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Abstract

We study sums involving multiplicative functions that take values over a nonhomogenous Beatty
sequence. We then apply our result in a few special cases to obtain asymptotic formulas for quantities
such as the number of integers in a Beatty sequence that are representable as a sum of two squares up to
a given magnitude.
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1. Introduction

Let A > 1 be an arbitrary constant, and let ¥4 be the set of multiplicative functions
f such that | f(p)| < A for all primes p and

Y IfmIP<A’N (N eN). M

n<N

Exponential sums of the form

Saf(N) =Y fmena) (@eR, feFa), ©)

n<N

where e(z) =e?™% for zeR, occur frequently in analytic number theory.
Montgomery and Vaughan have shown (see [8, Corollary 1]) that the upper bound

N N N(log R)*/?
log N R1/2

S, f(N) <4 3)

holds uniformly for all f € F4, provided that |o — a/q| < ¢~* with some reduced

fraction a/q for which 2 < R <g < N/R. In this paper, we use the Montgomery—
Vaughan result to estimate sums of the form
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328 A. M. Giiloglu and C. W. Nevans 2]

Gapf(N)= Y fn), )

n<N
nEBa,ﬁ

where o, B € Rwitha > 1, f € Fa, and By g is the nonhomogenous Beatty sequence
defined by
Byg=1{neN:n=|am + B] for some m € Z}.

Our results are uniform over the family ¥4 and nontrivial whenever

Z fm)|=

a condition which guarantees that the error term in Theorem 1 is smaller than the main
term. One can remove this condition, at the expense of losing uniformity with respect
to f, and still obtain Theorem 1 for any bounded arithmetic function f (not necessarily
multiplicative) for which the exponential sums in (2) satisfy

lim log N
im
N—oo N loglog N

Sa,f(N):o<Z f(n)) (N = 00).

n<N

The general problem of characterizing functions for which this relation holds appears
to be rather difficult; see [1] for Bachman’s conjecture and his related work on this
problem.

We shall also assume that « is irrational and of finite type r. For an irrational
number y, the type of y is defined by

T = sup {t € R:liminfn’ [yn] =0} ,
n—oo

where [[-] denotes the distance to the nearest integer. Dirichlet’s approximation
theorem implies that T > 1 for every irrational number y. According to theorems
of Khinchin [6] and Roth [10], T =1 for almost all real numbers (in the sense of
the Lebesgue measure) and all irrational algebraic numbers y, respectively; also
see [2, 11].

Our main result is the following theorem.

THEOREM 1. Let o, 8 € R with o > 1, and suppose that « is irrational and of finite
type. Then, for all f € Fa,

_ N loglog N
Gap f(N)=a"' Y f(n)+ 0<—>,
;’;\/ log N

where the implied constant depends only on a and A.

The following corollaries are immediate applications of Theorem 1.
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COROLLARY 2. The number of integers not exceeding N that lie in the Beatty
sequence By g and can be represented as a sum of two squares is

CN N loglog N
#Hn<N:neByg,n=0+0}= 0( og log )

+
a,/log N log N
where
c=2"" J] a-p7"*=076422365... (5)
p=3 mod 4

is the Landau—Ramanujan constant.

To state the next result, we recall that an integer n is said to be k-free if p {n for
every prime p.

COROLLARY 3. For every k > 2, the number of k-free integers not exceeding N that
lie in the Beatty sequence By g is

N loglog N
#n<N:neBuyg, n is k-free} = "'t T (k)N + 0(&)

log N
where {(s) is the Riemann zeta function.

Finally, we consider the average value of the number of representations of an integer
from a Beatty sequence as a sum of four squares.

COROLLARY 4. Let r4(n) denote the number of representations of n as a sum of four
squares. Then
272 2
T°N N<loglog N
E r4(n) = +0( £08 )

eyt 200 log N
nEBa‘ﬂ

where the implied constant depends only on .

Any implied constants in the symbols O and <« may depend on the parameters «
and A but are absolute otherwise. We recall that the notation X < Y is equivalent to
X=0().

2. Preliminaries

2.1. Discrepancy of fractional parts We define the discrepancy D(M) of a
sequence of real numbers by, by, ..., by €[0, 1) by
VI, M)

D(M) =
zclo,1)

— 171}, (6)

where the supremum is taken over all possible subintervals Z = (a, c) of the interval
[0, 1), V(Z, M) is the number of positive integers m < M such that b,, € Z, and
|Z| = ¢ — a is the length of Z.
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If an irrational number y is of finite type, we let D,, 5(M) denote the discrepancy of
the sequence of fractional parts ({ym + § }),]7‘1’121. By [7, Theorem 3.2, Ch. 2], we have
the following result.

LEMMA 5. For a fixed irrational number y of finite type T and for all § € R,
Dy s(M) < M~1TH0 (M — o),

where the function defined by o(-) depends only on y.

2.2. Numbers in a Beatty sequence The following result is standard in
characterizing the elements of the Beatty sequence By g.

LEMMA 6. Let a, B € R with a > 1, and set y —a ! and § =a’1(1 — B). Then
n = |am + B] for some m € Z if and only if 0 < {yn + 8} < y.

From Lemma 6, an integer n lies in By g if and only if n > 1 and ¥ (yn +68) =1,
where v is the periodic function with period one whose values on the interval (0, 1]
are given by

if0<x <y,

ify <x<1.

Y= {(1,

We wish to approximate ¥y by a function whose Fourier series representation is well
behaved. This will give rise to the aforementioned exponential sum S, ¢(N). To this
end, we use the result of Vinogradov (see [15, Ch. I, Lemma 12]) which states that for
any A such that

O<A<é and Af%min{y,l—y},

there exists a real-valued function W with the following properties:

(i) W is periodic with period one;

(i) 0<W¥((x)<lforalxelR;

(i) V) =y ) ifA<{x}<y—-Aorify+A<{x}<1-A;
(iv) W can be represented by a Fourier series

W(x) =) glke(kx),

keZ

where g(0) = y and the Fourier coefficients satisfy the uniform bound

g(k) < min{|k|™", [k|72AT) (K #0). (7)

3. Proofs

3.1. Proof of Theorem 1 Using Lemma 6, we rewrite the sum (4) in the form

Gapr(N) =Y f(m)Y(yn+9).

n<N
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Replacing i by W, we obtain
Gap.f(N)=Y_ f)W(yn+8)+ 0( > f(n)), ®)
n<N neV(A,N)
where V (A, N) is the set of positive integers n < N for which
{yn+48}el0,A)U(y —A, y+A)Ud-A,D.

Since the length of each interval above is at most 2A, it follows from definition (6)
and Lemma 5 that

IV(A, N)| < AN + N!71/@0),

where we have used the fact that « and y have the same type 7. Thus, taking (1) into
account, Cauchy’s inequality gives

1/2
> rm| < |va, N)|1/2(Z|f(n)|2>

neV(A,N) n<N

& ((AN)'2 4 N1/2=1/6G0) N1/

Next,let K > A~ bea large real number (to be specified later), and let Wk be the
trigonometric polynomial given by

Ugx)= Y gekx)=y+ Y  gketkr) (xeR). (10)

lk|<K O<[k|=K
Using (7), we see that the estimate
V() =¥x(x) +O0K'A™h
holds uniformly for all x € R; therefore,

D ¥ yn+8 =Y fVWkyn+8)+ 0K 'ATIN), 1D

n<N n<N

where we have used the bound ), <N | f(n)| < N which follows from (1).
Combining (8), (9), (10) and (11), we derive that

Gapy(N)=y > f)+HWN)+ OK'AT'N + A'2N 4+ N7V,
n<N

where

H(N) = Z g(k)e(kd)Sky, r(N).
0<l|k|<K
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Put R = (log N)3. We claim that if N is sufficiently large, then for every k in the above
sum there is a reduced fraction a/g such that |ky —a/q| <g~% and R <q < N/R.
Assuming this is true for the moment, (3) implies that

N
Sky. f(N) L —— (0 < k| = K);

log N
using (7), we then deduce that
HN) < 22K
log N
Therefore,
Gapr(N) =y Y f(n) < 1g%VK +KTIATIN 4 A2 4 NI4T

n<N
To balance the error terms, we choose
A = (log N)_2 and K=A3?= (log N)3,

thus obtaining the bound stated in the theorem.

To prove the claim, let £k be an integer with 0 < |k|] < K = (log N )3, and let
ri =a;/q; be the ith convergent in the continued fraction expansion of ky. Since
y is of finite type t, for every ¢ > 0 there is a constant C = C(y, ¢) such that

CIklgi-1)~ ") < [ylklgi-1] < |y Iklgi-1 —ai1] < g
Put ¢ =7, and let j be the least positive integer for which g; > R (note that j > 2).
Then
R < q; < (klgi-)*" = (KR)* = (log N)*",
and it follows that R < g; < N/Rif N is sufficiently large, depending only on «. This
concludes the proof. O

3.2. Proof of Corollary 2 Let f(n) be the characteristic function of the set of
integers that can be represented as a sum of two squares. It follows from [4,
Theorem 366] that f(n) is multiplicative. Hence Corollary 2 is an immediate
consequence of Theorem 1 and the asymptotic formula

N
%, 0= Gy + ()

n<N
(see, for example, [12, 13]), where C is given by (5). O
3.3. Proof of Corollary 3 Fix k > 2 and let f (n) be the characteristic function of the
set of k-free integers. It is easily proved that f(n) is multiplicative. Thus Corollary 3

follows from Theorem 1 and the following estimate of Gegenbauer [3] for the number
of k-free integers not exceeding N:

YNy =" kN + OoN'h). O

n<N
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3.4. Proof of Corollary 4 Put f(n) =rs(n)/(8n). From Jacobi’s formula for r4(n),
namely

() =82+ (D" Y d (=1,
doda

it follows that f (n) is multiplicative and that f(p) < 3/2 for every prime p. Moreover,
using the formula of Ramanujan [9] (see also [14]),

> ot = % (3)N? + O(N*(log N)?)
n<N

where o is the sum of divisors function, we obtain

2 5
S 1rmP = Y T8 =2 caIN + 0ttlog M)

n<N n<N

by partial summation. Therefore, f(n) € £4 for some constant A > 1. Applying
Theorem 1, we deduce that

N loglog N
Z r4(n) — ! Z r4(n) n 0( og log )’
= " = N log N
nEBa‘ﬂ

where the implied constant depends only on .
From the asymptotic formula

272

Z r4a(n) = N

n<N

4+ O(N log N)

(see for example [5, p. 22]), partial summation gives

> ”fq—") = 72N + O((log N)?).

n<N
Consequently,
N log log N
Y B iy 0(—g = )
= " log N
nEBayﬁ
Using partial summation once more, we obtain the statement of Corollary 4. O
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