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Abstract We introduce the concept of a base conformal warped product of two pseudo-
Riemannian manifolds. We also define a subclass of this structure called as a special base
conformal warped product. After, we explicitly mention many of the relevant fields where
metrics of these forms and also considerations about their curvature related properties play
important rolls. Among others, we cite general relativity, extra-dimension, string and super-
gravity theories as physical subjects and also the study of the spectrum of Laplace-Beltrami
operators on p-forms in global analysis. Then, we give expressions for the Ricci tensor and
scalar curvature of a base conformal warped product in terms of Ricci tensors and scalar
curvatures of its base and fiber, respectively. Furthermore, we introduce specific identities
verified by particular families of, either scalar or tensorial, nonlinear differential operators
on pseudo-Riemannian manifolds. The latter allow us to obtain new interesting expressions
for the Ricci tensor and scalar curvature of a special base conformal warped product and it
turns out that not only the expressions but also the analytical approach used are interesting
from the physical, geometrical and analytical point of view. Finally, we analyze, investi-
gate and characterize possible solutions for the conformal and warping factors of a special
base conformal warped product, which guarantee that the corresponding product is Einstein.
Besides all, we apply these results to a generalization of the Schwarzschild metric.
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1 Introduction

The main concern of the present paper is so called base conformal warped products (for
brevity, we call a product of this class as a bcwp) and their interesting curvature related
geometric properties. One can consider bcwp’s as a generalization of the classical singly
warped products. Before we mention physical motivations and applications of bcwp’s, we
will explicitly define warped products and briefly mention their different types of extensions.
This is the first of a series of articles where we deal with the study of curvature questions in
bcwp’s, the latter also give rise to interesting problems in nonlinear analysis.

Let B = (Bm,gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds of dimensions
m ≥ 1 and k ≥ 0, respectively and also let B × F be the usual product manifold of B

and F . Given a smooth function w ∈ C∞
>0(B) = {v ∈ C∞(B) : v > 0}, the warped product

B ×w F = ((B ×w F)m+k, g = gB + w2gF ) was first defined by Bishop and O’Neill in [21]
in order to study manifolds of negative curvature. Moreover, they obtained expressions for
the sectional, Ricci and scalar curvatures of a warped product in terms of sectional, Ricci
and scalar curvatures of its base and fiber, respectively (see also [15–18, 83] and for other
developments about warped products see for instance [28, 33, 41, 81, 111–113]).

From now on, we will use the Einstein summation convention over repeated indices
and consider only connected manifolds. Furthermore, we will denote the Laplace-Beltrami
operator on (B,gB) by �B(·), i.e.,

�B(·) = ∇Bi∇B
i(·) = 1√|gB |∂i

(√|gB |gij

B ∂j (·)
)
.

Note that �B is elliptic if (B,gB) is Riemannian and it is hyperbolic when (B,gB) is
Lorentzian. If (B,gB) is neither Riemannian nor Lorentzian, then the operator is called as
ultra-hyperbolic (see [24]).

In [88], Ponge and Reckziegel generalized the notion of warped product to twisted and
doubly-twisted products, i.e., a doubly-twisted product B ×(ψ0;ψ1) F can be defined as the
usual product B × F equipped with the pseudo-Riemannian metric ψ2

0 gB + ψ2
1 gF where

ψ0,ψ1 ∈ C∞
>0(B × F). In the case of ψ0 ≡ 1, the corresponding doubly-twisted product is

called as a twisted product by B.-Y. Chen (see [20, 27]). Clearly, if ψ1 only depends on the
points of B , then B ×(1;ψ1) F becomes a warped product. One can also find other interesting
generalizations in [39, 67, 101–103].

We recall that a pseudo-Riemannian manifold (Bm,gB) is conformal to the pseudo-
Riemannian manifold (Bm, g̃B), if and only if there exists η ∈ C∞(B) such that g̃B = eηgB .

From now on, we will call a doubly twisted product as a base conformal warped product
when the functions ψ0 and ψ1 only depend on the points of B. For a precise definition, see
Sect. 3. In this article, we deal with bcwp’s, and especially with a subclass called as special
base conformal warped products, briefly sbcwp, which can be thought as a mixed structure
of a conformal change in the metric of the base and a warped product, where there is a
specific type of relation between the conformal factor and the warping function. Precisely, a
special base conformal warped product is the usual product manifold Bm×Fk equipped with
pseudo-Riemannian metric of the form ψ2μgB + ψ2gF where ψ ∈ C∞

>0(B) and a parameter
μ ∈ R. In this case, the corresponding special base conformal warped product is denoted by
(ψ,μ)-bcwp. Note that when μ = 0, we have a usual warped product and when k = 0 we
have a usual conformal change in the base (the fiber is reduced to a point) and if μ = 1 we are
in the presence of a conformal change in the metric of a usual product pseudo-Riemannian
manifold.
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We remark here that a sbcwp can be expressed as a special conformal metric in a partic-
ular warped product, i.e.

ψ2
0 gB + ψ2

1 gF = ψ2
0

(
gB + ψ2

1

ψ2
0

gF

)
,

where ψ0,ψ1 ∈ C∞
>0(B).

Metrics of this type have many applications in several topics from the areas of differen-
tial geometry, cosmology, relativity, string theory, quantum-gravity, etc. Now, we want to
mention some of the major ones.

(i) In the construction of a large class of non trivial static anti de Sitter vacuum space-
times

• In the Schwarzschild solutions of the Einstein equations

ds2 = −
(

1 − 2M

r

)
dt2 + 1

1 − 2M
r

dr2 + r2(dθ2 + sin2 θdφ2) (1.1)

(see [6, 18, 59, 83, 96, 99]).
• In the Riemannian Schwarzschild metric, namely

(R2 × S2, gSchw), (1.2)

where

gSchw = u2dφ2 + u−2dr2 + r2gS2(1) (1.3)

and u2 = 1 + r2 − 2m
r

, m > 0 (see [6]).
• In the “generalized Riemannian anti de Sitter T2 black hole metrics” (see §3.2 of

[6] for details).

Indeed, let (F2, gF ) be a pseudo-Riemannian manifold and g be a pseudo-metric
on R+ × R × F2 defined by

g = 1

u2(r)
dr2 ± u2(r)dt2 + r2gF . (1.4)

After the change of variables s = r2, y = 1
2 t and hence ds2 = 4r2dr2 and dy2 = 1

4dt2.
Then (1.4) is equivalent to

g = 1√
s

[
1

4
√

su2(
√

s)
ds2 ± 4

√
su2(

√
s)dy2

]
+ sgF

= (s
1
2 )2(− 1

2 )
[
(2s

1
4 u(s

1
2 ))2(−1)ds2 ± (2s

1
4 u(s

1
2 ))2dy2

] + (s
1
2 )2gF . (1.5)

Note that roughly speaking, g is a nested application of two (ψ,μ)-bcwp’s. That is,
on R+ × R and taking

ψ1(s) = 2s
1
4 u(s

1
2 ) and μ1 = −1, (1.6)

the metric inside the brackets in the last member of (1.5) is a (ψ1,μ1)-bcwp, while
the metric g on (R+ × R) × F2 is a (ψ2,μ2)-bcwp with

ψ2(s, y) = s
1
2 and μ2 = −1

2
. (1.7)
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(ii) In the Bañados-Teitelboim-Zanelli (BTZ) and de Sitter (dS) black holes (see [1, 13,
14, 39, 63, 86] for details).

(iii) In the study of the spectrum of Laplace-Beltrami operator for p-forms. For in-
stance in (1.1) of [7], the author considers the structure that follows: let M be an n-
dimensional compact, Riemannian manifold with boundary, and let y be a boundary-
defining function; she endows the interior M of M with a Riemannian metric ds2 such
that in a small tubular neighborhood of ∂M in M , ds2 takes the form

ds2 = e−2(a+1)t dt2 + e−2btdθ2
∂M, (1.8)

where t := − logy ∈ (c,+∞) and dθ2
∂M is the Riemannian metric on ∂M (see [7, 80]

and references therein for details).
(iv) In the Kaluza-Klein theory (see [105, §7.6, Particle Physics and Geometry] and [84])

and in the Randall-Sundrum theory [47, 56, 89–91, 97] with μ as a free parameter.
For example in [64] the following metric is considered

e2A(y)gij dxidxj + e2B(y)dy2, (1.9)

with the notation {xi}, i = 0,1,2,3 for the coordinates in the 4-dimensional space-
time and x5 = y for the fifth coordinate on an extra dimension. In particular, Ito takes
the ansatz

B = αA, (1.10)

which corresponds exactly to our sbcwp metrics, considering gB = dy2, gF =
gij dxidxj , ψ(y) = e

B(y)
α = eA(y) and μ = α.

(v) In String and Supergravity theories, for instance, in the Maldacena conjecture about
the duality between compactifications of M/string theory on various Anti-de Sitter
space-times and various conformal field theories (see [78, 79, 87]) and in warped
compactifications (see [56, 98] and references therein). Besides these, there are also
frequent occurrences of this type of metrics in string topics (see [50–54, 75, 85, 97]
and also [1, 8, 86, 93] for some reviews about these topics).

(vi) In the discussion of Birkhoff-type theorems (generally speaking these are the the-
orems in which the gravitational vacuum solutions admit more symmetry than the
inserted metric ansatz, (see [59, p. 372] and [16, Chap. 3]) for rigorous statements),
especially in (6.1) of [92] where, H-J. Schmidt considers a special form of a bcwp and
basically shows that if a bcwp of this form is Einstein, then it admits one Killing vec-
tor more than the fiber has. In order to achieve that, the author considers for a specific
value of μ, namely μ = (1 − k)/2, the following problem:

Does there exist a smooth function ψ ∈ C∞
>0(B) such that the corresponding

(ψ,μ)-bcwp (B2 × Fk,ψ
2μgB + ψ2gF ) is an Einstein manifold? (see also (Pb-Eins.)

below.)
(vii) In questions of equivariant isometric embeddings (see [55]).

(viii) In the study of bi-conformal transformations, bi-conformal vector fields and their ap-
plications (see [49, Remark in Sect. 7] and [48, Sects. 7 and 8]).

In order to study the curvature of (ψ,μ)-bcwp’s we organized the paper as follows:
In Sect. 2, we study a specific type of homogeneous non-linear second order partial differ-

ential operator closely related to those with terms including ‖∇B(·)‖2
B = gB(∇B(·),∇B(·))

and a generalization where the Hessian tensor is involved. Operators with this structure
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are frequent in physics, differential geometry and analysis (see [10, 11, 37, 39, 58, 73,
110]).

In Sect. 3, we define precisely the base conformal warped products, compute their co-
variant derivatives and Riemann curvature tensor, Ricci tensor and scalar curvature.

In Sect. 4, applying the results of Sect. 2 we find a useful formula for the relation among
the Ricci tensors (respectively the scalar curvatures) in a (ψ,μ)-bcwp. The principal results
of this section are Theorem 4.1, about the Ricci tensor, and the theorem that follows about
the scalar curvature.

Theorem 1.1 Let B = (Bm,gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds
with dimensions m ≥ 2 and k ≥ 0, respectively. Suppose that SB and SF denote the scalar
curvatures of B = (Bm,gB) and F = (Fk, gF ), respectively. If μ ∈ R is a parameter and
ψ ∈ C∞

>0(B) is a smooth function then, the scalar curvature S of the base conformal warped
product (B × F,g = ψ2μgB + ψ2gF ) verifies,

(i) If μ 	= − k
m−1 , then

−β�Bu + SBu = Su2μα+1 − SF u2(μ−1)α+1 (1.11)

where

α = 2[k + (m − 1)μ]
{[k + (m − 1)μ] + (1 − μ)}k + (m − 2)μ[k + (m − 1)μ] , (1.12)

β = α2[k + (m − 1)μ] > 0 (1.13)

and ψ = uα > 0.
(ii) If μ = − k

m−1 , then

−
[
−k2 m − 2

m − 1
+ k(k + 1)

] |∇Bψ |2B
ψ2

= ψ−2 k
m−1 S − SB − SF ψ−2( k

m−1 +1). (1.14)

For the case of m = 1 see Remark 4.5.

The relation among the scalar curvatures in a warped product B ×w F is given by

S = −2k
�Bw

w
− k(k − 1)

gB(∇Bw,∇Bw)

w2
+ SB + SF

w2
, (1.15)

where �B is the Laplace-Beltrami operator on (B,gB) and SB , SF and S are the scalar
curvatures of B , F and B ×w F , respectively.

In the articles [36, 37] the authors transformed equation (1.15) into

− 4k

k + 1
�Bu + SBu + SF u1− 4

k+1 = Su, (1.16)

where w = u
2

k+1 and u ∈ C∞
>0(B). Note that this result corresponds to the case of μ = 0 in

Theorem 1.1.
On the other hand, under a conformal change on the metric of a pseudo-Riemannian

manifold B = (Bm,gB), i.e., g̃B = eηgB with η ∈ C∞(B), the scalar curvature S̃B associated
to the metric g̃B is related with the scalar curvature SB by the equation

eηS̃B = SB − (m − 1)�Bη − (m − 1)
m − 2

4
gB(∇Bη,∇Bη). (1.17)
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When m ≥ 3, the previous equation becomes

−4
m − 1

m − 2
�Bϕ + SBϕ = S̃Bϕ1+ 4

m−2 , (1.18)

where g̃B = ϕ
4

m−2 gB and ϕ ∈ C∞
>0(B).

There is an extensive number of publications about (1.18) (see [10, 11, 24, 25, 29, 30,
45, 46, 57, 60–62, 68, 69, 72, 94, 95]), especially due to its close relation with the so called
Yamabe problem (see the original Yamabe’s article [107] and the related questions posed by
Trüdinger [100]), namely

(Ya) [107] Does there exist a smooth function ϕ ∈ C∞
>0(B) such that (B,ϕ

4
m−2 gB) has con-

stant scalar curvature?

Analogously, in several articles the following problem has been studied (see [12, 26,
36–38, 42–44, 74, 108] among others).

(cscwp) Is there a smooth function w ∈ C∞
>0(B) such that the warped product B ×w F (or

equivalently B ×(1,w) F ) has constant scalar curvature?

The Yamabe problem needs the study of the existence of positive solutions of (1.18) with
a constant λ ∈ R instead of S̃B . On the other hand, the constant scalar curvature problem in
warped products brings to the study of the existence of positive solutions of (1.16) with a
parameter λ ∈ R instead of S.

Inspired by these, we propose a mixed problem between (Ya) and (cscwp), namely:

(Pb-sc) Given μ ∈ R, does there exist ψ ∈ C∞
>0(B) such that the (ψ,μ)-bcwp ((B × F)m+k,

ψ2μgB + ψ2gF ) has constant scalar curvature?

Note that when μ = 0, (Pb-sc) corresponds to the problem (cscwp), whereas when the
dimension of the fiber k = 0 and μ = 1, then (Pb-sc) corresponds to (Ya) for the base man-
ifold. Finally (Pb-sc) corresponds to (Ya) for the usual product metric with a conformal
factor in C∞

>0(B) when μ = 1.
Under the hypothesis of Theorem 1.1(i), the analysis of the problem (Pb-sc) brings to the

study of the existence and multiplicity of positive solutions u ∈ C∞
>0(B) of

−β�Bu + SBu = λu2μα+1 − SF u2(μ−1)α+1, (1.19)

where all the components of the equation are like in Theorem 1.1(i) and λ (the conjectured
constant scalar curvature of the corresponding sbcwp) is a real parameter. We observe that
an easy argument of separation of variables, like in [32, Sect. 2] and [37], shows that there
exists a positive solution of (1.19) only if the scalar curvature of the fiber SH is constant.
Thus this will be a natural assumption in the study of (Pb-sc).

Furthermore note that the involved nonlinearities in the right hand side of (1.19) dramat-
ically change with the choice of the parameters, the analysis of these changes is the subject
of Sect. 5.

By taking into account the above considerations and the scalar curvature results obtained
in this article, we will consider the study of (Pb-sc) and in particular, the questions men-
tioned above which are related to the existence and multiplicity of solution of (1.19) in our
forthcoming articles (see [40]). Let us mention here that there are several partial results
about semi-linear elliptic equations like (1.19) with different boundary conditions, see for
instance [2–5, 26, 31, 34, 35, 106, 109].
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In Sect. 6, we study particular problems related to Einstein manifolds. Deep studies
about Einstein manifolds can be found in the books [18, 71] and the reviews [23, 68, 69,
109]. Besides, in [18] there is an approach to the existence of Einstein warped products (see
also [70]).

Here, we consider suitable conditions that allow us to deal with some particular cases of
the problem

(Pb-Eins.) Given μ ∈ R, does there exist ψ ∈ C∞
>0(B) such that the corresponding (ψ,μ)-

bcwp is an Einstein manifold?

More precisely, when B is an interval in R (eventually R) we reduce the problem to a
single ordinary differential equation that can be solved by applying special functions. We
give a more complete description if B = (Bm,gB) is a compact scalar flat manifold, in
particular when m = 1. Furthermore we characterize Einstein manifolds with a precise type
of metric of 2-dimensional base, generalizing (1.5). The latter result is very close to the work
of H.-J. Schmidt in [92].

In the Appendix, we give a group of useful results about the behavior of the Laplace-
Beltrami operator under a conformal change in the metric and we present the sketch of
an alternative proof of Theorem 1.1 by applying a conformal change metric technique like
in [37].

2 Some Families of Differential Operators

Throughout this section, N = (Nn,h) is assumed to be a pseudo-Riemannian manifold of
dimension n, |∇(·)|2 = |∇N(·)|2N = h(∇N(·),∇N(·)) and �h = �N .

Lemma 2.1 Let Lh be the differential operator on C∞
>0(N) defined by

Lhv =
∑

ri

�hv
ai

vai
, (2.1)

where any ri, ai ∈ R, ζ := ∑
riai 	= 0, η := ∑

ria
2
i 	= 0 and the indices extend from 1 to

l ∈ N. Then for α = ζ

η
and β = ζ 2

η
there results

Lhv = β
�hv

1
α

v
1
α

. (2.2)

Proof In general, for a given real value t,

∇vt = tvt−1∇v,

�hv
t = t[(t − 1)vt−2|∇v|2 + vt−1�hv] and

�hv
t

vt
= t

[
(t − 1)

|∇v|2
v2

+ �hv

v

]
.

(2.3)

Thus, the right hand side of (2.2)
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β
�hv

1
α

v
1
α

= β
1

α

[(
1

α
− 1

) |∇v|2
v2

+ �hv

v

]

=
∑

riai

[(∑
ria

2
i∑

riai

− 1

) |∇v|2
v2

+ �hv

v

]

= |∇v|2
v2

l∑

i=1

riai(ai − 1) + �hv

v

l∑

i=1

riai .

And, again by (2.3), the left hand side of (2.2)

Lhv = |∇v|2
v2

l∑

i=1

riai(ai − 1) + �hv

v

l∑

i=1

riai . (2.4)

�

Remark 2.2 Note that (2.4) is independent of the hypothesis ζ := ∑
riai 	= 0 and η :=∑

ria
2
i 	= 0, it only depends on the structure of the operator L. Thus, the following expres-

sion is always satisfied

Lhv = (η − ζ )
|∇v|2

v2
+ ζ

�hv

v
. (2.5)

Corollary 2.3 Let Lh be a differential operator defined by

Lhv = r1
�hv

a1

va1
+ r2

�hv
a2

va2
for v ∈ C∞

>0(N), (2.6)

where r1a1 + r2a2 	= 0 and r1a
2
1 + r2a

2
2 	= 0. Then, by changing the variables v = uα with

0 < u ∈ C∞(N), α = r1a1+r2a2
r1a2

1+r2a2
2

and β = (r1a1+r2a2)2

r1a2
1+r2a2

2
= α(r1a1 + r2a2) there results

Lhv = β
�hu

u
. (2.7)

Remark 2.4 To the best of our knowledge, the only reference of an application of the identity
in the form of (2.7) is an article where J. Lelong-Ferrand completed the solution given in
another paper of her about a conjecture of A. Lichnerowicz concerning the conformal group
of diffeomorphisms of a compact C∞ Riemannian manifold, namely if such a manifold
has the group of conformal transformations, then the manifold is globally conformal to
the standard sphere of the same dimension. Her application corresponds to the values r1 =
1/(n − 1), r2 = −1/(n + 2), a1 = n − 1 and a2 = n (see [73, p. 94 Proposition 2.2]).

Remark 2.5 By the change of variables as in Corollary 2.3 equations of the type

Lhv = r1
�hv

a1

va1
+ r2

�hv
a2

va2
= H(v,x, s), (2.8)

transform into

β�hu = uH(uα, x, s). (2.9)

We will apply this argument several times throughout the paper.
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Example 2.6 As it was mentioned in Sect. 1, the relation connecting the scalar curvatures
of the base and the fiber in a warped product (see [15, 16, 18, 83]) is

S = −2k
�gB

w

w
− k(k − 1)

|∇Bw|2B
w2

+ SgB
+ SgF

w2
. (2.10)

By applying (2.3) with t = k and h = gB , it results the following

k
�gB

w

w
+ �gB

wk

wk
= −S + SgB

+ SgF

w2
. (2.11)

Thus, by Remark 2.5 with α = 2
k+1 , β = 4k

k+1 and w = uα , we transform (2.10) into

4k

k + 1
�gB

u = u

(
−S + SgB

+ SgF

u
4

k+1

)
, (2.12)

which is equivalent to (1.16) introduced in [36, 37].

Remark 2.7 We have already mentioned that operators like Lh are present in different fields
in Sect. 1. For instance, a similar situation to Example 2.6 can be found in the study of
special cases of the Grad-Shafranov equation with a flow in plasma physics, see [58, 110].

Now, we consider Hv
h the Hessian of a function v ∈ C∞(N), so that its second covariant

differential Hv
h = ∇(∇v). Recall that it is the symmetric (0,2) tensor field such that for any

X,Y smooth vector fields on N ,

Hv
h (X,Y ) = XYv − (∇XY )v = h(∇X(gradv),Y ). (2.13)

Hence, for any v ∈ C∞
>0(N) and for all t ∈ R

Hvt

h = t[(t − 1)vt−2dv ⊗ dv + vt−1Hv
h ], (2.14)

or equivalently

1

vt
Hvt

h = t

[
(t − 1)

1

v2
dv ⊗ dv + 1

v
Hv

h

]
, (2.15)

where ⊗ is the usual tensorial product. Note the analogy of the latter expressions with (2.3)
(for deeper information about the Hessian, see p. 86 of [83]).

Thus, by using the same technique applied in the proof of Lemma 2.1 and Remark 2.2,
there results

Lemma 2.8 Let Hh be a differential operator on C∞
>0(N) defined by

Hhv =
∑

ri

Hvai

h

vai
, (2.16)

ζ := ∑
riai and η := ∑

ria
2
i , where the indices extend from 1 to l ∈ N and any ri, ai ∈ R.

Hence,

Hhv = (η − ζ )
1

v2
dv ⊗ dv + ζ

1

v
Hv

h . (2.17)
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If furthermore, ζ 	= 0 and η 	= 0, then

Hhv = β
Hv

1
α

h

v
1
α

, (2.18)

where α = ζ

η
and β = ζ 2

η
.

3 About Base Conformal Warped Products

In this section, we define precisely base conformal warped products and compute covari-
ant derivatives and curvatures of base conformal warped products. Several proofs contain
standard but long computations, and hence will be omitted.

Let (B,gB) and (F,gF ) be m and k dimensional pseudo-Riemannian manifolds, re-
spectively. Then M = B × F is an (m + k)-dimensional pseudo-Riemannian manifold with
π : B × F → B and σ : B × F → F the usual projection maps.

Throughout this paper we use the natural product coordinate system on the product man-
ifold B ×F , namely. Let (p0, q0) be a point in M and coordinate charts (U,x) and (V , y) on
B and F , respectively such that p0 ∈ B and q0 ∈ F . Then we can define a coordinate chart
(W, z) on M such that W is an open subset in M contained in U × V , (p0, q0) ∈ W and for
all (p, q) in W , z(p, q) = (x(p), y(q)), where x = (x1, . . . , xm) and y = (ym+1, . . . , ym+k).

Clearly, the set of all (W, z) defines an atlas on B × F . Here, for our convenience, we
call the j -th component of y as ym+j for all j ∈ {1, . . . , k}.

Let φ : B → R ∈ C∞(B) then the lift of φ to B × F is φ̃ = φ ◦ π ∈ C∞(B × F), where
C∞(B) is the set of all smooth real-valued functions on B.

Moreover, one can define lifts of tangent vectors as: Let Xp ∈ Tp(B) and q ∈ F then the
lift X̃(p,q) of Xp is the unique tangent vector in T(p,q)(B × {q}) such that dπ(p,q)(X̃(p,q)) =
Xp and dσ(p,q)(X̃(p,q)) = 0. We will denote the set of all lifts of all tangent vectors of B by
L(p,q)(B).

Similarly, we can define lifts of vector fields. Let X ∈ X(B) then the lift of X to B × F

is the vector field X̃ ∈ X(B × F) whose value at each (p, q) is the lift of Xp to (p, q). We
will denote the set of all lifts of all vector fields of B by L(B).

Definition 3.1 Let (B,gB) and (F,gF ) be pseudo-Riemannian manifolds and also let
w : B → (0,∞) and c : B → (0,∞) be smooth functions. The base conformal warped
product (briefly bcwp) is the product manifold B × F furnished with the metric tensor
g = c2gB ⊕ w2gF defined by

g = (c ◦ π)2π∗(gB) ⊕ (w ◦ π)2σ ∗(gF ). (3.1)

By analogy with [88] we will denote this structure by B ×(c;w) F . The function w : B →
(0,∞) is called the warping function and the function c : B → (0,∞) is said to be the
conformal factor.

If c ≡ 1 and w is not identically 1, then we obtain a singly warped product. If both w ≡ 1
and c ≡ 1, then we have a product manifold. If neither w nor c is constant, then we have a
nontrivial bcwp.

If (B,gB) and (F,gF ) are both Riemannian manifolds, then B ×(c;w) F is also a Rie-
mannian manifold. We call B ×(c;w) F as a Lorentzian base conformal warped product if
(F,gF ) is Riemannian and either (B,gB) is Lorentzian or else (B,gB) is a one-dimensional
manifold with a negative definite metric −dt2.
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Notation 3.2 From now on, we will identify the operators defined on the base (respectively,
fiber) of a bcwp with the name of the base (respectively, fiber) as a sub or super index. Un-
like, the operators defined on the whole bcwp will not have labels. For instance, the Riemann
curvature tensor of the base (B,gB) will be denoted by RB and likewise RF denotes for that
of the fiber (F,gF ). Thus, the Riemann curvature tensor of B ×(c;w) F is denoted by R.

3.1 Covariant Derivatives

We state the covariant derivative formulas and the geodesic equation for a base conformal
warped product manifold B ×(c;w) F .

The gradient operator of smooth functions on B ×(c;w) F is denoted by ∇ and ∇B and
∇F denote the gradients of (B,gB) and (F,gF ), respectively (see Notation 3.2).

Proposition 3.3 Let φ ∈ C∞(B) and ψ ∈ C∞(F ). Then

∇φ = 1

c2
∇Bφ and ∇ψ = 1

w2
∇F ψ.

Also, we express the covariant derivative on B × F in terms of the covariant deriva-
tives on B and F by using the Kozsul formula, which takes the following form on a base
conformal warped product as above: Let X,Y,Z ∈ L(B) and V,W,U ∈ L(F ), then

2g(∇X+V (Y + W),Z + U) = (X + V )g(Y + W,Z + U)

+ (Y + W)g(X + V,Z + U)

− (Z + U)g(X + V,Y + W)

+ g([X + V,Y + W ],Z + U)

− g([X + V,Z + U ], Y + W)

− g([Y + W,Z + U ],X + V ),

where [·, ·] denotes the Lie bracket.

Theorem 3.4 Let X,Y ∈ L(B) and V,W ∈ L(F ). Then

(1) ∇XY = ∇B
XY + X(c)

c
Y + Y (c)

c
X − gB(X,Y )

c
∇Bc,

(2) ∇XV = ∇V X = X(w)

w
V,

(3) ∇V W = ∇F
V W − w

c2
gF (V,W)∇Bw.

Remark 3.5 Let X,Y ∈ L(B) and V,W ∈ L(F ). If [·, ·] denotes for the Lie bracket on
B ×(c;w) F , then [X,Y ] = [X,Y ]B, [X,V ] = 0 and [V,W ] = [V,W ]F .

Proposition 3.6 Let (p, q) ∈ B ×(c;w) F . Then

(1) The leaf B × {q} and the fiber {p} × F are totally umbilic.
(2) The leaf B × {q} is totally geodesic.
(3) The fiber {p} × F is totally geodesic when (∇Bw)(p) = 0.
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Now, we will establish the geodesic equations for base conformal warped products. The
version for singly warped products is well known (compare p. 207 of [83]).

Proposition 3.7 Let γ = (α,β) : I →B ×(c;w) F be a (smooth) curve where I ⊆ R. Then
γ = (α,β) is a geodesic in B ×(c;w) F if and only if for any t ∈ I ,

(1) α′′ = −2
α′(c)

c
α′ + gB(α′, α′)

c
∇Bc + wgF (β ′, β ′)

c2
∇Bw,

(2) β ′′ = −2
α′(w)

w
β ′.

Remark 3.8 If γ = (α,β) : I →B ×(c;w) F is a geodesic in B ×(c;w) F , then β : I → F is a
pre-geodesic in (F,gF ).

3.2 Riemannian Curvatures

From now on, we use the definition and the sign convention for the curvature as in [16,
p. 16–25] (note the difference with [83]), namely. For an arbitrary n-dimensional pseudo-
Riemannian manifold (N,h), letting X,Y,Z ∈ L(N), we take the Riemann curvature tensor

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.

Furthermore, for each p ∈ N , the Ricci curvature tensor is given by

Ric(X,Y ) =
n∑

i=1

h(Ei,Ei)h(R(Ei, Y )X,Ei),

where {E1, . . . ,En} is an orthonormal basis for TpN .
Now, we give the Riemannian curvature formulas for a base conformal warped product.

But first we state the Hessian tensor denoted by H (see Sect. 2) on this class of warped
products.

Proposition 3.9 Let X,Y ∈ L(B) and V,W ∈ L(F ) and also let φ ∈ C∞(B) and ψ ∈
C∞(F ). Then, the Hessian H of B ×(c;w) F satisfies

(1) Hφ(X,Y ) = Hφ

B(X,Y ) + gB(X,Y )

c
gB(∇Bφ,∇Bc)

− X(c)Y (φ)

c
− Y (c)X(φ)

c
,

(2) Hψ(X,Y ) = 0,

(3) Hφ(X,V ) = 0,

(4) Hψ(X,V ) = −X(w)V (ψ)

w
,

(5) Hφ(V ,W) = w

c2
gF (V,W)gB(∇Bw,∇Bφ),

(6) Hψ(V,W) = Hψ

F (V,W).
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Theorem 3.10 Let X,Y,Z ∈ L(B) and V,W,U ∈ L(F ). Then, the curvature Riemann ten-
sor R of B ×(c;w) F satisfies

(1) R(X,Y )Z = RB(X,Y )Z − Hc(Y,Z)

c
X + Hc(X,Z)

c
Y

+ 2
X(c)

c2
gB(Y,Z)∇Bc − 2

Y (c)

c2
gB(X,Z)∇Bc

+ gB(X,Z)

c
∇B

Y ∇Bc − gB(Y,Z)

c
∇B

X∇Bc,

(2) R(X,V )Y = Hw(X,Y )

w
V,

(3) R(X,Y )V = 0,

(4) R(V ,W)X = 0,

(5) R(V ,X)W = wgF (V,W)hw(X),

(6) R(V ,W)U = RF (V,W)U

+ gB(∇Bw,∇Bw)

c2

(
gF (V,U)W − gF (W,U)V

)
,

where hw(X) is given in the remark that follows.

Remark 3.11 Note that hw(X) = ∇X∇w and ∇w = 1
c2 ∇Bw. Hence,

hw(X) = −2
X(c)

c3
∇Bw + 1

c2

(
∇B

X∇Bw + X(c)

c
∇Bw

+ gB(∇Bw,∇Bc)

c
X − X(w)

c
∇Bc

)
.

3.3 Ricci Curvatures

We compute Ricci curvatures of the base conformal warped product applying that if
{E1 . . . ,Em} is a gB -orthonormal frame field on an open set U ⊆ B and {Ẽm+1, . . . , Ẽm+k}
is a gF -orthonormal frame field on an open set V ⊆ F , then

{c−1E1, . . . , c
−1Em,w−1Ẽm+1, . . . ,w

−1Ẽm+k}

is a g-orthonormal frame ŕeld on an open set W ⊆ U × V ⊆ B × F .

Proposition 3.12 Let φ ∈ C∞(B) and ψ ∈ C∞(F ). Then, the Laplace-Beltrami operator �

of B ×(c;w) F satisfies

(1) �φ = �Bφ

c2
+ m − 2

c3
gB(∇Bφ,∇Bc) + 1

c2

k

w
gB(∇Bw,∇Bφ),

(2) �ψ = �F ψ

w2
.
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Theorem 3.13 Let X,Y ∈ L(B) and V,W ∈ L(F ). Then, the Ricci tensor Ric of B ×(c;w) F

satisfies

(1) Ric(X,Y ) = RicB(X,Y )

− (m − 2)
1

c
Hc

B(X,Y ) + 2(m − 2)
1

c2
X(c)Y (c)

−
[
(m − 3)

gB(∇Bc,∇Bc)

c2
+ �Bc

c

]
gB(X,Y )

− k
1

w
Hw

B(X,Y ) − k
gB(∇Bw,∇Bc)

wc
gB(X,Y )

+ k
X(c)

c

Y (w)

w
+ k

Y (c)

c

X(w)

w
,

(2) Ric(X,V ) = 0,

(3) Ric(V ,W) = RicF (V,W)

− w2

c2
gF (V,W)

[
(m − 2)

gB(∇Bw,∇Bc)

wc
+ �Bw

w

+ (k − 1)
gB(∇Bw,∇Bw)

w2

]
.

An equivalent formulation of Theorem 3.13 is

Theorem 3.14 The Ricci tensor Ric of B ×(c;w) F satisfies

(1) Ric = RicB −
[
(m − 2)

1

c
Hc

B + k
1

w
Hw

B

]

+ 2(m − 2)
1

c2
dc ⊗ dc + k

1

wc
[dc ⊗ dw + dw ⊗ dc]

−
[
(m − 3)

gB(∇Bc,∇Bc)

c2
+ �Bc

c
+ k

gB(∇Bw,∇Bc)

wc

]
gB

on L(B) ×L(B),

(2) Ric = 0 on L(B) ×L(F ),

(3) Ric = RicF − w2

c2

[
(m − 2)

gB(∇Bw,∇Bc)

wc
+ �Bw

w

+ (k − 1)
gB(∇Bw,∇Bw)

w2

]
gF on L(F ) ×L(F ).

Remark 3.15 If m 	= 2 and k 	= 1, applying (2.3), the expression of the Ricci tensor of
B ×(c;w) F in Theorem 3.13 may be written as

(1) Ric(X,Y ) = RicB(X,Y )

− (m − 2)
1

c
Hc

B(X,Y ) + 2(m − 2)
1

c2
X(c)Y (c)
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− 1

m − 2

�Bcm−2

cm−2
gB(X,Y )

− k
1

w
Hw

B(X,Y ) − k
1

wc
gB(∇Bw,∇Bc)gB(X,Y )

+ k
X(c)

c

Y (w)

w
+ k

Y (c)

c

X(w)

w
,

(2) Ric(X,V ) = 0,

(3) Ric(V ,W) = RicF (V,W)

− w2

c2
gF (V,W)

[
(m − 2)

1

wc
gB(∇Bw,∇Bc) + 1

k

�Bwk

wk

]
.

3.4 Scalar Curvature

By using the orthonormal frame introduced above, one can obtain the following result after
a standard computation.

Theorem 3.16 The scalar curvature S of B ×(c;w) F is given by

c2S = SB + SF

c2

w2
− 2(m − 1)

�Bc

c
− 2k

�Bw

w

− (m − 4)(m − 1)
gB(∇Bc,∇Bc)

c2

− 2k(m − 2)
gB(∇Bw,∇Bc)

wc

− k(k − 1)
gB(∇Bw,∇Bw)

w2
.

4 Curvature of ((B × F)m+k,ψ2μgB + ψ2gF )

From now on, we will deal with (ψ,μ)-bcwp’s, i.e. B×(ψμ;ψ) F , and specifically concentrate
on its Ricci tensor and scalar curvature.

4.1 Ricci Tensor

Theorem 4.1 Let B = (Bm,gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds
with dimensions m ≥ 3 and k ≥ 1, μ ∈ R \ {0,1,μ,μ±} with μ := − k

m−2 and μ± := μ ±√
μ2 − μ and ψ ∈ C∞

>0(B). Then, the Ricci curvature tensor Ric of the base conformal
warped product B ×(ψμ;ψ) F verifies the relation

Ric = RicB + βH 1

ψ
1

αH

Hψ

1
αH

B − β� 1

ψ
1

α�

�Bψ
1

α� gB on L(B) ×L(B),

Ric = 0 on L(B) ×L(F ), (4.1)

Ric = RicF − 1

ψ2(μ−1)

β�

μ

1

ψ
1

α�

�Bψ
1

α� gF on L(F ) ×L(F ),
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where

α� = 1

(m − 2)μ + k
,

β� = μ

(m − 2)μ + k
,

αH = −[(m − 2)μ + k]
μ[(m − 2)μ + k] + k(μ − 1)

,

βH = [(m − 2)μ + k]2

μ[(m − 2)μ + k] + k(μ − 1)
.

(4.2)

Proof Applying Theorem 3.14 with c = ψμ and w = ψ , we obtain

Ric = RicB −
[
(m − 2)

1

ψμ
Hψμ

B + k
1

ψ
Hψ

B

]

+ 2μ[(m − 2)μ + k] 1

ψ2
dψ ⊗ dψ

−
[
((m − 3)μ2 + kμ)

gB(∇Bψ,∇Bψ)

ψ2
+ �Bψμ

ψμ

]
gB on L(B) ×L(B), (4.3)

Ric = 0 on L(B) ×L(F ),

Ric = RicF − 1

ψ2(μ−1)

[
((m − 2)μ + k − 1)

gB(∇Bψ,∇Bψ)

ψ2
+ �Bψ

ψ

]
gF

on L(F ) ×L(F ).

So by (2.15) and (2.3), with t = μ 	= 0,1, there results

Ric = RicB +
[
rH

1

1

ψμ
Hψμ

B + rH
2

1

ψ
Hψ

B

]

−
[
r�

1

�Bψμ

ψμ
+ r�

2

�Bψ

ψ

]
gB on L(B) ×L(B),

Ric = 0 on L(B) ×L(F ),

Ric = RicF − 1

ψ2(μ−1)

[
((m − 2)μ + k − 1)

gB(∇Bψ,∇Bψ)

ψ2
+ �Bψ

ψ

]
gF

on L(F ) ×L(F ),

(4.4)

where

(μ − 1)rH
1 = (m − 2)μ + m − 2 + 2k,

(μ − 1)rH
2 = −(m − 2)2μ2 − k(3μ − 1),

(μ − 1)r�
1 = (m − 2)μ + k − 1,

(μ − 1)r�
2 = −μ((m − 2)μ + k − μ).
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Hence, using the notation introduced in Lemmas 2.8 and 2.1 and Remark 2.2,

Ric = RicB + (ηH − ζH )
1

ψ2
dψ ⊗ dψ + ζH 1

ψ
Hψ

B

−
[
(η� − ζ�)

gB(∇Bψ,∇Bψ)

ψ2
+ ζ� �Bψ

ψ

]
gB on L(B) ×L(B),

Ric = 0 on L(B) ×L(F ),

Ric = RicF − 1

ψ2(μ−1)

[(
η�

μ
− ζ�

μ

)
gB(∇Bψ,∇Bψ)

ψ2
+ ζ�

μ

�Bψ

ψ

]
gF

on L(F ) ×L(F ),

(4.5)

where

ζH = rH
1 μ + rH

2 = −[(m − 2)μ + k],
ηH = rH

1 μ2 + rH
2 = μ[(m − 2)μ + k] + k(μ − 1),

ζ� = r�
1 μ + r�

2 = μ,

η� = r�
1 μ2 + r�

2 = μ[(m − 2)μ + k].

(4.6)

Note that

ζH = 0 ⇐⇒ μ = μ := − k

m − 2
,

ηH = 0 ⇐⇒ μ = μ± := μ ±
√

μ2 − μ,

ζ� = 0 ⇐⇒ μ = 0,

η� = 0 ⇐⇒ μ = 0,− k

m − 2
.

(4.7)

So, if μ ∈ R \ {0,1,μ,μ±} and considering

α� = ζ�

η�
,

β� = (ζ�)2

η�
,

αH = ζH

ηH
,

βH = (ζH )2

ηH
,

(4.8)

along with Lemmas 2.8 and 2.1 results the thesis. �

Remark 4.2 We will make some comments about the previous results and compare the above
formulas with Ricci tensor formulas in the case of a conformal manifold and a warped
product.

(i) Note that the system (4.3) remains valid without conditions on μ, m ≥ 1 and k ≥ 0.
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Table 1 Einstein equations, m ≥ 3, μ-exceptional cases in Theorem 4.1

μ m k ζH ηH ζ� η� Genuine Formal

system system

0 ≥3 ≥1 −k −k 0 0 (4.3) (4.5)

1 ≥3 ≥1 −[m − 2 + k] m − 2 + k 1 m − 2 + k (4.3) (4.5)

μ ≥3 ≥1 0 k(μ − 1) μ 0 (4.5) –

μ± ≥3 ≥1 k
μ±−1
μ± 0 μ± −k(μ± − 1) (4.5) –

(ii) The system (4.3) with μ = 1, m ≥ 1 and k = 0 give the expression of the Ricci tensor
under a conformal change in the base given by g̃B = ψ2gB , where ψ ∈ C∞

>0(B) (see
[11, 18]).

(iii) For μ = 0, m ≥ 1 and k ≥ 1 the system (4.3) reproduces the expressions of the Ricci
tensor for a singly warped product [16, 18, 83].

The Table 1 is a synthesis of the μ-exceptional cases in the Theorem 4.1. In that table
ζH , ηH , ζ� and η� are computed with the final expressions of (4.6). This is the reason to
include the column titled “formal system", and hence the systems written in that column are
justified a posteriori.

Remark 4.3 Here, we consider the cases m = 1 and m = 2, with k ≥ 1. The results and the
proof are essentially the same as Theorem 4.1, but the conditions (4.7) take the following
form.

m = 1:

ζH = 0 ⇐⇒ μ = k,

ηH = 0 ⇐⇒ μ = μ± := k ∓ √
k2 − k,

ζ� = 0 ⇐⇒ μ = 0,

η� = 0 ⇐⇒ μ = 0, k.

(4.9)

Thus the μ-exceptional cases are 0,1, k,μ± (compare with [64]).
m = 2: Note that k ≥ 1

ζH = 0 never,

ηH = 0 ⇐⇒ μ = 1

2
,

ζ� = 0 ⇐⇒ μ = 0,

η� = 0 ⇐⇒ μ = 0.

(4.10)

Thus the μ-exceptional cases are 0,1, 1
2 .

Hence like for Table 1, we can establish the Table 2.
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Table 2 Einstein equations, m = 1,2, μ-exceptional cases in Theorem 4.1

μ m k ζH ηH ζ� η� Genuine Formal

system system

0 1 ≥1 −k −k 0 0 (4.3) (4.5)

1 1 ≥1 −[−1 + k] −1 + k 1 −1 + k (4.3) (4.5)

k 1 >1 0 k(k − 1) k 0 (4.5) –

μ± 1 >1 k
μ±−1
μ± 0 μ± −k(μ± − 1) (4.5) –

0 2 ≥1 −k −k 0 0 (4.3) (4.5)

1 2 ≥1 −k k 1 k (4.3) (4.5)

1
2 2 ≥1 −k 0 1

2
k
2 (4.5) –

4.2 Scalar Curvature

Theorem 4.4 Let B = (Bm,gB) and F = (Fk, gF ) be two pseudo-Riemannian manifolds
with m ≥ 2 and k ≥ 1, μ ∈ R \ {0,1,− k

m−1 } and ψ ∈ C∞
>0(B). Then, the scalar curvature S

of the base conformal warped product B ×(ψμ;ψ) F verifies the relation

−β�Bu + SBu = Su2μα+1 − SF u2(μ−1)α+1, (4.11)

where

α = 2[k + (m − 1)μ]
{[k + (m − 1)μ] + (1 − μ)}k + (m − 2)μ[k + (m − 1)μ] , (4.12)

β = α2[k + (m − 1)μ] (4.13)

and ψ = uα > 0.

Proof Applying Theorem 3.16 with c = ψμ and w = ψ , we obtain

ψ2μS = SB + SF ψ2(μ−1) −
[

2(m − 1)
�Bψμ

ψμ
+ 2k

�Bψ

ψ

]

− [(m − 4)(m − 1)μ2 + 2k(m − 2)μ + k(k − 1)]gB(∇Bψ,∇Bψ)

ψ2
. (4.14)

So by (2.3), with t = μ 	= 0,1, there results

ψ2μS = SB + SF ψ2(μ−1)

−
{[

2(m − 1) + ς

μ(μ − 1)

]
�Bψμ

ψμ
+

[
2k − ς

μ − 1

]
�Bψ

ψ

}
,
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where ς = (m − 4)(m − 1)μ2 + 2k(m − 2)μ + k(k − 1). Hence, by Lemma 2.1 and Re-
mark 2.2 with

r1 = 2(m − 1) + ς

μ(μ − 1)
,

r2 = 2k − ς

μ − 1

and

ζ = r1μ + r2 = 2[k + (m − 1)μ],
η = r1μ

2 + r2 = {[k + (m − 1)μ] + (1 − μ)}k + (m − 2)μ[k + (m − 1)μ]

=
{

ζ

2
+ (1 − μ)

}
k + (m − 2)μ

ζ

2
,

(4.15)

we find

ψ2μS = SB + SF ψ2(μ−1)

−
[
(η − ζ )

gB(∇Bψ,∇Bψ)

ψ2
+ ζ

�Bψ

ψ

]
.

(4.16)

Notice that (see also (A.18) in the Appendix)

η = (m − 1)(m − 2)μ2 + 2(m − 2)kμ + (k + 1)k > 0 for all μ ∈ R. (4.17)

On the other hand, ζ = 0 if and only if μ = − k
m−1 . Then the thesis follows by Lemma 2.1

and taking

α = ζ

η
and β = αζ. (4.18)

�

The Table 3 is a synthesis of the cases not included in the Theorem 4.4. In that table
ζ and η are computed with the expressions (4.15) instead of the originals in Remark 2.2.
As above, this is the reason to include the column titled “formal equation”, and hence the
equations written in that column are justified a posteriori.

All the other cases are covered in Theorem 4.4.

Remark 4.5 We want to make some comments about the results in the Table 3 where we
have three important cases:

(μ = 0): As it was mentioned in Sect. 1, this case corresponds exactly to standard warped
products. The relation (4.11) is well defined and reproduced in (1.16).

(μ = 1, k = 0,m ≥ 3): This situation corresponds to a conformal change in the base. Again
(4.11) is well defined and now reproduces (A.11) with r = 2, and hence (1.18) too.

(μ = 1, k,m ≥ 1, k + m ≥ 3): (i.e., rows 5 or 8) We have a conformal change in the usual
product, more explicitly, (B × F,g = ψ2(gB + gF )). In this case (4.11) is well defined
also, and reproduce with α = 2

m+k−2 and β = 4 m+k−1
m+k−2 , the equation

−4
m + k − 1

m + k − 2
�gB

u + (SgB
+ SgF

)u = Su1+ 4
m+k−2 , (4.19)

where g = u
4

m+k−2 (gB + gF ), u ∈ C∞
>0(B), ψ = u

2
m+k−2 and cm+k = β .
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Now we will analyze the cases included neither in the previous items nor in Theorem 4.4.

(m = 1): Let k ≥ 1. It is clear that the involved differential equations are ordinary and
SB ≡ 0. If

• (μ 	= 0,1, k+1
2 ) By the same proof of Theorem 4.4, (4.11) is valid.

• (μ = 1, k ≥ 2) It is a particular case of the above item (μ = 1, k,m ≥ 1, k + m ≥ 3), so
(4.11) is true again.

• (μ = k+1
2 , k 	= 1) It is possible to apply (4.16) so

ψk+1S = 2k

(
−�Bψ

ψ
+ |∇Bψ |2B

ψ2

)
+ SF ψk−1. (4.20)

• (μ = k+1
2 , k = 1) Clearly μ = 1, hence (4.14) results by applying (A.14) with r = 2, i.e.

ψ2S = 2

(
−�Bψ

ψ
+ |∇Bψ |2B

ψ2

)
. (4.21)

Confront with the precedent case.

(m ≥ 2,μ = − k
m−1 ): In this case by (4.16) the relation among the scalar curvatures is

−k

[
1 + k

m − 1

] |∇Bψ |2B
ψ2

= ψ−2 k
m−1 S − SB − SF ψ−2(1+ k

m−1 ). (4.22)

Remark 4.6 Note that β > 0 in Theorem 4.4, while this is not always true if m = 1.

Proof of Theorem 1.1 It is an immediate consequence of the above results of this section. �

5 The Nonlinearities in a (ψ,μ)-bcwp Scalar Curvature Relations

In this section, we will mainly consider some general properties of the nonlinear partial
differential equation in (4.11), regarding especially the type of nonlinearities. The main
aim of this study is to deal with the question of existence and multiplicity of solutions for
problem (Pb-sc). The corresponding results will be presented in forthcoming articles (see
[40]).

From now on, we will denote by discr(·), the discriminant of a quadratic polynomial in
one variable.

5.1 Base Bm with Dimension m ≥ 2

Remark 5.1 Under the hypothesis of Theorem 4.4. In order to classify the type of non lin-
earities involved in (4.11), we will analyze the exponents as a function of the parameter μ

and the dimensions of the base m ≥ 2 and of the fiber k ≥ 1 (see Table 4 below).
Note that by (4.17), α > 0 if and only if μ > − k

m−1 and by the hypothesis μ 	= − k
m−1 in

Theorem 4.4, results α 	= 0.
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We now introduce the following notation:

p = p(m,k,μ) = 2μα + 1 and

q = q(m,k,μ) = 2(μ − 1)α + 1 = p − 2α,
(5.1)

where α is defined by (4.12).
Thus, for all m,k,μ as above, p > 0. Indeed, by (4.17), p > 0 if and only if � > 0,

where

� := �(m,k,μ)

:= 4μ[k + (m − 1)μ] + (m − 1)(m − 2)μ2 + 2(m − 2)kμ + (k + 1)k

= (m − 1)(m + 2)μ2 + 2mkμ + (k + 1)k.

But discr(�) ≤ −4km2 ≤ −16 and m > 1, so � > 0.

Unlike p, q changes sign depending on m and k. Furthermore, it is important to deter-
mine the position of p and q with respect to 1 as a function of m and k. In order to do that,
we define

D := {(m, k) ∈ N≥2 × N≥1 : discr(�(m,k, ·)) < 0}, (5.2)

where N≥l := {j ∈ N : j ≥ l},
� := �(m,k,μ)

:= 4(μ − 1)[k + (m − 1)μ] + (m − 1)(m − 2)μ2 + 2(m − 2)kμ + (k + 1)k

= (m − 1)(m + 2)μ2 + 2(mk − 2(m − 1))μ + (k − 3)k

and the discriminant of �(m,k, ·) is

discr(�(m,k, ·)) = −4((m − 2)k − 4(m − 1))(k + m − 1).

Note that by (4.17), q > 0 if and only if � > 0. Furthermore q = 0 if and only if � = 0. But
here discr(�(m,k, ·)) changes its sign as a function of m and k.

In Table 4 below, we denote CD = (N≥2 ×N≥1) \D if D ⊆ N≥2 ×N≥1 and CI = R \ I if
I ⊆ R. If (m, k) ∈ CD, let μ− and μ+ the two (eventually one, see Remark 5.3 below) roots
of q , μ− ≤ μ+. Besides, if discr(�(m,k, ·)) > 0, then μ− < 0; unlike μ+ can take any sign.

We remark that all the rows in Table 4 are nonempty, this means that the conditions
established in each row are verified for a suitable choice of the parameters and manifolds.
On the other hand, we observe that β is always positive as it was mentioned in Remark 4.6.
Note that for any row in Table 4, the corresponding type of nonlinearity suggested by the
exponents is modified by the scalar curvature of the fiber, SF and by the function S.

Furthermore, depending on whether the base is Riemannian or not, then the linear part is
elliptic or not, respectively.

Notation 5.2 In the last right hand side columns of Tables 4, 5, 6, 7 and 8, we will use the
notation explained below:

• super-lin means that the corresponding exponent >1, roughly speaking super-linear
• sub-lin means that the corresponding exponent >0 and <1, roughly speaking sub-linear
• non-hom means that the corresponding exponent =0, roughly speaking non-homogeneous
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Table 4 Nonlinearities in scalar curvature equation type (4.11) for m ≥ 2, see Notation 5.2

(m, k) ∈ μ ∈ α p,q Type of

p,q non-

linearity

N≥2 × N≥1 (−∞,− k
m−1 ) <0 1 < p < q super-lin

D (− k
m−1 ,0) 0< 0 < q < p < 1 sub-lin

CD (− k
m−1 ,0) ∩ (μ−,μ+) 0< q < 0 < p < 1

{
sub-lin

sing

CD (− k
m−1 ,0) ∩ C[μ−,μ+] 0< 0 < q < p < 1 sub-lin

CD (− k
m−1 ,0) ∩ {μ−,μ+} 0< q = 0 < p = 2α < 1

{
sub-lin

non-hom

D (0,1) 0< 0 < q < 1 < p

{
super-lin

sub-lin

CD (0,1) ∩ (μ−,μ+) 0< q < 0 < 1 < p

{
super-lin

sing

CD (0,1) ∩ C[μ−,μ+] 0< 0 < q < 1 < p

{
super-lin

sub-lin

CD (0,1) ∩ {μ−,μ+} 0< q = 0 < 1 < p = 2α

{
super-lin

non-hom

N≥2 × N≥1 (1,+∞) 0< 1 < q < p super-lin

• sing means that the corresponding exponent <0, roughly speaking singular.

However, all these conditions depend strongly on the corresponding coefficients in the whole
specific non-linearity. More clearly, we can say that the right columns of the tables men-
tioned above are exact when S and SF are strictly positive constants.

Remark 5.3 Note that when we consider discr(�) = 0, we look for solutions (m, k) ∈ N≥2 ×
N≥1, in particular ordered pairs with natural components. It is easy to see that

D0 = {(m, k) ∈ N≥2 × N≥1 : discr(�(m,k)) = 0}

=
{
(m, k) ∈ N≥3 × N≥1 : k = 4

m − 1

m − 2

}

= {(3,8), (4,6), (6,5)}. (5.3)

All the other solutions of discr(�) = 0 in R
2 have no natural components.
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Then, for (m, k) = (3,8) ∈ D0 ((4,6), (6,5) respectively ), − k
m−1 takes the value −4

(−2,−1 respectively ) and μ− = μ+ = −2 (−1,− 1
2 respectively). In such a case, when

μ = μ− = μ+, the fifth row in Table 4 establishes that q = 0, p = 1
3 ( 1

2 , 2
3 respectively),

α = 1
6 ( 1

4 , 1
3 respectively) and β = 4

3 ( 3
2 , 10

3 respectively).
Note that for the elements in D0, the sum of the two components is either 11 or 10, both

particularly interesting values in the physical applications. More precisely in the problems
of the extra dimensions in cosmology, super-gravity and string theory (i.e. see [1, 8, 50–53,
89, 90]).

Notation 5.4 From now on, for m ≥ 3 we will denote the Sobolev critical exponent by
2∗ = 2m

m−2 and pY = qY = 4
m−2 + 1 = m+2

m−2 = 2∗ − 1.

Remark 5.5 Let m ≥ 3. Now we will show that there exist particular values μpY
and μqY

such that the position of μ with respect to them, indicates that the corresponding p or q are
sub-critical, critical or super-critical. The critical and super-critical cases will correspond to
the conditions in the first row of Table 4. Indeed, by an easy but lengthy computation we
have

p > pY : if and only if μ < μpY
= − k+1

m−2 .
q > qY : if and only if μ < μqY

= − k
m−2 .

Moreover,

p = pY : is verified if and only if μ = − k+1
m−2 ; and consequently α = − 2

k+1 , β = 4 m−1
m−2 −

4 k
k+1 > 0 and q = pY + 4

k+1 . Hence (4.11) takes the form

−
(

4
m − 1

m − 2
− 4

k

k + 1

)
�Bu + SBu = SupY − SF upY + 4

k+1 . (5.4)

q = qY : is verified if and only if μ = μqY
= − k

m−2 ; and consequently

α = − 2

k + m − 2
, β = 4k

(k + m − 2)(m − 2)
> 0 and

p = qY − 2

k + m − 2
.

Hence the equation (4.11) takes the form

− 4k

(k + m − 2)(m − 2)
�Bu + SBu = SuqY − 2

k+m−2 − SF uqY . (5.5)

Note that μqY
is the exceptional value μ in Theorem 4.1 (see Table 1).

We observe also that μpY
< μqY

< − k
m−1 , so that at least one of the two exponents is no

sub-critical only if we stay in the conditions of the first row in the Table 4.

Remark 5.6 Let m ≥ 3. Now, we will study the behavior of (4.11), when μ −→ ±∞. Con-
sider μ −→ ±∞ , then by (4.12) we have (see Table 4)

α = 2

{1 +
1
μ −1

k
μ +m−1

}k + (m − 2)μ

−→ ±0 (5.6)
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Fig. 1 Example:
(m, k) = (6,4) ∈ CD

and

αμ −→ 2

m − 2
. (5.7)

Hence,

β = α2[k + (m − 1)μ] = α2k + 2(m − 1)αμ −→ βY = 4
m − 1

m − 2
,

p = 2μα + 1 −→ pY = 4

m − 2
+ 1,

q = 2(μ − 1)α + 1 = p − 2α −→ qY = 4

m − 2
+ 1,

(5.8)

with qY = pY . Thus, roughly speaking the limit equation of (4.11) for μ −→ ±∞ results

−4
m − 1

m − 2
�Bu + SBu = (S − SF )u

4
m−2 +1, (5.9)

by “a suitable definition of S”. Notice the similarity of this equation with the Yamabe type
equation associated to a conformal change in the base (see (1.18)). Furthermore, by the last
part of Remark 5.5, the approximation is by super-critical problems when μ −→ −∞ and
by sub-critical problems when μ −→ +∞.

5.2 Base Bm with Dimension m = 1

Remark 5.7 As in the case of Remark 5.1, we will classify the type of non linearities in-
volved in (4.11), obviously when this equation is verified (see Remark 4.5 and cases either
k ≥ 1 and μ 	= 0,1, k+1

2 or k ≥ 2 and μ = 1 there). Furthermore m = 1 implies that the
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equations in (4.11) are ordinary differential equations and that the curvature tensor of the
base is 0, and consequently SB ≡ 0. Analogously, SF ≡ 0 if k = 1. Hence, we will analyze
the exponents as a function of the parameter μ and the dimension of the fiber k ≥ 1.

Similar to the case of m ≥ 2, for any row in the Tables 5, 6, 7, 8, the corresponding type
of nonlinearity is modified by the scalar curvature of the fiber SF and by the function S.

The problem (Pb-sc) for m = 1 and the corresponding nonlinear ordinary differential
equations for low values of k are particularly interesting in physical applications (see [64–
66], Kaluza-Klein theory and Randall-Sundrum theory).

By these hypothesis, we have

0 	= α = 2

−2μ + k + 1
= 1

−μ + k1
(5.10)

and

0 	= β = 4k

−2μ + k + 1
= 2k

−μ + k1
, (5.11)

where

1 ≤ k1 := k + 1

2
. (5.12)

Note that by (5.10), we have that α > 0 if and only if μ < k1. By (5.11), we also have
that β > 0 if and only if μ < k1.

Furthermore by the same notation introduced in (5.1), we have

p = p(1, k,μ) = 2μα + 1 = μ + k+1
2

−μ + k+1
2

= μ + k1

−μ + k1
(5.13)

and

q = q(1, k,μ) = 2(μ − 1)α + 1 = p − 2α = μ + k−3
2

−μ + k+1
2

= μ + k1 − 2

−μ + k1
. (5.14)

In particular,

(i) μ > k1 if and only if α < 0 if and only if p < q .
(ii) p < 1 if and only if μα < 0 and q < 1 if and only if (μ − 1)α < 0.

(iii) p > 0 if and only if μ ∈ (−k1, k1).
(iv) q > 0 if and only if μ ∈ (2 − k1, k1) or μ ∈ (k1,2 − k1).
(v) 2 − k1 < 0 if and only if 3 < k.

Now we will separately analyze the cases k ≥ 4, k = 3, k = 2 and k = 1 (see (v) above
and the first paragraph of this section).

k ≥ 4: then 2 − k1 ≤ − 1
2 < 0 < 5

2 ≤ k1. Thus we obtain Table 5.

k = 3: this implies 2 − k1 = 0 < k1 = 2. Hence we have Table 6.

k = 2: so 0 < 2 − k1 = 1
2 < k1 = 3

2 . It follows that Table 7.

k = 1: in this case 0 < 2 − k1 = k1 = 1. But since SF ≡ 0, q is non-influent. Thus we obtain
Table 8.
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Table 5 Nonlinearities in scalar curvature equation type (4.11) for m = 1 and k ≥ 4, see Notation 5.2

μ ∈ α ∈ p,q Type of p,q

non-linearity

(−∞,−k1) (0, 1
2k1

) q < p < 0 sing

{−k1} { 1
2k1

} q < p = 0 < 1

{
non-hom

sing

(−k1,2 − k1) ( 1
2k1

, 1
2(k1−1)

) q < 0 < p < 1

{
sub-lin

sing

{2 − k1} { 1
2(k1−1)

} q = 0 < p = 1
k1−1 < 1

{
sub-lin

non-hom

(2 − k1,0) ( 1
2(k1−1)

, 1
k1

) 0 < q < p < 1 sub-lin

(0,1) ( 1
k1

, 1
k1−1 ) 0 < q < 1 < p

{
super-lin

sub-lin

{1} 1
k1−1 q = 1 < p = k1+1

k1−1

{
super-lin

lin

(1, k1) ( 1
k1−1 ,+∞) 1 < q < p super-lin

(k1,+∞) (−∞,0) p < q < 0 sing

Table 6 Nonlinearities in scalar curvature equation type (4.11) for m = 1 and k = 3, see Notation 5.2

μ ∈ α ∈ p,q Type of p,q non-linearity

(−∞,−2) (0, 1
4 ) q < p < 0 sing

{−2} { 1
4 } q = − 1

2 < p = 0 non-hom / sing

(−2,0) ( 1
4 , 1

2 ) q < 0 < p < 1 sub-lin / sing

(0,1) ( 1
2 ,1) 0 < q < 1 < p super-lin / sub-lin

{1} {1} q = 1 < p = 3 super-lin / lin

(1,2) (1,+∞) 1 < q < p super-lin

(2,+∞) (−∞,0) p < q < 0 sing

6 Some Examples and Final Remarks

We consider the usual definition of Einstein manifolds (see [10, 11, 16, 59, 77, 83]). For
some other alternative but close definitions see [18]. For dimension ≥3 these definitions are
coincident.

Definition 6.1 A pseudo-Riemannian manifold (Nn,h) is said to be an Einstein manifold
with λ ∈ C∞(N) if and only if Rich = λh.

Thus, the followings hold by letting (Nn,h) be a pseudo-Riemannian manifold,
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Table 7 Nonlinearities in scalar curvature equation type (4.11) for m = 1 and k = 2, see Notation 5.2

μ ∈ α ∈ p,q Type of p,q non-linearity

(−∞,− 3
2 ) (0, 1

3 ) q < p < 0 sing

{− 3
2 } { 1

3 } q = − 2
3 < p = 0 non-hom / sing

(− 3
2 ,0) ( 1

3 , 2
3 ) q < 0 < p < 1 sub-lin / sing

(0, 1
2 ) ( 2

3 ,1) q < 0 < 1 < p super-lin / sing

{ 1
2 } {1} q = 0 < p = 2 super-lin / non-hom

( 1
2 ,1) (1,2) 0 < q < 1 < p super-lin / sub-lin

{1} {2} q = 1 < p = 5 super-lin / lin

(1, 3
2 ) (2,+∞) 1 < q < p super-lin

( 3
2 ,+∞) (−∞,0) p < q < 0 sing

Table 8 Nonlinearities in scalar
curvature equation type (4.11) for
m = 1 and k = 1, see
Notation 5.2

μ ∈ α ∈ p Type of p,q non-linearity

(−∞,−1) (0, 1
2 ) p < 0 sing

{−1} { 1
2 } p = 0 non-hom

(−1,0) ( 1
2 ,1) 0 < p < 1 sub-lin

(0,1) (1,+∞) 1 < p super-lin

(1,+∞) (−∞,0) p < 0 sing

(i) if (Nn,h) is Einstein with λ and n ≥ 3, then λ is constant and λ = SN/n, where SN is
the scalar curvature of (Nn,h).

(ii) if (Nn,h) is Einstein with λ and n = 2, then λ is not necessarily constant.

Remark 6.2 Let M = Bm ×(ψμ;ψ) Fk be a (ψ,μ)-bcwp such that the Ricci curvature tensor
Ric is given by (4.1). So, M is an Einstein manifold with λ if and only if (F,gF ) is Einstein
with ν constant (note that when k = 2, ν is constant by the equations and not by the above
item (i)) and the system that follows is verified

λψ2μgB = RicB + βH 1

ψ
1

αH

Hψ

1
αH

B − β� 1

ψ
1

α�

�Bψ
1

α� gB on L(B) ×L(B),

λψ2 = ν − 1

ψ2(μ−1)

β�

μ

1

ψ
1

α�

�Bψ
1

α� ,

(6.1)

where the coefficients are given by (4.8). Compare this system with the well known results
for an arbitrary warped product in [18, 70, 83].
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So taking the gB -trace of the first equation in (6.1) results

λmψ2μ = SB + βH 1

ψ
1

αH

�Bψ
1

αH − mβ� 1

ψ
1

α�

�Bψ
1

α� ,

λψ2 = ν − 1

ψ2(μ−1)

β�

μ

1

ψ
1

α�

�Bψ
1

α� .

(6.2)

At this point we observe that we meet all the hypothesis to apply Lemma 2.1, thus (6.2) is
equivalent to

λmψ2μ = SB + βtr
1

ψ
1

αtr

�Bψ
1

αtr ,

λψ2 = ν − 1

ψ2(μ−1)

β�

μ

1

ψ
1

α�

�Bψ
1

α� ,

(6.3)

where

αtr = ζtr

ηtr
,

βtr = ζ 2
tr

ηtr
,

(6.4)

with

ζtr = βH

αH
− m

β�

α�
= ζH − mζ� = −2(m − 1)μ − k,

ηtr = βH

(αH )2
− m

β�

(α�)2
= ηH − mη�

= −(m − 1)μ[(m − 2)μ + k] + k(μ − 1).

(6.5)

Note that for m = 1, we have SB ≡ 0, thus the system (6.2) and hence (6.3) are equivalent
to the Einstein condition with λ. In this case, the coefficients take the form

αtr = −1

μ − 1
,

βtr = k

μ − 1
,

α� = 1

−μ + k
,

β� = μ

−μ + k
.

(6.6)

Example 6.3 First of all, note that the interesting solutions of the involved ordinary differ-
ential equations must be nonnegative and moreover positive for us. So along this example,
when we speak of solutions, it should be understood that we consider only positive solu-
tions, unless explicitly mentioned otherwise. We now consider Remark 6.2 with B as a real
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interval (i.e. m = dimB = 1) equipped with the usual metric ±dr2 and (F k, gF ) is an Ein-
stein manifold with ν. We immediately observe that in (B,±dr2), we have the following
expressions:

∇B(·) = ±(·)′,

|∇B(·)|2B = ±|(·)′|2,

H(·)
B

(
∂

∂r
,

∂

∂r

)
= (·)′′,

�B(·) = ±(·)′′,

(6.7)

where (·)′ means the usual derivative with respect to r . Thus, by (6.3), if μ ∈ R \
{0,1, k,μ±}1 (see Table 2) the corresponding (ψ,μ)-bcwp is an Einstein manifold with
λ if and only if (λ,ψ) verifies the system

λψ2μ = ± k

μ − 1

1

ψ1−μ
(ψ1−μ)′′,

λψ2 = ν ∓ 1

ψ2(μ−1)

1

−μ + k

1

ψ−μ+k
(ψ−μ+k)′′,

(6.8)

or still by changing variables v = ψ1−μ, if and only if (λ, v) verifies the system

(a) λv
2μ

1−μ = ± k

μ − 1

1

v
v′′,

(b) λv
2

1−μ = ν ∓ v2 1

−μ + k

1

v
−μ+k
1−μ

(v
−μ+k
1−μ )′′.

(6.9)

So, applying (2.3) to the right hand side of (6.9) (b) results that a solution (λ, v) of (6.9)
(a) is solution of (6.9) (b) if and only if it is a solution to the first order ordinary differential
equation

λv
2

1−μ = ν ∓ k − 1

(1 − μ)2
(v′)2 + λ

k
v

2
1−μ (6.10)

or equivalently to

(k − 1)

(
± 1

(1 − μ)2
(v′)2 + λ

k
v

2
1−μ

)
= ν. (6.11)

We divide the study in two cases, namely.

k ≥ 2: In this case, (6.11) is central, taking its derivative we obtain that any regular solution
of this verifies

2
k − 1

1 − μ
v′

(
± 1

1 − μ
v′′ + λ

k
v

2
1−μ

−1
)

= 0. (6.12)

Hence, we have the following result:

1The signs ± in μ± are not relative to the signs in the metric ±dr2, these are relative only with Table 2.
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If (λ, v) is a solution of (6.9), then it is a solution of (6.11). Moreover, if (λ, v) is a
solution of (6.11) then v is constant or is a solution of (6.9).

Thus, we have proved:

If a (ψ,μ)-bcwp is Einstein with λ, then 0 < v = ψ1−μ satisfies (6.11), where λ is
necessarily constant (indeed m + k ≥ 3). Furthermore, if 0 < v = ψ1−μ is a non-
constant solution of (6.11), then the corresponding (ψ,μ)-bcwp is Einstein with λ.
Furthermore, if 0 < ψ is a constant, then a (ψ,μ)-bcwp is Einstein if and only if
λ = 0 = ν.

We observe that (6.11) may be solved by the method of separation of variables

dv

dr
= v′ =

√

±(1 − μ)2

(
ν

k − 1
− λ

k
v

2
1−μ

)
. (6.13)

Thus, its solutions are given by

∫ v 1
√

±(1 − μ)2( ν
k−1 − λ

k
w

2
1−μ )

dw = r. (6.14)

For suitable values of the parameters, the latter integral may be solved by applying special
functions (more specifically, hypergeometric functions called also Gauss-Kummer series
and elliptic functions, see for example [19, 104] or apply Mathematica, Maple etc.). As we
mentioned in Sect. 1, metrics of this type are considered in Randal-Sundrum theory [64]
and in super-gravity theories.
One particular simpler case of the above results corresponds to μ = −1, namely.
(ψ,−1)-bcwp with k ≥ 2: In this case, (6.13) reduces to

dv

dr
= v′ =

√

±4

(
ν

k − 1
− λ

k
v

)
(6.15)

and (6.14) to

r =
∫ v 1

√
±4( ν

k−1 − λ
k
w)

dw = ∓ k

λ

√
vλ − kvλ + kν

∓k ± k2
+ γ, (6.16)

with a real constant γ . Hence,

v(r) = ∓λ

k
(r + γ )2 + ν

λ

k

k − 1
. (6.17)

k = 1: First of all, ν = 0 and λ ∈ C∞(B). Hence, unlike to the case of k ≥ 2, (6.11) gives
no information and (6.9) (a) and (6.9) (b) coincide. Thus, we proved that:

A (ψ,μ)-bcwp is Einstein with λ ∈ C∞(B) if and only if 0 < v = ψ1−μ satisfies
(6.9) (a) with k = 1.

For the completeness of the exposition, we will write a few lines about possibly the easiest
case that follows.
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(ψ,−1)-bcwp with k = 1: Here, (6.9) (a) takes the trivial form

v′′ = ∓2λ, (6.18)

where λ ∈ C∞(B). So

v(r) = ∓2
∫ r∫ ω

λ(τ)dτdω. (6.19)

In particular, if λ is constant then this results ψ2(r) = v(r) = ∓2λr2 + ar + b, with a and
b real constants such that ∓2λr2 + ar + b is positive. It is clear that the latter condition
depends on the base interval B1 and the parameter λ.

Example 6.4 Like in Example 6.3, we consider only positive solutions, unless otherwise
explicitly mentioned. By applying Remark 6.2 when B is a compact Riemannian manifold
of dimB = m = 1 with metric gB and (F k, gF ) is an Einstein manifold with ν, we have that
if μ ∈ R \ {0,1, k,μ±} (see Table 2) the corresponding (ψ, k)-bcwp is an Einstein manifold
with λ if and only if (λ,ψ) verifies the system

λψ2μ = k

μ − 1

1

ψ1−μ
�B(ψ1−μ),

λψ2 = ν − 1

ψ2(μ−1)

1

−μ + k

1

ψ−μ+k
�B(ψ−μ+k),

(6.20)

Thus, by integrating on B and applying the compactness of B and also considering the
positivity of ψ we conclude that λ = ν = 0 and ψ is a positive constant. So, we proved that:

Let B be a compact Riemannian manifold of dimB = m = 1 with metric gB and
(F k, gF ) be an Einstein manifold with ν where μ ∈ R \ {0,1, k,μ±}. A (ψ,μ)-bcwp
is Einstein with λ if and only if λ = ν = 0 and ψ is a positive constant (in particular,
a trivial product).

Remark 6.5 The same order of ideas of Example 6.4 and considering especially (6.3) and
(6.1), allow us to prove the following:

Let (Bm,gB) be a scalar flat compact Riemannian manifold and (Fk, gF ) be a pseudo-
Riemannian manifold. Furthermore, suppose that μ ∈ R \ {0,1, k,μ±}. A (ψ,μ)-
bcwp is Einstein with a constant λ if and only if (Fk, gF ) is Einstein with ν = 0, λ = 0
and ψ is a positive constant (in particular a usual product) and (Bm,gB) is Ricci-flat.

Remark 6.6 Let k ≥ 2 be and let us assume the hypothesis of Remark 6.2.

(i) It is easy to verify that in (6.3),

αtr = α� (6.21)

if and only if

(m − 1)(m − 2)μ2 + 2(m − 1)kμ + k(k − 1) = 0. (6.22)

Note that the latter (6.22) is also equivalent to

α� = αH . (6.23)
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Since m,k ∈ N and k ≥ 1, for any m > 2 (6.22) has two real solutions, namely

μ̃± = −(m − 1)k ± √
(m − 1)k(k + m − 2)

(m − 1)(m − 2)
, (6.24)

while for m = 2 has only one solution

μ̃ = 1 − k

2
. (6.25)

We remark here that the latter is exactly the value of the parameter considered by
H.-J. Schmidt in his studies about Birkhoff’s theorems in [92] (see (vi) in Sect. 1).

(ii) If (6.21) is satisfied for some μ, then (6.3) implies the functional equation

λmψ2μ = SB + βtr(ν − λψ2)ψ2(μ−1) μ

β�
, (6.26)

or equivalently, by (4.8), (4.6), (6.4) and (6.5)

λmψ2μ = SB − [2(m − 1)μ + k](ν − λψ2)ψ2(μ−1), (6.27)

or still

[m − 2(m − 1)μ − k]λψ2μ + [2(m − 1)μ + k]νψ2(μ−1) = SB. (6.28)

We observe that if μ is such that (6.21) is satisfied, we reobtained Remark 6.5 (for
this specific value of μ) without the hypothesis of compactness of the base, as a conse-
quence of (6.28) and (6.1).

(iii) When m = 2 and μ is like in (6.25), then (6.28) takes the form

λψ1−k + νψ−(k+1) = SB. (6.29)

Example 6.7 Now, we consider an interesting application of (6.3) with m = 2 and k ≥ 2,
containing as particular case the Schwarzchild type metrics considered in (i) of Sect. 1.
Along the development of this example, we will prove the statement that follows:

Let (Fk, gF ) be Einstein with constant Ricci curvature ν and dimension k ≥ 2. Then,
R+ × R × Fk furnished with a metric

g = s
1
k
−1

[
1

4
√

su2(
√

s)
ds2 ± 4

√
su2(

√
s)dy2

]
+ s

2
k gF , (6.30)

is Einstein with constant Ricci curvature λ where (s, y) ∈ R+ × R if and only if u2

is given by (6.50), where λ and C are such that the right hand side of (6.50) results
positive.

Let (Fk, gF ) be Einstein with ν and (B2, gB) = (R+ × R, gB) be a pseudo-Riemannian
manifold endowed with the metric

gB = (ψ1(s))
2(−1)ds2 ± (ψ1(s))

2dy2, (6.31)

where ψ1 is defined as ψ1(s) = 2s
1
4 u(s

1
2 ), like in (1.6). So by applying the second row of

Table 8 we have,

SB(s) = −�ds2ψ2
1 (s) = SBu2|

r=s
1
2
, (6.32)
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where SB is the linear second order ordinary differential operator defined by

SBf (r) = r−3f (r) − r−2 d

dr
f

∣∣
∣
r
− r−1 d2

dr2
f

∣∣
∣
r
, f ∈ C∞(R+). (6.33)

We now consider B2 × Fk = R+ × R × Fk endowed with the metric

g = (ψ2(s, y))2μ2gB + (ψ2(s, y))2gF , (6.34)

where ψ2(s, y) = s
1
k and μ2 = 1−k

2 (compare with (1.7) when k = 2).
Hence, since (B2 × Fk, g) satisfies the hypothesis of Remark 6.6 (see Remark 4.3), if

(B2 × Fk, g) is Einstein with λ, then ψ2 satisfies (6.3). Furthermore, the relation (6.21) is
verified with μ2 = μ̃ (see (6.25)). Consequently, ψ2 must verify (6.29), precisely

λψ1−k
2 + νψ

−(k+1)

2 = SB. (6.35)

Therefore, by (6.32) and the definition of ψ2

λr
2
k
−2 + νr−2− 2

k = SBu2|r , (6.36)

or equivalently

λr1+ 2
k + νr1− 2

k = r3SBu2|r , (6.37)

where r = s
1
2 .

Note that the latter is an Euler (also called equidimensional) equation. It is easy to show
that for any real constants ν and λ, the general solution of (6.37) has the form

u2(r) = λ

(
1 −

(
1 + 2

k

)2)−1

r1+ 2
k + ν

(
1 −

(
1 − 2

k

)2)−1

r1− 2
k + vh(r), (6.38)

where vh is a solution of the homogeneous equation

0 = u2 − r
d

dr
u2

∣
∣∣
r
− r2 d2

dr2
u2

∣
∣∣
r
, (6.39)

namely a linear combination of r and r−1.
It is clear that the choices of ν,λ and vh will be such that the function u2 be nonnegative.
Furthermore, we observe that among all the solutions of (6.36) there are spurious solu-

tions of (6.1), the reason is that (6.2) is only a necessary condition of (6.1). Indeed, (6.38)
is a solution of (6.1) if and only if vh(r) = C 1

r
, where C is an arbitrary constant. In order to

prove this, we note the following facts about (B2, gB) which is assumed as above:

(i) Since m = 2,

RicB = 1

2
SBgB. (6.40)

(ii) By Proposition 3.9,

Hs
B =

(
1

2
�gB

s

)
gB. (6.41)
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(iii) By Proposition 3.12 and the definition of ψ1,

�gB
s = 2ψ1

d

ds
ψ1 = d

ds
ψ2

1 = L
(

r,
d

dr

)
u2

∣
∣∣
s

1
2
, (6.42)

where

L
(

r,
d

dr

)
f

∣
∣∣
r
= 2

[
r−1 + d

dr

]
f

∣
∣∣
r
. (6.43)

For (B2 × Fk, g), since the coefficients given by (4.8) verify (6.21), they take the values:

α� = αH = 1

k
,

β� = μ̃

k
= 1 − k

2k
,

βH = k

2μ̃ − 1
= −1,

(6.44)

hence, (6.1) takes the form

λψ1−k
2 gB = RicB − 1

ψk
2

(
H

ψk
2

B + 1 − k

2k
�Bψk

2 gB

)
on L(B) ×L(B),

λψ2
2 = ν − ψk+1

2

1

k

1

ψk
2

�Bψk
2 .

(6.45)

So by the definition of ψ2, (6.40) and (6.41), (6.45) results equivalent to

λψ1−k
2 = 1

2
SB − 1

2

1

k

1

ψk
2

�Bψk
2 ,

λψ1−k
2 − νψ

−(k+1)

2 = −1

k

1

ψk
2

�Bψk
2 ,

(6.46)

or moreover, by easy computations, to

λψ1−k
2 + νψ

−(k+1)

2 = SB,

λψ2 − νψ−1
2 = −1

k
�Bψk

2 .
(6.47)

Note in the above steps the reduction from 4 to 2 equations. Furthermore the first equation
of (6.47) is exactly (6.35). Recalling again that ψ2(s, y) = s

1
k , (6.47) takes the form

λs
1
k
−1 + νs− 1

k
−1 = SB,

λs
1
k − νs− 1

k = −1

k
�Bs,

(6.48)



Curvature in Special Base Conformal Warped Products 37

and since s
1
2 = r , by (6.32) and (6.42),

(a) λr
2
k
−2 + νr− 2

k
−2 = SBu2|r ,

(b) λr
2
k − νr− 2

k = −1

k
L

(
r,

d

dr

)
u2

∣
∣∣
r
.

(6.49)

We observe that deriving the second equation of (6.49) and multiplying by r−1, we obtain
the first equation. So any regular solution of (b) is a solution of (a) in (6.49).

On the other hand it is easy to show that a general solution of (6.49) (b) is

u2(r) = λ

(
1 −

(
1 + 2

k

)2)−1

r1+ 2
k + ν

(
1 −

(
1 − 2

k

)2)−1

r1− 2
k + C

1

r
, (6.50)

where C is an arbitrary constant.
Thus, since (6.49) (a) coincides with (6.36), a solution (6.38) of the latter is a solution

of (6.49) if and only if vh(r) = C 1
r
, where C is an arbitrary constant Q.E.D.

As we mentioned in the first paragraph of this example, important solutions of the
Einstein vacuum equations are included in the above discussion (namely, compare with
Sect. 1 (i). We will write explicitly some cases with k = 2 but the situation is more gen-
eral. Let B2 × F2 be endowed with a metric of the form

g = s− 1
2 gB + sgF2 , (6.51)

where (B2, gB) is like in (6.31), (s, y) ∈ B2 = R+ ×R and (F2, gF ) is a pseudo-Riemannian
manifold of dimension k = 2.

Ricci flat: If λ = 0, then (6.37) takes the form

ν = u2 − r(u2)′ − r2(u2)′′. (6.52)

It is easy to verify that u2(r) = ν + C
1

r
is a solution of (6.52). In particular, when C =

−2M , M > 0 and ν = 1 we obtain the classical Schwarzchild solution (compare with (1.1)
and (6.50)). While, the condition “C = 0 and ν = 1” arises the Minkowski metric of an
empty space-time in spherical terms.

Riemman-Schwarzchild: If λ = −3 and ν = 1, then (6.37) takes the form

−3r2 + 1 = u2 − r(u2)′ − r2(u2)′′. (6.53)

It is easy to verify that for any positive M , u2(r) = 1 − 2M
r

+ r2 is a solution of (6.53)
(compare with (1.3) and (6.50)).

Thus, (6.37) contains a large family of important solutions of the Einstein equation. An
analogous procedure can be applied to build the static BTZ (2 + 1)-black hole solution, we
leave the computations to the reader (see [1, 13, 14, 39, 63] for details about BTZ).

Remark 6.8 Let F = (Fk, gF ) be a pseudo-Riemannian Einstein manifold with constant ν

and dimension k ≥ 1.
We recall the principal result in [70] in the context of Riemannian manifolds, namely:

an Einstein warped product with a non-positive scalar curvature and compact base is a triv-
ial Riemannian product space, so that the warping function results constant. Thus, if B =
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(Bm,gB) is a compact Riemannian manifold with dimension m ≥ 3 and μ ∈ R\{0,1,μ,μ±}
(compare with Theorem 4.1), then our system (6.1) admits a non-constant positive solution
only if λ > 0. But if we let F and μ be as above, then there exists a metric on Bm admitting
no ψ ∈ C∞

>0(B) such that the corresponding (ψ,μ)-bcwp is Einstein with λ > 0. Indeed,

multiplying the first equation of (6.3) by ψ
1

αtr and integrating on B respect to the measure
dgB there results

λm

∫

B

ψ
2μ+ 1

αtr dgB =
∫

B

SBψ
1

αtr dgB.

Now, we recall the Aubin result “any manifold of dimension ≥ 3 possesses a complete
metric of constant negative scalar curvature” (see [9, 22, 76]). So if gB is a such metric on
our compact Bm, i.e. SB < 0, then λ cannot be positive (contradiction).

In conclusion, let F and μ as above. On every compact manifold B of dimension ≥ 3,
there exits a Riemannian metric gB such that a (ψ,μ)-bcwp with base (B,gB) is Einstein
with λ if and only if ψ is constant, (B,gB) is Einstein with λmψ2μ and λψ2 = ν ≤ 0.

The case μ = 0, i.e. singly warped product, was considered in [82]. The remaining values
of μ (i.e. 1,μ,μ±) can be analyzed with an analogous approach with suitable changes, yet
by applying (4.5) and (2.3).

A particular example of the latter results (i.e. μ = −1) is the following interesting appli-
cation of them: Let (Fk, gF ) be a pseudo-Riemannian Einstein manifold of dimension k ≥ 1.
Then on any compact manifold Bm of dimension ≥ 3 there exists a metric gB such that there
is no ψ ∈ C∞

>0(B) such that (B × F,ψ−2gB + ψ2gF ) is a non trivial (i.e ψ non constant)
Einstein manifold.

7 Conclusions and Future Directions

Now, we would like to summarize the content of the paper and to propose our future plans
on this topic.

In brief, we introduced and studied curvature properties of a type of product of two
pseudo-Riemannian manifolds called base conformal warped product by us, roughly speak-
ing the metric of a such product is a mixture of a conformal metric on the base and a warped
metric. As we mentioned in Sect. 1, these kind of metrics and considerations about their cur-
vatures are very frequent in different physical areas, for instance relativity, extra-dimension
theories (Kaluza-Klein, Randall-Sundrum), string and super-gravity theories; also in global
analysis for example in the study of the spectrum of Laplace-Beltrami operators on p-forms,
etc.

In Sect. 2, we started our discussion by considering particular families of either scalar
or tensorial nonlinear partial differential operators on pseudo-Riemannian manifolds and
studied useful identities verified by them. The latter allowed us to find reduced expressions
of the Ricci tensor and scalar curvature used not only in Sect. 4 and Sect. 5, but also in the
study of multiply warped products in [39]. The operated reductions can be considered as
generalizations of those used by Yamabe in [107], in order to obtain the famous expression
(1.18) for the behavior of the scalar curvature under a conformal change and those used
in [37] with the same aim but for a singly warped product (see also Remark 2.4 for other
particular application).

In Sect. 3, we defined precisely base conformal warped products of pseudo-Riemannian
manifolds and computed their Levi-Civita connection, Hessian, Laplace-Beltrami operator
and Riemannian curvatures.
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In Sect. 4 and from then on, we concentrated on a very commonly used physical ansatz,
namely when the conformal factor acting on the metric of the base and the warping function
acting on the metric of the fiber are related by an exponent, so that one is a power of the
other (see the examples in Sect. 1). We called a product manifold furnished with a metric
form like above as a special base conformal warped product. Then, we turned our attention
to the structure of the relations that connect the different types of curvatures, especially
Ricci and scalar. More explicitly, we obtained more approachable relations by applying the
results of Sect. 2 but also some formulas even in some exceptional cases corresponding to
the situations where the results of Sect. 2 are unapplicable.

In Sect. 5, we focused on a classification of the type of nonlinearities arose in the re-
lation among the involved scalar curvatures of a special base conformal warped product,
previously obtained in Sect. 4. Similar to the study made in the latter, we classified the non-
linearities according to the value of the exponent parameter μ, the dimensions of the base
and the fiber and finally the scalar curvature of the fiber. The aim of this classification is
to study in future works the problem of prescribing constant/nonconstant scalar curvature
in special base conformal warped products, indeed in these problems, the type of nonlin-
earities, ellipticity/hyperbolicity of the linear part of differential equations connecting the
involved scalar curvatures and compactness of the base play a very central role.

At this point, we would like to note that the previous problems as well as the study of
the Einstein equation on base conformal warped products, special base conformal warped
products and their generalizations to multi-fiber cases, give rise to a reach family of inter-
esting problems not only in differential geometry and physics (see for instance, the sev-
eral recent works of R. Argurio, J.P. Gauntlett, S. Kachru, M.O. Katanaev, J. Maldacena,
H.-J. Schmidt, E. Silverstien, A. Strominger, P.S. Wesson among many others), but also in
non linear analysis (see the different works of A. Ambrosetti, T. Aubin, Y. Choquet-Bruat,
J.F. Escobar, E. Hebey, R. Schoen, S.-T. Yau among others), which will be the subject matter
of future works (see [40]).

In Sect. 6, we analyzed, investigated and characterized possible solutions for the confor-
mal and warping factors of a special base conformal warped product which guarantee that
the corresponding product is Einstein. We apply the same order of ideas to a generalization
of the Schwarzchild metrics also. Among the considered cases there are important metrics
in questions of relativity, cosmology, hight energy physics, etc.
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Appendix

We first show some interesting properties about the behavior of the Laplace-Beltrami oper-
ator under a conformal change in the metric.

Let N = (Nn,h) be a pseudo-Riemannian manifold of dimension n and let

�h(·) = 1√
h

∂i(
√|h|hij ∂j (·)), (A.1)

be the Laplace-Beltrami operator related to the metric h, where we denote the usual volume
element by

√|h| := √|deth|.
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Lemma A.1 Let u ∈ C∞
>0(N) and r ∈ R. Then,

ur�urh(·) = r
n − 2

2
h

(∇u

u
,∇(·)

)
+ �h(·). (A.2)

Proof Denote h̃ = urh, there results h̃ij = urhij , h̃ij = u−rhij and det h̃ = unr det h. Thus,

�h̃(·) = 1

u
n
2 r

√
h

∂i(u
n
2 r

√
hu−rhij ∂j (·))

= 1

u
n
2 r

√
h

[(
n

2
− 1

)
ru( n

2 −1)r−1∂iu
√

hhij ∂j (·)

+ u( n
2 −1)r ∂i(

√
hhij ∂j (·))

]
. (A.3)

So multiplying by ur ,

ur�h̃(·) =
(

n

2
− 1

)
ru−1∂iuhij ∂j (·) + �h(·). (A.4)

�

Lemma A.2 Let u,w ∈ C∞
>0(N) and r ∈ R. Then,

ur 1

w
�urhw = r

n − 2

4

�h(uw)

uw
− r

n − 2

4

�hu

u
+

(
1 − r

n − 2

4

)
�hw

w
. (A.5)

In particular, if w = u, then

ur 1

u
�urhu = r

n − 2

4

�hu
2

u2
+

(
1 − r

n − 2

2

)
�hu

u
= 1

r n−2
2 + 1

�ur n−2
2 +1

ur n−2
2 +1

, (A.6)

where the latter equality is true when r 	= − 2
n−2 . Moreover, if n ≥ 3 and r = 4

n−2 , then

u
4

n−2
1

u
�

u
4

n−2 h
u = �hu

2

u2
− �hu

u
= 1

3

�hu
3

u3
. (A.7)

Proof First of all, we observe that

�h(uw)

uw
= 2h

(∇u

u
,
∇w

w

)
+ �hu

u
+ �hw

w
, (A.8)

hence

h

(∇u

u
,
∇w

w

)
= 1

2

�h(uw)

uw
− 1

2

(
�hu

u
+ �hw

w

)
. (A.9)

On the other hand, by Lemma A.1,
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ur 1

w
�urhw = r

n − 2

2
h

(∇u

u
,
∇w

w

)
+ �hw

w

= r
n − 2

4

[
�h(uw)

uw
− �hu

u
− �hw

w

]
+ �hw

w

= r
n − 2

4

�h(uw)

uw
− r

n − 2

4

�hu

u
+

(
1 − r

n − 2

4

)
�hw

w
. (A.10)

In (A.6), the first equality is immediate by taking w = u in (A.5). In order to obtain the
second equality of (A.6) it is sufficient to apply Remark 2.5 with α = β = 1

r n−2
2 +1

. Finally,

(A.7) is an obvious consequence of (A.6). �

Remark A.3 Now we compute the useful relation between the scalar curvatures under a
conformal change in the metric h when the conformal metric is written in the form h̃ = vrh,
h ∈ C∞

>0(N) instead of an exponential form like in (1.17). Consider vr = eη , so that η =
r logv and applying (1.17) and (2.3) (note that t 	= 0,1) we obtain

vrSh̃ = Sh − (n − 1)r

[
�h logv + n − 2

4
|∇ logv|2

]

= Sh − (n − 1)r

[(
−1 + n − 2

4
r

) |∇v|2
v2

+ �hv

v

]

= Sh − (n − 1)r

[(
−1 + n − 2

4
r

)
1

(t − 1)t

�hv
t

vt

+
(

1 −
(

−1 + n − 2

4
r

)
1

t − 1

)
�hv

v

]
. (A.11)

Without lose of generality we assume r is nonzero, it is clear that Sh̃ = Sh when r = 0. At
this point, we have two cases:

(n ≥ 3): By Remark 2.5 with α = β = 4
n−2

1
r
,

vrSh̃ = Sh − (n − 1)
4

n − 2

�hv
n−2

4 r

v
n−2

4 r
, (A.12)

which contents as a particular case (1.18) when r = 4
n−2 .

(n = 2): In this case (A.11) says

vrSh̃ = Sh − r

t − 1

[
−1

t

�hv
t

vt
+ t

�hv

v

]
. (A.13)

Moreover, if we apply (2.4) the latter equation becomes

vrSh̃ = Sh + r

( |∇v|2
v2

− �v

v

)
. (A.14)

Note that in (A.13) it is not possible to apply Remark 2.5.

Remark A.4 Now, as we mentioned in Sect. 1, we will outline an alternative proof of Theo-
rem 1.1 by applying a conformal change metric technique like in [37]. We will concentrate
in Theorem 4.4 when m ≥ 3. The same order of ideas may be used for the case m = 2.
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Proof (of Theorem 4.4 when m ≥ 3, μ 	= − 1
m−2 ) Since g = g̃B + ψ2gF with g̃B = ψ2μgB ,

an application of (1.15) to ψ results

S = −2k
�ψ2μgB

ψ

ψ
− k(k − 1)

ψ2μgB(ψ−2μ∇ψ,ψ−2μ∇ψ)

ψ2
+ Sψ2μgB

+ SgF

ψ2
. (A.15)

So by multiplying by ψ2μ and applying (A.6) (note that μ 	= − 1
m−2 ), (2.3) (with t 	= 0,1)

and equation (A.12) we obtain

ψ2μS = − 2k

μ(m − 2) + 1

�gB
ψμ(m−2)+1

ψμ(m−2)+1

− k(k − 1)
1

t − 1

[
1

t

�gB
ψt

ψt
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ψ

ψ

]

+ SgB
− (m − 1)

4

m − 2

�hψ
m−2

4 2μ

ψ
m−2

4 2μ
+ SgF

ψ2(μ−1)

= −
[

2k

μ(m − 2) + 1

�gB
ψμ(m−2)+1

ψμ(m−2)+1
+ k(k − 1)

t (t − 1)

�gB
ψt

ψt

− k(k − 1)

(t − 1)

�gB
ψ

ψ

+ (m − 1)
4

m − 2

�hψ
m−2

4 2μ

ψ
m−2

4 2μ

]
+ SgB

+ SgF
ψ2(μ−1). (A.16)

The hypothesis of Lemma 2.1 is verified, indeed: since μ 	= − k
m−1 ,

2(k + (m − 1)μ) 	= 0 (A.17)

and

2k(μ(m − 2) + 1) + k(k − 1) + (m − 1)(m − 2)μ2

= {[k + (m − 1)μ] + (1 − μ)}k + (m − 2)μ[k + (m − 1)μ]
= [k + (m − 1)μ](k + (m − 2)μ) + (1 − μ)k

= (m − 1)(m − 2)μ2 + 2(m − 2)kμ + (k + 1)k

> 0. (A.18)

Thus, by applying Lemma 2.1 with

α = 2[k + (m − 1)μ]
{[k + (m − 1)μ] + (1 − μ)}k + (m − 2)μ[k + (m − 1)μ]

and also β = α2[k + (m − 1)μ] (thus β > 0) and u = ψ
1
α , we obtain that:

−β
�gB

u

u
= u2μαS − SgB

− SgF
u2(μ−1)α. (A.19)

�
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Remark A.5 By using the latter technique, the case of μ = − k
m−2 must be analyzed sepa-

rately. However, it is possible to prove (4.11) in a similar way too.
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