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We introduce a theoretical formalism describing a wide class of ‘Which Path’ experiments in meso-
scopic/nanoscopic transport. The physical system involves a mesoscopic interferometer (e.g. an Aharonov–
Bohm ring with embedded dots or a side-coupled quantum dot) which is electrostatically coupled to a
nearby quantum point constriction. Due to the charge sensing effect the latter acts as a charge detector.
Therefore the interference pattern can be monitored indirectly by looking at the current characteristics
of the detector as shown in the experimental work of Buks et al. [E. Buks, R. Schuster, M. Heiblum,
D. Mahalu, V. Umansky, Nature (London) 391 (1998) 871]. We use the non-equilibrium Green–Keldysh
formalism and a second order perturbative treatment of the Coulomb interaction in order to compute
the relevant transport properties. It is shown that in the presence of the Coulomb interaction the current
through the detector exhibits oscillations as a function of the magnetic field applied on a single-dot AB
interferometer. We also discuss the dependence of the visibility of the Aharonov–Bohm oscillations on
the gate potential applied to the dot.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The quantum interference is one of the hallmarks of mesoscopic
physics and it is hard to overestimate its role in the context of
present and forthcoming nanoelectronics. Due to the greatly im-
proved semiconductor growth techniques it was possible to pro-
vide clear illustrations of quantum coherence in electronic trans-
port at nanoscale. Typical examples are the Aharonov–Bohm oscil-
lations of the current in nanorings with embedded dots [1–3] or
the mesoscopic Fano effect. [4] In particular, the transport experi-
ments using interferometers with quantum dots mentioned above
showed that the electron–electron interaction, which is certainly
inherent in such highly confined systems, does not destroy entirely
the quantum coherence. This fact opened the possibility of using
detection schemes, namely clever geometries in which a meso-
scopic system is coupled only via the Coulomb interaction to a
nearby system. The principle of the detection schemes relies heav-
ily on the charge sensing effect: in spite of the fact that there is
no charge transfer between the two subsystems the Coulomb in-
teraction implies that any change in the occupation number of the
interferometer is felt by the detector and vice versa. Nowadays the
charge sensing effect is commonly used in experiments.
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When the sensing effect is used in mesoscopic interferometry
one has to face a built-in phenomenon, the so-called dephasing.
Originally, this concept was introduced in order to describe the re-
duction of quantum coherence due to inelastic processes induced
by the coupling to a phonon bath or by electron–electron interac-
tion [5]. Obviously, the coupling to a phonon bath or the electron–
electron interactions in a quantum dot are not easily controlled in
actual experiments. Nevertheless, for two Coulomb coupled sub-
systems, as is the case with interferometer–detector geometry, one
can tune various parameters: the bias applied on the detector,
the distance between the detector and the relevant region of the
interferometer which is detected etc. Therefore, if the Coulomb in-
teraction leads to decoherence during the measurement operation
this effect can be controlled.

In this Letter we first review the theoretical description of the
charge sensing effect and controlled dephasing within the non-
equilibrium Green–Keldysh formalism. The interferometer we con-
sider was realized experimentally by Buks et al. [6] and contains
a mesoscopic ring with an embedded dot and a nearby quan-
tum point constriction (QPC) which plays the role of the detector.
This experiment was the first clear observation of the controlled
dephasing. More precisely, it is found that the visibility of the
Aharonov–Bohm oscillations is reduced when a finite bias is ap-
plied to the detector. In turn, for a very small bias no clear de-
phasing was observed. From the physical point of view, applying
the bias on the quantum point constriction increases the number
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of electrons that pass through it, increasing therefore the sensitiv-
ity of the detector.

Various methods were used to approach the controlled dephas-
ing problem from the theoretical point of view. Aleiner et al. [7]
used quantum field theoretical methods to compute the dephas-
ing rate. Levinson [8] studied the dephasing of a single level QD
coupled to a detector within the influence functional approach.
Hackenbroich [9] performed a master equation calculation of the
off-diagonal elements of the statistical operator of the same sys-
tem. Finally, Silva and Levit [10] discussed the dephasing for a
single level QD coupled to a quantum point constriction within
the Keldysh formalism.

The aim of this Letter is to complement the results presented in
Ref. [11] for a single-dot Aharonov–Bohm interferometer Coulomb
coupled to a charge detector, by considering in more detail the
effects of the location of the bias window with respect to the spec-
trum of the truncated ring that gives the background signal in the
Fano line and of the magnetic flux. We also pay particular atten-
tion to the visibility of the Aharonov–Bohm oscillations and show
its behavior as a function of the gate potential applied on the em-
bedded quantum dot. The Letter is organized as follows. Section 2
gives the relevant formal details and Section 3 presents numerical
results. We conclude with a brief summary in Section 4.

2. Theory

We describe our systems by tight binding Hamiltonians. The
general form is the following:

H(t) = H I + HL + HD + χη(t)(Hi + Ht), (1)

where H I , HD, HL stand for the Hamiltonian of the disconnected
noninteracting subsystems (interferometer (I), detector (D), leads
(L)) and the last two terms denote the coupling between the leads
and the two systems as well as the detector–interferometer inter-
action. According to the Keldysh formulation of electronic transport
[12] the coupling to the leads is adiabatically established in order
to provide an equilibrium state in the remote past. This is done
via the smooth switching function χη which obeys the condition
χη(−∞) = 0, η being the adiabatic parameter. Note that the chem-
ical potentials of the leads are different even in the remote past,
but in spite of this finite bias there is no current in the absence of
the coupling. The electron–electron interaction is also adiabatically
introduced, this simplification meaning that the initial correlations
are not taken into account (for more discussions about this prob-
lem see the paper by Wagner [13]).

The explicit form of the Hamiltonians is as follows:

H I =
∑
m∈I

εmd†
mdm +

∑
m �=n

tmn(ϕ)d†
mdn,

H D = ε0a†a, Hi = U
∑

m∈Q D

d†
mdma†a,

Ht = tLI
(
d†

mα
c0α + d†

mβ
c0β

) + tLD
(
a†c0γ + a†c0δ

) + h.c.

dm , d†
m are annihilation/creation operators in the mth site of the in-

terferometer and a†, a is the pair of creation/annihilation operators
associated with the detector. Similarly we have on leads the pair c,
c†. In the case of an Aharonov–Bohm interferometer the hopping
coefficients tmn have a Peierls phase due to the magnetic flux ϕ
piercing the ring. Hi describes the Coulomb interaction of strength
U between the embedded dot and the detector. Ht couples the in-
terferometer and the detector to the sites 0ν , ν = α, . . . , δ of the
lead ν . We denote by mα the site of the interferometer where the
lead α is attached. The corresponding hopping constants are tLI
and tLD. The calculation of the current implies computing the sta-
tistical average of the corresponding current operator with respect
to the time-dependent statistical operator of the coupled system.
However, in the long time limit a steady state is achieved in which
the non-equilibrium Green’s functions depend only on time differ-
ences. Using the Langreth rules for the Fourier transforms of the
Green–Keldysh function the current through the lead α can be ex-
pressed only in terms of the retarded and lesser Green functions at
the contact site α (we omit for simplicity the energy dependence
of all quantities below; for further details see [11]):

〈 Jα〉 = −et2
LI

h̄

∫
dE ρ Im

(
2G R

αα f α + G<
αα

)
. (2)

In the above equation ρ is the density of states in the lead and
fα(E) is the Fermi function in the lead α. The main technical prob-
lem one faces in computing the current is of course the calculation
of interacting Green functions. The Keldysh formalism provides a
Dyson equation on the Keldysh–Schwinger contour:

G = G0 + G0(ΣL + Σi)G = Geff + GeffΣi G, (3)

where G0 is the contour-ordered Green function of the noninter-
acting disconnected system and ΣL and Σi are the self-energies
due to the leads and to the interaction. The second equation is
obtained by summing the perturbation series with respect to the
self-energy of the leads and the ‘unperturbed’ Green function Geff
is the noninteracting Green function of the coupled system. When
taking explicit components of G on the Keldysh contour the above
generalized Dyson equation gives two equations for the retarded
and lesser Green function:

G R = G R
eff + G R

effΣ
R
i G R , (4)

G< = (
1 + G RΣ R

i

)
G<

eff

(
1 + Σ A

i G A) + G RΣ<
i G A, (5)

G<
eff = G R

effΣ
<
l G A

eff. (6)

We shall now derive an equivalent form of Eq. (2) which would
help us to understand, at the formal level, the differences be-
tween the Landauer formula for noninteracting systems and the
current formulas in the interacting case. To be more specific here
we shall consider that the interferometer contains a single site dot
and we denote this site by d. It is then clear that the interacting
self-energy is a matrix which has only one nonvanishing element
Σi,dd in the Hilbert space of the interferometer. The self-energy of
the leads is instead diagonal in the contact sites and depends only
on the retarded Green function of the leads at the endpoints 0ν
(see Eq. (16) in [11]). Using the identity G R − G A = 2iG R ImΣ R G A ,
Eq. (5) and the explicit expression for the self-energy of the leads
one obtains:

〈 Jα〉 = et2
LI

h̄

2tL∫

−2tL

dE
(
2πρ2G R

αβ G A
βα

(
f α − f β

)

− ρG R
αd Im

(
2Σ R

i,dd f α + Σ<
i,dd

)
G A

dα

)
, (7)

where the indices of the Green functions represent the contact
sites mα , mβ or the site d in the dot (for example, G R

αd is the
Fourier transform of the usual retarded Green function G R

αd(t, t′) =
−iθ(t − t′)〈{dmα (t),d†(t′)}〉. It can be noticed at once that the first
term from Eq. (7) resembles the Landauer formula for noninteract-
ing system, but one should keep in mind that the Green functions
appearing in this term have to be computed in the presence of
electron–electron interaction. The second term in the current for-
mula is a correction to the Landauer formula due to interaction
and was not explicitly taken into account in earlier papers. In
our previous work [11] we have extensively discussed the nontriv-
ial contribution of this term to the suppression of the quantum
coherence. A similar formula holds for the current through the
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detector which we shall denote by Jd . As for the interacting self-
energies we perform a perturbative calculation with respect to the
interaction strength. The formal/technical details are given in [11].
Essentially we compute the first and second order interaction self-
energies, which amounts to taking the first diagram in the Hartree
class and the polarization bubble. This last diagram contains the
inelastic processes in the systems originating from the Coulomb
interaction.

3. Results and discussion

We consider now the reduction of the mesoscopic Fano effect
in a single-dot Aharonov–Bohm interferometer coupled to a charge
detector. The interferometer contains three sites, two of them be-
ing (namely, 1 and 3) coupled to the leads. The remaining site (2)
is weakly coupled to the other two by a hopping constant which
we denote by τ . This site simulates the embedded dot. The detec-
tor is also a single level quantum dot coupled to two leads. There
is a bias applied on the leads, via the chemical potential in the
Fermi functions of each lead. We denote by V i the bias applied on
the interferometer and by Vd the bias applied on the detector. Only
the dot-detector Coulomb interaction is considered. This is an ap-
proximation and one may argue that for many-level quantum dots
the intradot electron–electron interaction could presumably play a
role. However, the induced decoherence that we review here is en-
tirely due to the dot-detector interaction.

Fig. 1(a) gives the current through the interferometer as a func-
tion of the gate potential V g applied on the dot. This potential
is simulated by adding a constant term to the on-site energy in
the Hamiltonian. There are three curves in Fig. 1(a) corresponding
to noninteracting case U = 0 and to U = 0.3 and U = 0.5. One can
notice at once that the interacting Fano lineshapes are reduced and
shifted with respect to the noninteracting Fano line. Also, as the
interaction strength increases a bump appears near the Fano dip.
Clearly, the visibility of the Fano line is reduced as U increases.
It turns out that the second term in the current formula is re-
sponsible for the bump in the full current curve given in Fig. 1(a)
(for more discussion see [11]). In the presence of Coulomb interac-
tion the charge sensing effect induces a dependence of the current
through the detector on the gate potential (we recall that V g is ap-
plied on the embedded dot only). The jump between the two steps
increases at larger interaction strength and its location corresponds
to the Fano lineshape in Fig. 1(a) (not shown).

We discuss now the suppression of the Aharonov–Bohm oscil-
lations due to the interaction and the finite bias on the detector.
To this end we fix the gate potential on the dot and vary instead
the magnetic flux on the ring. Fig. 1(b) shows curves for the cur-
rent through the interferometer as a function of the magnetic flux
for three values of the interaction strength U = 0, U = 0.3 and
U = 0.5. The oscillations are obtained at those values of V g that
correspond to the Fano peaks. The reduction of the AB oscilla-
tions is obvious. An important point to be discussed here is the
role of the finite bias on the detector. The curves given in Fig. 1
were obtained at Vd = 1.0. At lower values of the bias the dephas-
ing decreases at eventually disappears, in good agreement with the
experimental data [6]. The theoretical explanation behind this was
given in Ref. [11]. Essentially, it can be checked that at finite bias
on the detector the imaginary part of the interacting self-energy
Σ R exceeds the self-energy of the leads in the range of energy al-
lowed by the bias window on the interferometer. On the contrary,
at small bias ImΣ R 	 ImΣR

L .
As one may expect, the current through the detector depends

as well on the magnetic flux, although not in a symmetric fashion.
This is shown in Fig. 1(c). However, the oscillations of Jd decrease
as U takes larger values. This effect is again a consequence of
charge sensing. Also we have investigated the change of the in-
(a)

(b)

(c)

Fig. 1. (Color online.) (a) The total current through the detector as a function of
the gate potential applied on the embedded dot, at different interaction strengths.
Red line U = 0, blue line U = 0.3, green line U = 0.5. (b) The suppression of the
Aharonov–Bohm oscillations due to the charge sensing effect. (c) The charge sensing
effect induces a flux dependence of the current through the detector, at fixed gate
potential. Other parameters τ = 0.2, Vd = 1.0, V i = 0.1.

teracting Fano lineshape as function of the magnetic flux. It is well
known from the experiments and also from previous theoretical
works [14,15] that the sign of the Fano parameter q which gives
the asymmetry of the resonance changes as the magnetic flux is
varied. We found that this effect is still observable in the interact-
ing case (not shown).

The previous graphs were obtained with a symmetric bias, that
is μL,R = ±0.05 and ε1 = ε3 = 0. Fig. 2(a) shows interacting Fano
lines (U = 0.25 and U = 0.5) for the same bias window which
is instead pushed upwards by increasing the chemical potentials
of the leads with the same amount. The following facts are no-
ticed: (i) The resonances are shifted to the right, because for higher
bias window one needs larger gate potentials to bring the QD level
within the transmission region; (ii) The amplitude and the width
of the Fano line increase when the bias window moves up. Also the
background signal increases (compare also with the background
in Fig. 1(a)), suggesting that the distance between the bias win-
dow and that part of the interferometer spectrum which gives the
background contribution decreases. Evidently, this behavior is not
monotonous; for a higher bias window the background signal is
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(a)

(b)

Fig. 2. (Color online.) (a) The Fano lineshapes for two locations of the bias window
of the interferometer and for two values of the interaction strength. (b) The current
through the detector Jd signals the tunneling into and outside the dot. The red line
U = 0.25, and the green line U = 0.5 correspond to a bias window [0.65 : 0.75].
The blue line U = 0.25, and the violet line U = 0.5 correspond to a bias window
[0.45 : 0.55]. Other parameters τ = 0.2, Vd = 1.0, V i = 0.1.

reduced as the bias window moves away from the spectrum of the
truncated ring which is responsible for the background contribu-
tion (not shown). (iii) In spite of the changes in the Fano line we
just mentioned, Fig. 2(b) shows that the detector exhibits the same
jump at resonance, that is, its sensitivity does not depend on the
location of the bias window. Note also that the reduction of the
Fano line seems to be the same as the one given in Fig. 1(a).

Another result that is meant to complement our analysis of
measurement-induced decoherence is presented in Fig. 3. On one
hand we plot the amplitude of the Aharonov–Bohm oscillations as
a function of the gate potential V g for both interacting and nonin-
teracting cases. More precisely, for each value of the gate potential
we vary the magnetic flux and record the maxima and minima of
the Aharonov–Bohm oscillations. This amplitude actually measures
the visibility of the AB oscillations. One notices that both curves
are not monotonous and have a maximum point. The visibility in
the interacting case is lower, as expected. On the other hand we
give in the same figure the Fano lines associated with the minima
of the AB oscillations (for interacting and noninteracting case). It
is easy to see that the maxima of the visibility correspond to the
dips of the two Fano lines. Note that even in the interacting case
the Fano dip is close to zero, suggesting thus a low dephasing. We
have also investigated the two Fano lines at which the AB oscilla-
tions reach their maxima. It turns out that the highest visibility is
obtained somewhere around the Fano peak (not shown).

4. Conclusions

We have presented the theoretical description of the controlled
dephasing in mesoscopic interferometers with quantum dots using
Fig. 3. (Color online.) The visibility (i.e. the amplitude) of the Aharonov–Bohm os-
cillations as a function of the gate potential: red line U = 0.0, green line U = 0.2.
The two Fano lines are the ones that correspond to the minimum of the AB oscil-
lations: blue line U = 0.0, violet line U = 0.2. Other parameters: τ = 0.2, Vd = 1.0,
V i = 0.05.

the non-equilibrium Green–Keldysh formalism for the electronic
transport and a perturbative treatment of the electron–electron in-
teraction. The decoherence is induced by the Coulomb repulsion
between the charge detector and the embedded dot. Besides the
well-known step-like characteristics of the detector current around
a Fano resonance we find that the charge sensing effect also in-
duces an oscillatory behavior of this current as a function of the
magnetic field. Also, we show that by changing the position of
the bias window of the interferometer the Fano line is modified
but the detector shows a similar signal. Our formalism can be also
used for studying decoherence in interferometers with one of more
side-coupled quantum dots [16]. Further investigation of the con-
trolled dephasing should take into account the intradot Coulomb
interaction and also more accurate approximations for the Green
functions in the presence of electron–electron interaction.
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