L ∗ N of H × M is defined by

L ∗ N = {
(h,m) ∈ H × M: (h, k) ∈ L and (k,m) ∈ N for some k ∈ K

}

and the subgroups p1(N) and p2(L) of K are projections of N and L to K , respectively, that is,

p1(L) = {
l ∈ H : (l, k) ∈ L for some k ∈ K

}
and

p2(L) = {
k ∈ K: (l, k) ∈ L for some l ∈ L

}
.

In [3], Bouc proved that any transitive biset is a Mackey product of the following five types of
bisets: Let H be a finite group and N � J be subgroups of H and let L,M be two isomorphic
finite groups with a fixed isomorphism φ : L → M , then the five bisets are given as follows.



O. Coşkun / Journal of Algebra 320 (2008) 2422–2450 2427
1. Induction biset: indH
J := (H × J )/T where T = {(j, j): j ∈ J }.

2. Inflation biset: infJJ/N := (J × J/N)/I where I = {(j, jN): j ∈ J }.
3. Isomorphism biset: cφ

M,L = (M × L)/Cφ where Cφ = {(φ(l), l): l ∈ L}.
4. Deflation biset: defJJ/N = (J/N × J )/D where D = {(jN, j): j ∈ J }.
5. Restriction biset: resH

J = (J × H)/R where R = {(j, j): j ∈ J }.

The following theorem explicitly shows the decomposition of any transitive biset in terms of
these special bisets.

Theorem 2.1. (See [3].) Let L be any subgroup of H × K . Then

(H × K)/L = indH
p1(L) × infp1(L)

p1(L)/k1(L) ×cφ

p1(L)/k1(L),p2(L)/k2(L) × defp2(L)

p2(L)/k2(L) × resK
p2(L)

where the subgroup k1(L) of H and the subgroup k2(L) of K are given by

k1(L) = {
h ∈ H : (h,1) ∈ L

}
and k2(L) = {

x ∈ K: (1, x) ∈ L
}
.

The isomorphism

φ : p2(L)/k2(L) → p1(L)/k1(L)

is the one given by associating lk2(L) to mk1(L) where for a given element l ∈ p2(L) we let m

be the unique element in p1(L) be such that (m, l) ∈ L.

2.2. Biset functors

Let C be the category whose objects are finite groups and let the set of morphisms between
two finite groups H and K be given by

HomC(H,K) = R ⊗Z Γ (K,H) =: RΓ (K,H)

where Γ (K,H) denotes the Grothendieck group of the isomorphism classes of finite (K,H)-
bisets with addition as the disjoint union and where R is a field. The composition of the mor-
phisms in C is given by the Mackey product of bisets.

Now a biset functor F over R is an R-linear functor C → R-mod. Defining a morphism
of biset functors as a natural transformation of functors, we obtain the category BisetR of biset
functors. Since the category R-mod is abelian, the category BisetR is also abelian. Simple objects
of this category are described by Bouc [3]. We shall review his construction.

Let H be a finite group. We denote by EH the endomorphism algebra EndC(H) of H in the
category C. It is easy to show that EH decomposes as an R-module as

EH = IH ⊕ ROut(H)

where Out(H) = Aut(H)/Inn(H) is the group of outer automorphisms of H and ROut(H) is
the group algebra of Out(H) and IH is a two-sided ideal of EH (see [3] for explicit description
of IH ). Therefore, we obtain an epimorphism

EH � ROut(H)
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of algebras. In particular, we can lift any simple ROut(H)-module V to a simple EH -module,
still denoted by V .

Denote by eH the evaluation at H functor, that is, let eH : BisetR → EH -mod be the functor
sending a biset functor to its value at the group H . Now let LH,V denote the left adjoint of the
functor eH . Explicitly, for a finite group K , we get

LH,V (K) = HomC(H,K) ⊗EH
V.

The action of a biset on LH,V is given by composition of morphisms. The functor LH,V has a
unique maximal subfunctor

JH,V (K) =
{∑

i

φi ⊗ vi

∣∣∣ ∀ψ ∈ HomCG
(K,H),

∑
i

(ψφi)vi = 0

}
.

Hence taking the quotient of LH,V with this maximal ideal, we obtain a simple biset functor

SH,V := LH,V /JH,V .

Moreover, we have

Theorem 2.2. (See Bouc [3].) Any simple biset functor is of the form SH,V for some finite group
H and a simple ROut(H)-module V .

As mentioned in the introduction, the main examples of the biset functors are the functor of
the Burnside ring and the functor of the representation ring. Further, over a field of characteristic
zero, the rational representation ring is an example of a simple biset functor. More precisely, Bouc
proved in [3] that the biset functor of rational representation ring QRQ over Q is isomorphic to
the simple biset functor S1,Q. Another interesting example of a simple biset functor is the functor
SCp×Cp,Q defined only over p-groups where p is a prime number. In [10], it is shown that this
functor is isomorphic to the functor of the Dade group QD with coefficients extended to the
rational numbers Q and there is an exact sequence of biset functors

0 → QD → QB → QRQ → 0.

Here the map QB → QRQ can be chosen as the natural map sending a P -set X to the permuta-
tion module QX. For an improvement of this result to Z, see [7] and for more exact sequences
relating these functors, see [11]. Some other well-known examples of biset functors are the func-
tor of units of the Burnside ring [5] and the functor of the group of relative syzygies [6]. For
further details also see [1,3,8–10].

For the rest of the paper, we concentrate on the biset functors defined only for subquotients of
a fixed finite group G. We introduce some notations that will be used throughout the paper. Recall
that a subquotient of G is a pair (H ∗,H∗) where H∗ � H ∗ � G. We write the pair (H ∗,H∗)
as H and denote the subquotient relation by H � G. Here, and afterwards, we regard any group
L as the subquotient (L,1). We write H �G G to mean that H is taken up to G-conjugacy and
write H �∗ G to mean that H is taken up to isomorphism. Note that we always consider H as the
quotient group H ∗/H∗. Clearly the relation � extends to a relation on the set of subquotients of
G in the following way. Let J and H be two subquotients of G. Then we write J � H if and only
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if H∗ � J∗ and H ∗ � J ∗. In this case the pair (J ∗/H∗, J∗/H∗) is a subquotient of H . Finally we
say that two subquotients H and K of G are isomorphic if and only if they are isomorphic as
groups, that is, if H ∗/H∗ ∼= K∗/K∗.

In this case, we have the category CG of subquotients of G with objects the groups H as H

runs over the set of subquotients of G and with the same morphisms and the same composition
product as C. Note that since the set HomC(H,K) of (H,K)-bisets depends only on the subquo-
tients of the groups H and K , it is easy to generalize the results from the finite category CG to
the infinite case.

Now we define a biset functor for G over R as an R-linear functor CG → R-mod. We also
denote by BisetR(G) the category of biset functors for G over R.

Finally let us introduce a notation that we will use throughout the paper. Let H,K � G. We
define the intersection H � K of the subquotients of H and K as

H � K = (H ∗ ∩ K∗)H∗
(H ∗ ∩ K∗)H∗

.

Note that, in general, this intersection is neither commutative nor associative. But, there is an
isomorphism of groups

λ : H � K → K � H

which we call the canonical isomorphism between the groups H � K and K � H . The isomor-
phism is the one that comes from the Zassenhaus–Butterfly Lemma.

3. Alchemic algebra

It is clear that the category of BisetR(G) of biset functors for G over R is equivalent to the
category of modules of the algebra ΓR(G) defined by

ΓR(G) =
⊕

H,K�G

HomC(H,K).

It is evident that this algebra has a basis consisting of the isomorphism classes of transitive bisets.
Hence by Theorem 2.1, it is generated by the five special types of bisets, namely by transfer,
inflation, isomorphism, deflation and restriction bisets. Following [1], we call this algebra the
alchemic algebra for G over R, written shortly as Γ when G and R are understood.

It is possible to define the alchemic algebra by forgetting the bisets altogether. In order to
do this, we can consider the algebra generated freely over R by the five types of variables cor-
responding to the five special types of bisets. Then the alchemic algebra is the quotient of this
algebra by the ideal generated by relations between the variables induced by the Mackey product
of bisets. But the relations obtained in this way are not tractable. To get the relations in a tractable
way, we introduce two new amalgamated variables. Instead of the five variables, we consider the
composition of transfer and inflation as the first variable, which we call tinflation, and the com-
position of deflation and restriction as the second one, called destriction. The third and final
variable is the transport of structure by an isomorphism, which we call isogation. In this way, we
obtain a set of relations that is very similar to the defining relations of the well-known Mackey
algebra. Explicitly, consider the algebra freely generated over R by the following three types of
variables.
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V1. tinH
J for each J � H � G,

V2. desH
J for each J � H � G,

V3. cφ
M,L for each M,L � G such that M ∼= L and for each isomorphism φ : M → L.

Then we let Γ̃R(G), written Γ̃ , be the quotient of this algebra by the ideal generated by the
following relations.

R1. Let h : H → H denotes the inner automorphism of H induced by conjugation by h ∈ H .
Then ch

H,H = tinH
H = desH

H .
R2. Let L � J and ψ : M → S be an isomorphism. Then

(i) cψ
S,M cφ

M,L = c
ψ◦φ
S,L ,

(ii) tinH
J tinJ

L = tinH
L ,

(iii) desJ
L desH

J = desH
L .

R3. Let K � G and let α : H → K be an isomorphism and let αJ denote α(J ∗)/α(J∗), then
(i) cα

K,H tinH
J = tinK

αJ cα
αJ,J ,

(ii) desK
I cα

K,H = cα

I,α
−1

I
desH

α−1
I
.

R4. (Mackey relation.) Let I � H . Then

desH
I tinH

J =
∑

x∈I∗\H/J ∗
tinI

I�xJ cx◦λ desJ
J�Ix .

Here cx◦λ := cx◦λ
I�xJ,J�Ix and λ is the canonical isomorphism introduced in the previous

section.
R5. 1 = ∑

H�G cH where cH := c1
H,H .

R6. All other products of the generators are zero.

Remark 3.1. In [9], the amalgamated variables tinflation and destriction are abbreviated as indinf
and defres, respectively.

Even it is clear from the construction, the following theorem formally shows that the algebra
Γ̃ is isomorphic to the alchemic algebra Γ .

Theorem 3.2. The algebras Γ and Γ̃ are isomorphic.

Proof. The correspondence

tinH
J cφ

J,I desK
I → (H × K)/A

where A = {(h, k) ∈ J ∗ × I ∗: hJ∗ = φ(kI∗)} extends linearly to a map α : Γ̃ → Γ . We must
show that α is an algebra isomorphism. Indeed, α is an isomorphism of R-modules by Theo-
rem 2.1. Thus, it suffices to check that it respects the multiplication. We shall only check the
Mackey relation. The others can be checked similarly. First note that the images of tinflation and
destriction are

α
(
tinH

) = indH∗ infJ
∗/H∗∗ cλ ∗ =: (H × J )/T ′
J J /H∗ (J /H∗)/(J∗/H∗) (J /H∗)/(J∗/H∗),J
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and

α
(
desH

J

) = cλ−1

J,(J/H∗)/(J∗/H∗) defJ
∗/H∗

(J/H∗)/(J∗/H∗) resH
J ∗/H∗ =: (J × H)/R′

where λ is the canonical map J → (J ∗/H∗)/(J∗/H∗) and

T ′ = {(
jH∗, j ′J∗

) ∈ J ∗/H∗ × J : (jH∗)J∗/H∗ = λ
(
j ′J∗

)}

and

R′ = {(
jJ∗, j ′H∗

) ∈ J × J ∗/H∗:
(
j ′H∗

)
J∗/H∗ = λ(jJ∗)

}
.

Hence, we must show that

α
(
desH

I tinH
J

) = (I × H)/R′ ×H (H × J )/T ′.

By the Mackey product formula, we have

(I × H)/R′ ×H (H × J )/T ′ =
∑

x∈p2(R
′)\H/p1(T

′)
(I × J )/R′ ∗ (x,1)T ′

where

R ∗ T = {
(iI∗, jJ∗) ∈ I × J : (iI∗, hH∗) ∈ R and (hH∗, jJ∗) ∈ T for some hH∗ ∈ H

}
.

Straightforward calculations show that p1(R∗T )/k1(R∗T ) = I �J and p2(R∗T )/k2(R∗T ) =
J � I , and hence the Mackey relation. �

Hereafter, we shall identify Γ and Γ̃ via the above isomorphism α. Now let us describe the
free basis of the alchemic algebra consisting of the isomorphism classes of transitive bisets in
terms of the new variables. Clearly any transitive biset corresponds to a product of tinflation,
isogation and destriction, in this order. We are aiming to find an equivalence relation on the set
B = {tinH

J cφ
J,I desK

I : J � H, I � K, φ : I → J } such that under α, the equivalence classes of
the relation correspond to the isomorphism classes of transitive bisets.

Given two subquotients H and K of G. Also given subquotients J,A of H and subquotients
I,C of K such that there are isomorphisms φ : I → J and ψ : C → A. We say that the triples
(J, I,φ) and (A,C,ψ) are (H,K)-conjugate if there exist k ∈ K and h ∈ H such that

1. the equalities hJ = A and kI = C hold and
2. (compatibility of φ and ψ ) the following diagram commutes.

I

k

φ

J

h

C
ψ

A
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We denote by [J, I,φ] the (H,K)-conjugacy class of (J, I,φ). Then we obtain

Theorem 3.3. Letting H and K run over the subquotients of G and [J, I,φ] run over the (H,K)-
conjugacy classes of triples (J � H,I � K,φ : I → J ), the elements tinH

J cφ
J,I desK

I run, without
repetitions, over a free R-basis of the alchemic algebra Γ .

Proof. We are to show that (H,K)-conjugacy classes of the triples (J, I,φ) are in one-to-one
correspondence with the isomorphism classes of transitive (H,K)-bisets. This follows from the
following lemma. �
Lemma 3.4. Let H,K � G. Then there is a one-to-one correspondence between

(i) the (H,K)-conjugacy classes [J, I,φ] of triples (J, I,φ),
(ii) the isomorphism classes [X] of transitive (H,K)-bisets

where the correspondence is given by associating [J, I,φ] to the isomorphism class of the biset
α(tinH

J cφ
J,I desK

I ).

Proof. Let (J, I,φ) and (A,C,ψ) be two (H,K)-conjugate triples. Then we have to show that
the transitive bisets α(tinH

J cφ
J,I desK

I ) and α(tinH
A cψ

A,C desK
C ) are isomorphic. Let us write

α
(
tinH

J cφ
J,I desK

I

) = (H × K)/a

and

α
(
tinH

A cψ
A,C desK

C

) = (H × K)/b

for some subgroups a,b ∈ H × K given explicitly in the proof of Theorem 3.2. Let h ∈ H and
k ∈ K such that

hJ = A and kI = C.

We shall show that (h,k)a = b. Let (j, i) ∈ a. Then by the definition of α, we have jJ∗ = φ(iI∗).
Clearly, (hj, ki) ∈ A × C. So it suffices to show hjA∗ = ψ(kiC∗). But,

h(jJ∗) = hjJ∗h−1 = hjh−1hJ∗h−1 = hjA∗,

and

hφ(iI∗) = hφ
(
k−1(kik−1)(kI∗k−1)k)

h−1 = ψ
(
kiC∗

)

by the compatibility of φ and ψ . Hence hjA∗ = ψ(kiC∗), as required.
Conversely, let a,b ∈ H × K be two conjugate subgroups of H × K . Then we are to show

that the triples (p1(a)/k1(a),p2(a)/k2(a),φ) and (p1(b)/k1(b),p2(b)/k2(b),ψ) are (H,K)-
conjugate. Here φ and ψ are the canonical isomorphisms introduced in Theorem 2.1.
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Now let (h,k)a = b for some h ∈ H and k ∈ K . Then, clearly,

h
(
p1(a), k1(a)

) = (
p1(b), k1(b)

)

and

k
(
p2(a), k2(a)

) = (
p2(b), k2(b)

)
.

So, it suffices to show that the diagram

p2(a)/k2(a)

k

φ
p1(a)/k1(a)

h

p2(b)/k2(b)
ψ

p1(b)/k1(b)

commutes.
Let (a, c) ∈ b. Then by the definition of ψ , we have

ψ
(
ak2(b)

) = ck1(b).

But writing i = ak and j for the unique element j = ck , the left-hand side becomes

ψ
(
ak2(b)

) = ψ
(
kik−1kk2(a)k−1) = ψ

(
k
(
ik2(a)

)
k−1)

and the right-hand side becomes

ck1(b) = h
(
jk1(a)

)
h−1 = h

(
φ
(
jk2(a)

))
h−1.

Thus combining these two equality we get ψ(k(ik2(a))k−1) = hφ(jk2(a))h−1, as required. �
Note that the unit

1Γ =
∑

H�G

cH

of the alchemic algebra Γ induces a decomposition

F =
⊕
H�G

cH F

of any biset functor F into R-submodules. We call F(H) := cH F the coordinate module of F

at H .
Clearly the coordinate module F(H) at the subquotient H � G is a module for the truncated

subalgebra cH Γ cH of the alchemic algebra Γ . Now the actions of the generators can be seen
as maps between the coordinate modules. Explicitly, given J � H � G and M,L � G such that
there is an isomorphism φ : M → L, we have the following maps.
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M1. Tinflation map tinH
J : F(J ) → F(H).

M2. Destriction map desH
J : F(H) → F(J ).

M3. Isogation map cφ
M,L : F(L) → F(M).

In this case, the maps are subject to the relations (R2)–(R6) of the alchemic algebra together with
the following relation.

R1. The maps ch
H,H , tinH

H and desH
H where h : H → H is conjugation by h ∈ H are all equal to

the identity map for all subquotients H � G.

Hence we have defined a biset functor F as a quadruple (F, tin,des, c) where F is a family
consisting of R-modules F(H) for each H � G and there are three families of maps between
these modules given as above. It is straightforward to prove that this definition is equivalent to
any of the other two.

4. Alcahestic subalgebras and simple modules

In this section, we explore the simple modules of the alchemic algebra together with its certain
unital subalgebras, each called an alcahestic subalgebra. In particular, we describe the simple
modules of these subalgebras in terms of the head (or the socle) of induced (or coinduced) sim-
ple modules and using some particular choice of these subalgebras, we prove a classification
theorem for the simple modules. Note that Bouc’s classification of simple biset functors (The-
orem 2.2) follows from our classification theorem. Further, each of these subalgebras has two
special types of alcahestic subalgebras. These special subalgebras allow us to introduce a trian-
gle having similar properties as the Mackey triangle introduced in [12]. We shall not introduce
this triangle-structure in this paper. But all of the results in [12, Section 3] hold in this case with
some modifications. Furthermore it is easy to describe the coordinate modules of the functors in-
duced (or coinduced) from these subalgebras. We shall describe these functors for the alchemic
algebra in the next section.

To begin with, let Π be a subalgebra of the alchemic algebra Γ . We call Π an alcahestic
subalgebra3 of Γ if it contains cH for each subquotient H of G. Clearly the alchemic algebra
is an alcahestic subalgebra. Actually the subalgebras of immediate interest, for example the sub-
algebras realizing cohomology functors or homology functors or Brauer character ring functor,
are all alcahestic. However there is a more basic example of such algebras, defined below, which
allows us to parameterize the simple modules.

Let Π be an alcahestic subalgebra of Γ . We denote by ΩΠ the subalgebra of Π generated
by all isogations in Π . We call ΩΠ the isogation algebra associated to Π . We write Ω for the
isogation algebra associated to the alchemic algebra Γ . Clearly, ΩΠ is alcahestic since Π is.
The structure of the isogation algebra ΩΠ is easy to describe. We examine the structure since it
is crucial in proving our main results.

It is evident that the isogation algebra ΩΠ associated to Π has the following decomposition

ΩΠ =
⊕

I,J�G

cI ΩΠ cJ .

3 In alchemy, alcahest is the universal solvent. The decomposition of unity into a sum of the elements cH for H � G

allows us to decompose any module into coordinate modules as in Section 3.



O. Coşkun / Journal of Algebra 320 (2008) 2422–2450 2435
Now for a fixed subquotient H � G, the following isomorphism holds.

⊕
I,J∼=H

cI ΩΠ cJ
∼= Matn(cH ΩΠ cH )

where n is the number of subquotients of G isomorphic to H . In particular, we see that the
isogation algebra ΩΠ is Morita equivalent to the algebra

⊕
H��G

cH ΩΠcH . Here the sum is
over the representatives of the isomorphism classes of subquotients of G. Note that if Π is the
alchemic algebra, there is an isomorphism cH ΩcH

∼= ROut(H) of algebras. Recall that Out(H)

is the group of outer automorphisms of H .
Now simple modules of the algebra Matn(cH ΩΠ cH ) correspond to the simple cH ΩΠ cH -

modules. Hence the simple modules of the isogation algebra ΩΠ are parameterized by the pairs
(H,V ) where H is a subquotient of G and V is a simple cH ΩΠ cH -module. We call (H,V )

a simple pair for ΩΠ and denote by SΩ
H,V the corresponding simple ΩΠ -module. It is clear that

SΩ
H,V is the ΩΠ -module defined for any subquotient K of G by

SΩ
H,V (K) = φV if there exists an isomorphism φ : K → H

and zero otherwise. Note that the definition does not depend on the choice of the isomorphism
φ : K → H since any two such isomorphisms differ by an inner automorphism of H and the
group Inn(H) acts trivially on V .

More generally, for any alcahestic subalgebra Π , the following theorem holds.

Theorem 4.1. Let Π be an alcahestic subalgebra of the alchemic algebra Γ . There is a bijective
correspondence between

(i) the isomorphism classes of simple Π -modules SΠ ,
(ii) the isomorphism classes of simple ΩΠ -modules SΩ

H,V

given by SΠ ↔ SΩ
H,V if and only if H is minimal such that S(H) �= 0 and S(H) = V .

In other words, the above theorem asserts that given an alcahestic subalgebra Ω ′ of the iso-
gation algebra Ω and given any subalgebra Π of the alchemic algebra such that ΩΠ

∼= Ω ′, the
simple modules of Π are parameterized by simple Ω ′-modules.

We prove this theorem in several steps. The first step is to characterize the simple modules
in terms of images of tinflation maps and kernels of destriction maps. This characterization is
an adaptation of a similar result of Thévenaz and Webb [14] for Mackey functors. In particular,
this characterization implies that any simple Π -module has a unique minimal subquotient, up
to isomorphism, and the minimal coordinate module is simple. In order to do this, we introduce
two submodules of a Π -module F , as follows (cf. [14]). Let H be a minimal subquotient for F ,
that is, H is a subquotient of G minimal subject to the condition that F(H) �= 0. Define two
R-submodules of F by

IF,H (J ) =
∑

∼
Im

(
tinJ

I : F(I) → F(J )
)

I�J, I=H
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and

KF,H (J ) =
⋂

I�J, I∼=H

Ker
(
desJ

I : F(J ) → F(I)
)
.

Proposition 4.2. The R-modules IF,H and KF,H are Π -submodules of F , via the induced ac-
tions.

Proof. Let us prove that IF,H is a submodule of F . The other claim can be proved similarly.
Clearly, IF,H is closed under isogation. It is also clear that IF,H is closed under tinflation,
because of the transitivity of tinflation. So it suffices to show that IF,H is closed under destriction,
which is basically an application of the Mackey relation. Let A � K be subquotients of G and
let f be an element of IF,H (K). We are to show that desK

A f is an element of IF,H (A). Write

f =
∑
I

tinK
I fI

for some fI ∈ F(I). Here the sum is over all subquotients of K isomorphic to H . Applying the
Mackey relation, we get

desK
A f =

∑
I

desK
A tinK

I fI

=
∑
I

∑
y∈A∗\K/I∗

tinA
A�yI cyλ desI

I�Ay fI .

Since H is minimal for F , the last sum contains only the terms tinA
A�yI cyλ where A � yI is

isomorphic to H . Therefore desK
A f ∈ IF,H (A), as required. �

The characterization of simple Π -modules via these subfunctors is as follows (cf. [14] and
[16]).

Proposition 4.3. Let Π be an alcahestic subalgebra of the alchemic algebra Γ . Let S be a Π -
module. Let H be a minimal subquotient for S and let V denotes the coordinate module of S

at H . Then S is simple if and only if

(i) IS,H = S,
(ii) KS,H = 0,

(iii) V is a simple cH ΩΠ cH -module.

Proof. It is clear that if S is simple then the conditions (i) and (ii) hold. Also since H is minimal
such that S(H) �= 0, any map that decomposes through a smaller subquotient is a zero map. Thus
S(H) is a module of the algebra cH ΩΠ cH . But it has to be simple since any decomposition of
the minimal coordinate module gives a decomposition of S. Now it remains to show the reverse
implication. Suppose the conditions hold. Let T be a subfunctor of S. Since S(H) = V is simple,
T (H) is either 0 or V . If T (H) = V then by condition (i), it is equal to S. So, let T (H) = 0.
Then for any K � G, the module T (K) is a submodule of KS,H , because for any x ∈ T (K)
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and H ∼= L � K , we have desK
L x ∈ T (L) = 0. Thus by condition (ii), T (K) = 0, that is, T = 0.

Thus, any subfunctor of S is either zero or S itself. In other words, S is simple. �
Now it is clear that a simple Π -module S has a unique, up to isomorphism, minimal sub-

quotient, say H . Moreover the coordinate module at H is a simple cH ΩΠ cH -module. That is
to saying that there is a map from the set of isomorphism classes of simple Π -modules to the
set of isomorphism classes of the simple pairs (H,V ) for ΩΠ , justifying the existence of the
correspondence of Theorem 4.1.

The second step in proving Theorem 4.1 is to describe the behavior of simple modules under
induction and coinduction to certain alcahestic subalgebras. We need two more definitions.

Let Π still denote an alcahestic subalgebra. Define the destriction algebra ∇Π associated
to Π as the subalgebra of Π generated by all destriction maps and isogation maps in the alge-
bra Π . Similarly define ΔΠ , the tinflation algebra4 associated to Π . We write ∇ and Δ for the
destriction algebra and the tinflation algebra associated to the alchemic algebra Γ , respectively.
Clearly, both ∇Π and ΔΠ are alcahestic subalgebras since Π is.

Now we are ready to state our main theorem. This theorem is a precise statement of Theo-
rem 1.2.

Theorem 4.4 (Correspondence Theorem). Let Π ⊂ Θ be two alcahestic subalgebras of the al-
chemic algebra and SΠ be a simple Π -module with minimal subquotient H and denote by V the
coordinate module of S at H .

(i) The Θ-module indΘ
Π SΠ has a unique maximal submodule provided that ∇Π = ∇Θ . More-

over the minimal subquotient for the simple quotient is H and the coordinate module of the
simple quotient at H is isomorphic to V .

(ii) The Θ-module coindΘ
Π SΠ has a unique minimal submodule provided that ΔΠ = ΔΘ . More-

over the minimal subquotient for the minimal submodule is H and the coordinate module of
the simple submodule at H is isomorphic to V .

Proof. We only prove part (i). The second part follows from a dual argument. First, observe
that the subquotient H is minimal for the induced module F := indΘ

Π SΠ
H,V since ∇Π = ∇Θ .

Moreover observe that there is an isomorphism F(H) ∼= V . Therefore the submodule KF,H is
defined. We claim that KF,H is the unique maximal submodule of F .

To prove this, let T be a proper submodule of F . We are to show that T � KF,H . Since
S is generated by its coordinate module at H , the Θ-module F is generated by its coordinate
module at H which is simple. So T (H) must be the zero module. Now let K � G be such
that T (K) �= 0. Then clearly, T (K) � KF,H (K) as desK

L f ∈ T (L) = 0 for any f ∈ T (K) and
L ∼= H . Thus T � KF,H , as required. �

To prove Theorem 4.1, we examine a special case of the Correspondence Theorem. This spe-
cial case also initiates the process of describing simple Θ-module via induction or coinduction
using Theorem 4.4. First we describe simple destriction and tinflation modules. For complete-
ness, we include the description of simple ΩΠ -modules.

4 Our notation is consistent with that of ancient alchemists. In alchemy, the symbols of fire and water are Δ and ∇ ,
respectively. The symbols of air and earth are the same as the symbols of fire and water, respectively, with an extra
horizontal line dividing the symbol into two. Moreover quintessence is also known as spirit which has the symbol Ω .
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Proposition 4.5. Let Π be an alcahestic subalgebra and (H,V ) be a simple pair for the isogation
algebra ΩΠ associated to Π . Then

(i) the ΩΠ -module SΩ
H,V is simple. Moreover any simple ΩΠ -module is of this form for some

simple pair (H,V ).
(ii) The ∇Π -module S∇

H,V := inf∇Π

ΩΠ
SΩ

H,V is simple. Moreover any simple ∇Π -module is of this
form for some simple pair (H,V ) for ΩΠ .

(iii) The ΔΠ -module SΔ
H,V := infΔΠ

ΩΠ
SΩ

H,V is simple. Moreover any simple ΔΠ -module is of this
form for some simple pair (H,V ) for ΩΠ .

Here the inflation functor inf∇Π

ΩΠ
is the inflation induced by the quotient map Π → Π/J (∇Π)

where J (∇Π) is the ideal generated by proper destriction maps, that is,

J (∇Π) = {
cφ
H,K desK

I ∈ ∇Π : I �= K or M �= Y
}
.

We identify the quotient with the isogation algebra ΩΠ in the obvious way.

Proof. The first part follows from the above discussion of simple isogation modules. Moreover
it is clear that the module S∇

H,V is simple. To see that any simple is of this form, notice that if
a ∇-module D has non-zero coordinates at two non-isomorphic subquotient, then D has a non-
zero submodule generated by the coordinate module at the subquotient of minimal order. So any
simple ∇Π -module has a unique, up to isomorphism, non-zero coordinate module. Clearly, this
coordinate module should be simple. The same argument applies to the second part. �
Remark 4.6. Alternatively, one can apply the correspondence theorem to obtain simple ∇Π -
modules and simple ΔΠ -modules. In the first case, to identify the submodule K, one should
identify desJ

I with cI desJ
I cJ . Similar modification is also needed to identify the submodule I .

Evidently, for any alcahestic subalgebra Π , the destriction algebra ∇Π and the tinflation alge-
bra ΔΠ associated to Π are the minimal examples of the subalgebras satisfying the conditions of
the first and the second part of the Correspondence Theorem, respectively. The following corol-
lary restates the Correspondence Theorem for these special cases. We shall refer to this corollary
in proving Theorem 4.1 and also in describing the simple biset functors in the next section.

Corollary 4.7. Let Π be an alcahestic subalgebra of the alchemic algebra such that the destric-
tion algebra ∇Π and the tinflation algebra ΔΠ are proper subalgebras. Let (H,V ) be a simple
pair for the isogation algebra ΩΠ associated to Π .

(i) The Π -module indΠ∇ S∇
H,V has a unique maximal subfunctor. Moreover H is a minimal sub-

quotient for the simple quotient and the coordinate module of S at H is isomorphic to V .
(ii) The Π -module coindΠ

Δ SΔ
H,V has a unique minimal subfunctor. Moreover H is a minimal

subquotient for the simple subfunctor and the coordinate module of S at H is isomorphic
to V .

Now, we are ready to prove Theorem 4.1. By Corollary 4.7, we associated a simple module
SΠ

H,V to each simple pair (H,V ) for the isogation algebra ΩΠ . Clearly this is an inverse to the
correspondence described above. So it suffices to show that the correspondence is injective. This
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is equivalent to show that any simple Π -module with minimal subquotient H and S(H) = V is
isomorphic to SΠ

H,V . So let S be a simple Π -module with this property. Then we are to exhibit

a non-zero morphism SΠ
H,V → S. By our construction of SΠ

H,V , it suffices to exhibit a morphism

φ : indΓ∇ S∇
H,V → S such that φH is non-zero. The morphism exists since

HomΠ

(
indΠ∇ S∇

H,V , S
) ∼= Hom∇

(
S∇

H,V , resΠ∇ S
) ∼= HomROut(H)(V ,V ) �= 0.

Here the first isomorphism holds because induction is left adjoint of restriction. On the other
hand, the second isomorphism holds since S∇

H,V is non-zero only on the isomorphism class

of H . Now the identity morphism V → V induces a morphism φ : indΠ∇ S∇
H,V → S. Clearly, φH

is non-zero, as required. Therefore we have established the injectivity, as required.
Having proved the classification theorem, we can restate the Correspondence Theorem more

precisely. Let Π ⊂ Θ be two alcahestic subalgebras of the alchemic algebra Γ and (H,V ) be a
simple pair for the isogation algebra ΩΠ .

(i) The Θ-module indΘ
Π SΠ

H,V has a unique maximal submodule provided that ∇Π = ∇Θ . More-

over the simple quotient is isomorphic to SΘ
H,V .

(ii) The Θ-module coindΘ
Π SΠ has a unique minimal submodule provided that ΔΠ = ΔΘ .

Moreover the simple submodule is isomorphic to SΘ
H,V .

Finally the next result shows that in both cases of the Correspondence Theorem, the inverse
correspondence is given by restriction.

Theorem 4.8. Let Π ⊂ Θ be alcahestic subalgebras of the alchemic algebra. Then

(i) the Π -module resΘ
Π SΘ

H,V has a unique maximal submodule, provided that ΔΠ = ΔΘ . More-

over the simple quotient is isomorphic to SΠ
H,V .

(ii) The Π -module resΘ
Π SΘ

H,V has a unique minimal submodule, provided that ∇Π = ∇Θ . More-

over this submodule is isomorphic to SΠ
H,V .

Proof of the first part of (i) is similar to the proof of Theorem 4.4. Indeed the maximal subfunc-
tor of the restricted module resΘ

Π SΘ
H,V is generated by intersection of kernels of the destriction

maps having range isomorphic to H . Note that this subfunctor is non-zero, in general. The second
part of (i) follows from Theorem 4.1. Part (ii) can be proved by a dual argument.

In particular, this theorem shows that restriction of a simple Θ-module to a subalgebra Π is
indecomposable provided that Π contains either all destriction maps or tinflation maps in Θ .
On the other hand, if none of these conditions holds then the restricted module can be zero,
semisimple or indecomposable.

5. An application: simple biset functors

As an application of Theorem 4.7, we shall present two descriptions of the simple biset func-
tors by describing induction (and coinduction) from destriction (and tinflation) algebra. Similar
descriptions can be made for other alcahestic subalgebras. In [16], Webb constructed simple
functors for the alcahestic subalgebra generated by all tinflation and restriction maps. He called
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the modules of this algebra inflation functors. His construction is equivalent to the construction
by coinduction from the tinflation algebra associated to this subalgebra. In his paper, Webb also
constructed simple global Mackey functors. In our terminology, global Mackey functors are mod-
ules of the alcahestic subalgebra generated by all transfer, restriction and isogation maps and his
construction is, again, equivalent to the construction by coinduction from transfer algebra. Note
that another description, from restriction algebra, is also possible.

Turning to the construction of simple biset functors, we see that in general, our construction
is more efficient than Bouc’s construction in the sense that the biset functor in Theorem 4.7 is
smaller than the one in Section 2.2. It is also advantageous to have explicit descriptions of the
coordinate modules of the induced (or coinduced) modules.

In the following theorem, we characterize the coordinate modules of the induced module
indΓ∇ D where D is a ∇-module. The proof is similar to the proof of Theorem 5.1 in [12] but we
include the proof to introduce our notation.

Theorem 5.1. Let D be a ∇-module and H be a subquotient of G. Then there is an isomorphism
of R-modules

(
indΓ∇ D

)
(H) ∼=

( ⊕
J�H

D(J )

)
H

where the right-hand side is the maximal H -fixed quotient of the direct sum.

Proof. Let

D+(H) :=
( ⊕

J�H

D(J )

)
H

.

We write [J, a]H for the image of a ∈ D(J ) in D+(H). Since H acts trivially, it is clear that
[J, a]H = h[J, a]H for all h ∈ H . Moreover, D+H is generated as an R-module by [J, a]H for
J �H H and a ∈ D(J ). Here �H means that we take J up to H -conjugacy. In other words,

D+(H) =
⊕

J�H H

{[J, a]H : a ∈ D(J )
}
.

On the other hand,

(
indΓ∇ D

)
(H) =

⊕
J�H H

{
tinH

J ⊗ a: a ∈ D(J )
}
.

Now tinH
J ⊗ a = 0 if and only if a ∈ I (Out(H))D(J ) where I (Out(H)) is the augmentation

ideal of ROut(H). Therefore, the correspondence tinH
J ⊗ a ↔ [J, a]H extends linearly to an

isomorphism of R-modules (indΓ∇ D)(H) ∼= D+(H). Evidently, this is an ROut(H)-modules
isomorphism. �

Let us describe the action of tinflation, destriction and isogation on the generating elements
tinH ⊗ a of the biset functor indΓ D. Note that we obtain these formulae by multiplying from
J ∇
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the left with the corresponding generator and use the defining relations of the alchemic algebra.
Let J � H � G and T � H � K and a ∈ D(J ). Finally let A � G such that φ : H ∼= A. Then

Tinflation tinK
H

(
tinH

J ⊗ a
) = tinK

J ⊗ a.

Destriction desH
T

(
tinH

J ⊗ a
) =

∑
x∈T ∗\H/J ∗

tinT
T �xJ ⊗ cxλ desJ

J�T x a.

Isogation cφ
A,H

(
tinH

J ⊗ a
) = tinA

φ(J ) ⊗ cφ

φ(J ),J a.

The other functor, that we will make use of, is coinduction from the tinflation algebra Δ to the
alchemic algebra Γ . We can describe the coordinate modules in terms of fixed-points as follows.

Theorem 5.2. Let E be a Δ-module and H � G. Then

(
coindΓ

Δ E
)
(H) ∼=

( ∏
J�H

E(J )

)H

where the right-hand side is the H -fixed points of the direct product.

The proof of this theorem is similar to the proof of the above theorem. We shall only describe
the actions of tinflation, destriction and isogation on the tuples (xJ )J�H . Let J � H � G and
T � H � K and A � G such that φ : H ∼= A. Then

Tinflation
(
tinK

H

(
(xJ )J�H

))
I
=

∑
y∈I∗\K/H ∗

tinI
I�yH , cyλ xH�Iy .

Here, we write xL for the Lth coordinate of an element x ∈ coindΓ
Δ E.

Destriction desH
T

(
(xJ )J�H

) = (xJ )J�T .

Isogation cφ
A,H

(
(xJ )J�H

) = (
φxφ−1(J )

)
J�A

where φx = cφ

J,φ−1(J )
x.

By these theorems together with Theorem 4.7, we obtain the following two descriptions of
the coordinate modules of the simple biset functors. For the first description, recall that S∇

H,V

denotes the simple ∇-module corresponding to the simple pair (H,V ) where H � G and V is
a simple ROut(H)-module. (Note that ROut(H) ∼= cH Ω cH .) By Theorem 5.1, the coordinate
module at K � G of the induced module indΓ∇ S∇

H,V is given by

indΓ∇ S∇
H,V (K) =

( ⊕
L�K,φ:L∼=H

φV

)
K

.

To obtain the coordinate module at K of the simple biset functor SH,V , we take the quotient
of the above module by the submodule K(K), defined in the proof of Theorem 4.4. Explicitly,
K(K) is generated by the elements x ∈ indΓ∇ S∇

H,V (K) such that desK
L x = 0 for any L � K

with L ∼= H . More explicit conditions on x can be obtained using the generating set {tinK
L ⊗ v:

L � K, L ∼= H, v ∈ S∇ (L)}.
H,V
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The second description provides the description of the coordinate modules of SH,V in terms
of the images of tinflation maps.

Corollary 5.3. Let H and K be subquotients of G and suppose that K contains H . Also let V

be a simple ROut(H)-module. Then the K th coordinate of SΓ
H,V is

SΓ
H,V (K) =

∑
I�K,φ:H∼=I

Im
(
tinK

I

)

where for v ∈ SΓ
H,V (I ) ∼= V , the J th coordinate of tinH

I v is given by

(
tinK

I v
)
J

=
∑

cyλ
J,I v

where the sum is over the representatives of the double cosets J ∗\K/I ∗ such that I = I � J y

and J = J � yI .

6. The mark morphism and semisimplicity

In this section, we introduce the mark morphism for biset functors. We also show that it
connects the two constructions of simple biset functors in an exact sequence. Furthermore we
prove a characterization of semisimplicity of the alchemic algebra in terms of the mark mor-
phism. As a corollary to this theorem, we give an alternative proof of the semisimplicity theorem
for the alchemic algebra proved independently by Barker [1] and Bouc. Note further that it is
straightforward to generalize this construction and the semisimplicity criterion to the alcahestic
subalgebras. The characterization is also valid in more general cases where a mark morphism ex-
ists, for example for Mackey functors. Finally we shall show that our criterion has an adaptation
to any finite-dimensional algebra over a field.

To introduce the mark morphism, let D be a ∇-module. We denote by πD the morphism

πD : resΓ
Δ indΓ∇ D → infΔΩ res∇

Ω D

that forgets the tensor product. That is, given subquotients H � K of G and an element a of
D(H), then πD

K (tinK
H ⊗a) = tinK

H a. Notice that since non-trivial tinflation maps of the Δ-module
infΔΩ res∇

Ω D are the zero maps, the morphism πD
K is actually the projection indΓ∇ D(K) → D(K).

Now via the following adjunction

HomΓ

(
indΓ∇ D, coindΓ

Δ infΔΩ res∇
Ω D

) ∼= HomΔ

(
resΓ

Δ indΓ∇ D, infΔΩ res∇
Ω D

)

we obtain a map

βD : indΓ∇ D → coindΓ
Δ infΔΩ res∇

Ω D.

Explicitly, given a subquotient H of K and an element tinK
H ⊗ a in indΓ∇ D(K), the morphism

βD is given by

βD
(
tinK ⊗ a

) = (
πI

(
desK tinK ⊗ a

))
.
K H I H I�K
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Following Boltje [2], we call βD the mark morphism for D. Using the Mackey relation, we can
calculate βD

K more explicitly, as follows (cf. [2]):

βD
K

(
tinK

H ⊗ a
) =

(
πI

( ∑
x∈I∗\K/H ∗

tinI
I�xH cx◦λ desH

H�Ix⊗a

))
I�K

=
( ∑

x∈I∗\K/H ∗,I=I�xH

cx◦λ desH
H�Ix a

)
I�K

.

Remark 6.1. The mark morphism defined as above is a generalization of the well-known mark
homomorphism

βG : B(G) → B(G)

where B(G) is the Burnside ring of G and B(G) is the ghost ring of the Burnside ring. The
ghost ring B(G) is defined as the dual of the Burnside ring and is isomorphic to the space of
Z-valued functions constant on conjugacy classes of subgroups of G, i.e. B(G) = (

∏
H�G Z)G.

The mark morphism is now given by associating a finite G-set X to the function (|XH |)H�G.
For appropriate choices, this morphism becomes a special case of the morphism between Boltje’s
plus constructions. For a detailed explanation, see [2].

Now if we put D = S∇
H,V , the simple ∇-module associated to the simple pair (H,V ), then

clearly infΔΩ res∇
Ω S∇

H,V = SΔ
H,V . Hence the mark morphism is a morphism between the two dual

constructions

βH,V : indΓ∇ S∇
H,V → coindΓ

Δ SΔ
H,V .

Moreover, we have the following exact sequence.

Proposition 6.2. The following spliced sequence is exact.

0 KindΓ∇ S∇
H,V ,H indΓ∇ S∇

H,V

βH,V

coindΓ
Δ SΔ

H,V
CH,V 0

SΠ
H,V

0 0

where CH,V = coindΓ
Δ SΔ

H,V /IcoindΓ
Δ SΔ

H,V ,H .

Proof. It suffices to show that the kernel of the mark morphism is the unique maximal subfunctor
of indΓ∇ S∇

H,V . The inclusion kerβH,V ⊂ KindΓ∇ S∇
H,V ,H is trivial, as the right-hand side is maximal

and βH,V is non-zero. To show the reverse inclusion, let K � G and a ∈ KindΓ∇ S∇
H,V ,H (K). Then

β
H,V
K (a) = (

πI

(
desK

I a
))

I�K,I∼=H
= 0

as by definition of KindΓ S∇ ,H (K), we have desK
I a = 0 for any I ∼= H . �
∇ H,V
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The following is immediate from the exactness of the above sequence.

Corollary 6.3. Let (H,V ) be a simple pair for Ω over a field R and K � G. Then

dimR SΓ
H,V (K) = rankβ

H,V
K .

Note that when G is a p-group for some prime p and V = R is the trivial ROut(H)-module,
the matrix for the mark morphism is the same as the matrix for the bilinear form introduced by
Bouc in [3].

A special case of the mark morphism is the well-known natural morphism, called the lin-
earization morphism

QlinG : QB(G) → QRQ(G)

where B(G) is the Burnside group, as above, and RQ(G) is the Grothendieck group of rational
representation of G. The morphism is given by associating a G-set X to the permutation module
QX. To see that this morphism is a mark morphism, we prove the following identification of the
Burnside biset functor BG.

Proposition 6.4. There is an isomorphism of biset functors BG ∼= indΓ∇ S∇
1,1 where S∇

1,1 is the
simple ∇-module having one copy of the trivial module at each trivial coordinate.

Proof. We need to specify an isomorphism Φ : BG → indΓ∇ S∇
1,1 of biset functors. To do this,

we specify an isomorphism ΦH : BG(H) → indΓ∇ S∇
1,1(H) of R-modules for each H � G

which is compatible with the actions of tinflation, destriction and isogation. By Theorem 5.1,
indΓ∇ SG

1,1(H) is generated by {tinH
L/L ⊗ 1: L � H }. Now we define ΦH by associating [H/L] to

tinH
L/L ⊗ 1. Straightforward calculations show that Φ is an isomorphism of biset functors. �
Now the image of the mark morphism β1,1 is the simple biset functor S1,1 by Proposition 6.2.

It is shown by Bouc [3] that over a field of characteristic zero, the functor of rational representa-
tions is simple and isomorphic to S1,1. Hence, over a field of characteristic zero, the linearization
morphism linG and the mark morphism β

1,1
G coincide since they coincide on the trivial sub-

group. Note that the mark morphism is given explicitly by associating tinH
L/L ⊗ 1 to the function

(|K\H/L|)K/K�H where |K\H/L| is the number of double coset representatives of K and L

in H . Notice that the mark morphism for the Burnside biset functor is different than the usual
mark morphism, which indeed is not a morphism of biset functors. Finally, in [9], Bouc describe
the biset functor structure of the kernel of the linearization morphism for p-groups where p is a
prime number. Over a field of characteristic zero and for a p-group P , the kernel is known to be
isomorphic to the rational Dade group Q ⊗ D(P ) as mentioned in Section 2.

Another corollary of Proposition 6.4 is the following well-known result, see [3] and [1].

Corollary 6.5. Let R be a field. Then the Burnside biset functor BG is the projective cover of the
simple biset functor S1,1.
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Indeed it is clear that the simple destriction functor S∇
1,1 is projective, which implies that BG

is projective. Also it is indecomposable since the adjunction isomorphism

HomΓ

(
indΓ∇ S∇

1,1, indΓ∇ S∇
1,1

) ∼= Hom∇
(
S∇

1,1, resΓ∇ indΓ∇ S∇
1,1

)

is actually an isomorphism of rings. Further to this, the following dual statement also holds.

Proposition 6.6. There are isomorphisms of biset functors BG ∼= coindΓ
Δ SΔ

1,1
∼= I1,1 where BG

denotes the functor of the ghost ring of Burnside ring and I1,1 denotes the injective hull of the
simple biset functor S1,1.

In particular, S1,1 is both projective and injective if and only if the mark morphism
β1,1 : BG → BG is an isomorphism. This observation inspires the following criterion of semisim-
plicity, which is a precise statement of Theorem 1.3. Note that the equivalence of the first two
statements is proved independently by Barker [1] and Bouc.

Theorem 6.7. Let G be a finite group and R be a field of characteristic zero. The following
statements are equivalent.

(i) The alchemic algebra ΓR(G) for G over R is semisimple.
(ii) The group G is cyclic.

(iii) The mark morphism βH,V : indΓ∇ S∇
H,V → coindΓ

Δ SΔ
H,V is an isomorphism for any simple

pair (H,V ) for Ω .

We prove the theorem in two steps. The first step is to prove the equivalence of (i) and (iii).
This follows from the following criterion of projectiveness and injectivity of the simple biset
functors.

Theorem 6.8. Let (H,V ) be a simple pair for Ω such that V is projective. Then the following
statements are equivalent.

(i) The simple biset functor SΓ
H,V is both projective and injective.

(ii) The mark morphism βH,V : indΓ∇ S∇
H,V → coindΓ

Δ SΔ
H,V is an isomorphism.

Proof. First, suppose that β is an isomorphism. We are to show that the simple biset functor
SΓ

H,V is both injective and projective. By the exact sequence in Proposition 6.2, we get

indΓ
Δ S∇

H,V
∼= SΓ

H,V
∼= coindΓ∇ SΔ

H,V .

Now consider any short exact sequence

0 K F
φ

SΓ
H,V 0

of biset functors. By the second isomorphism above we get φ ∈ HomΓ (F, coindΓ∇ SΔ
H,V ). (Note

that since φ is a morphism of biset functors, preimage of any v ∈ SΓ
H,V (X) is in the kernel of

destriction maps to the isomorphism class of H .) By adjointness of coinduction and restriction
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we get a morphism φ̄ ∈ Hom∇(resΓ∇ F,SΔ
H,V ). Since V is projective as an ROut(H)-module,

the morphism φ̄H : F(H) → V of ROut(H)-modules splits. That is to saying that V is a direct
summand of the ROut(H)-module F(H). Therefore, there is a morphism ψ̄ : S∇

H,V → resΓ
Δ F of

Δ-modules given by sending V to the direct summand of F(H) which is isomorphic to V . Now
by adjointness of induction and restriction the map ψ̄ induces a map ψ ∈ HomΓ (indΓ

Δ S∇
H,V ,F ).

Clearly the composition φ ◦ ψ is the mark homomorphism, which is an isomorphism by our
assumption. Hence the composition ψ ◦β−1 is the required splitting for the above exact sequence.

Similarly it can be shown that any short exact sequence of biset functors

0 SΓ
H,V

α
F C 0

splits, that is, SΓ
H,V is injective.

Conversely, suppose the simple biset functor SΓ
H,V is both injective and surjective. Then both

of the sequences

0 K indΓ
Δ S∇

H,V SΓ
H,V 0

and

0 SΓ
H,V coindΓ∇ SΔ

H,V C 0

splits. But indΓ
Δ S∇

H,V and coindΓ∇ SΔ
H,V are indecomposable. Hence the result follows. �

Now the equivalence of the statements (i) and (iii) of Theorem 6.7 is clear. Incidentally, the
approach of the proof of this theorem, applied in the context of Mackey functors, taken together
with [2, Proposition 2.4], can be used to give a proof of the following corollary.

Corollary 6.9. (See [15].) The Mackey algebra μR(G) is semisimple if and only if |G| is invert-
ible in R.

Indeed in [12], it is shown that the simple Mackey functors can be constructed using the
methods of the present paper. In particular, we have a mark morphism associated to each simple
Mackey functor SG

H,V where H is a subgroup of G and V is a simple RNG(H)/H -module. Now
one can modify the above proof to get the above corollary.

However, the mark morphism for the alchemic algebra for G over a field R of characteristic
zero is not an isomorphism, in general. In the following we find necessary and sufficient condition
for the mark morphism to be an isomorphism, completing the proof of Theorem 6.7. Note that
the result is inspired by the semisimplicity theorem proved by Barker and Bouc, independently.

Theorem 6.10. Let R be a field of characteristic zero. The mark morphism βH,V : indΓ∇ S∇
H,V →

coindΓ
Δ SΔ

H,V is an isomorphism for any simple pair (H,V ) for G if and only if the group G is
cyclic.

Proof. First, suppose G is not cyclic. We are to show that the mark morphism is not an isomor-
phism for some pair (H,V ). But we have indΓ S∇ ∼= BG by Lemma 6.4 and it is well known
∇ 1,1
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by a theorem of Ritter and Segal that RQ
∼= S1,1 is not isomorphic to BG. So the mark morphism

for the simple pair (1,1) is not an isomorphism.
Conversely, suppose that the group G is cyclic. Then we are to show that the mark morphism

is an isomorphism. But this is equivalent to showing that coindΓ
Δ SΔ

H,V and indΓ∇ S∇
H,V are sim-

ple, that is, to showing that the subfunctor IcoindΓ
Δ SΔ

H,V ,H of coindΓ
Δ SΔ

H,V is not proper and the

subfunctor KindΓ∇ S∇
H,V ,H is zero. We shall show the first claim. The second one follows from

a similar argument. Without loss of generality, we shall prove the claim for the top coordinate
module, that is we shall prove that coindΓ

Δ SΔ
H,V (G) = IcoindΓ

Δ SΔ
H,V ,H (G). For simplicity, write

I(G) for IcoindΓ
Δ SΔ

H,V ,H (G). Now any element of I(G) is a sum of tinflated elements tinG
I vI for

some I ∼= H and where we write vI for the generator of the one-dimensional ROut(H)-module
SΔ

H,V (I ). By Corollary 5.3, we have

(
tinG

I vI

)
J

=
∑

cyλ
J,I vI

where the sum is over the representatives of the double cosets J ∗\G/I ∗ such that I = I � J y

and J = J � yI . But G is cyclic, hence J y = J for any y ∈ G. Therefore the J th coordinate
(tinG

I vI )J of tinG
I vI is non-zero only if the equalities I = I � J and J = J � I hold. Moreover

when the equalities hold we have

(
tinG

I vI

)
J

= ∣∣J ∗\G/I ∗∣∣cλ
J,I vI .

Clearly cλ
J,I vI = vJ and hence

(
tinG

I vI

)
J

= ∣∣J ∗\G/I ∗∣∣vJ .

Finally we have

tinG
I vI = (∣∣J ∗\G/I ∗∣∣vJ

)
J∈SI

where SI = {J � G: J ∼= H, I = I � J, J = J � I }. Now our aim is to show that the set
B = {tinG

I vI : I � G, I ∼= H } forms a basis for the coordinate module coindΓ
Δ SΔ

H,V (G). In
order to show this, we first determine the set SI for any I and then show that the set B is lin-
early independent. Since the order of the set B is equal to the order of the canonical basis of
coindΓ

Δ SΔ
H,V (G), consisting of characteristic functions of subquotients of G, the proof would be

established.
Now write G = C1 × C2 × · · · × Cn as a direct product of (cyclic) Sylow subgroups. For

simplicity, we shall prove our claim for the case that H � C1. The general case follows from the
same argument.

Let I � G be a subquotient isomorphic to H . Then it is easy to see that J � G is in SI if and
only if the equalities J ∗ = I ∗ × Z and J∗ = I∗ × Z hold for some Z � G with (|J ∗|, |Z|) = 1.
Indeed the converse statement is trivial and the first implication follows from the equalities

J ∗

J∗
= (J ∗ ∩ I ∗)J∗

(J ∗ ∩ I∗)J∗
and

I ∗

I∗
= (I ∗ ∩ J ∗)I∗

(I ∗ ∩ J∗)I∗

using the fact that all groups involved are cyclic.
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Hence we obtain a description of the set SI . However we can make it more explicit. Let
J ∈ SJ be the subquotient with J ∗ has minimal order among all J ′ ∈ SI . Then clearly J � C1
and SJ = SI . Now we can identify the set SJ with the set of subgroups of G1 = G/C1. Note
further that given L,N ∈ SJ we have the equality

∣∣L∗\G/N∗∣∣ = ∣∣C1/J
∗∣∣∣∣L∗

1\G1/N
∗
1

∣∣
where L∗ = J ∗ × L∗

1 and N∗ = J ∗ × N∗
1 . Indeed we have

∣∣L∗\G/N∗∣∣ = |G|
|L∗N∗| = |G||L∗ ∩ N∗|

|L∗||N∗| .

Now both the denominator and the numerator of the last quotient is divisible by the square of the
order of J ∗. Canceling these, we get the above equality.

Hence it remains to show that the elements of the set B are linearly independent. It is clear that
the sets SI gives a partition of the set of subquotients of G isomorphic to H . Hence it suffices to
show that the elements of the set BJ = {tinG

I vI : I ∈ SJ } are linearly independent where J is the
representative of the set SJ with minimal order of its numerator. But this is clear since for any
I � J , we have

tinG
I vI = (∣∣C1/J

∗∣∣∣∣J ∗
1 \G1/I

∗
1

∣∣vI

)
I∈SJ

and any linear relation among these elements gives a linear relation between the columns of
the double coset matrix [|L\G1/N |]L,N�G1 which is well known to be invertible for cyclic
groups. Thus we have proved that coindΓ

Δ SΔ
H,V (G) = I(G) proving that coindΓ

Δ SΔ
H,V is simple,

as required. �
Now by Corollary 5.3, we can describe the simple biset functors for a cyclic group G, explic-

itly.

Corollary 6.11. Suppose the group G is cyclic. Let H � G and V be a simple ROut(H)-module.
Then

SΓ
H,V (K) =

⊕
C�K,φ:C∼=H

φV.

The isogation, destriction and tinflation maps are as in the Corollary 5.3.

We end with a generalization of Theorem 6.7 to the finite-dimensional algebras over a field.
Let A be a finite-dimensional algebra over a field k. Let e be an idempotent of the algebra A. We
denote by Ae the truncated subalgebra eAe.

Given a simple A-module V , it is well known that the restriction eV of V to the subalge-
bra Ae is either zero or a simple Ae-module. Conversely, given a simple Ae-module W , there
exists unique, up to isomorphism, simple A-module Se,W such that eSe,W

∼= W . Indeed we can
construct the simple module Se,W in two ways, as follows. See [13] for further details.

For the first construction, consider the A-module

F = indA W := Ae ⊗Ae W.
Ae
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It is clear that the A-module F satisfies eF ∼= W . However the A-module F is not necessarily
simple. We let K be the sum of all submodules of F annihilated by the idempotent e. Then it
is easy to show that the A-submodule K is the unique maximal submodule of the A-module F

and it intersects eF trivially. Therefore the quotient F/K is simple satisfying e(F/K) ∼= W . We
leave it as an easy exercise to show that the simple module F/K is unique, up to isomorphism.
Note further that the induced module F is indecomposable. To see this consider the adjunction
isomorphism

HomA(F,F ) ∼= HomAe(W, eF ) ∼= HomAe(W,W)

which is indeed an isomorphism of rings.
The second way of constructing the simple modules is to consider the dual construction. Let

W be as above. Put

E = coindA
Ae

W := HomAe(eA,W).

Again we have

eE = e HomAe(A,W) ∼= HomAe(eAe,W) ∼= W

since e is the identity element of Ae and we only consider the Ae-invariant maps. As above, the
A-module E is not simple, in general. But it is indecomposable, that is its socle is simple with the
property that e soc(E) ∼= W . Therefore by the uniqueness of the simple module Se,W , we have
soc(E) ∼= Se,W .

Now we are ready to prove our generalization, Theorem 1.4.

Proof of Theorem 1.4. It is clear that (1) implies (2). We shall prove that (2) implies (1). Given
a simple A-module V , we have gV �= 0 for some g ∈ {e, f }. Then by construction, we have
Sg,gV

∼= V . But by the assumption we have

Sg,gV
∼= indA

Ag
gV .

Moreover the simple module gV is projective since the algebra Ag is semisimple. Hence the
A-module V is projective. Similarly V is also injective. But V was arbitrary, thus A is semisim-
ple. �
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