Janda et al.

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3083

Hologram synthesis for photorealistic
reconstruction

Martin Janda,"* Ivo Hanak,' and Levent Onural®

'Department of Computer Science and Engineering, University of West Bohemia, Univerzitni 22, Plzen,
Czech Republic
Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey
*Corresponding author: mjanda@kiv.zcu.cz

Received June 25, 2008; accepted September 21, 2008;
posted October 22, 2008 (Doc. ID 97742); published November 24, 2008

Computation of diffraction patterns, and thus holograms, of scenes with photorealistic properties is a highly
complicated and demanding process. An algorithm, based primarily on computer graphics methods, for com-
puting full-parallax diffraction patterns of complicated surfaces with realistic texture and reflectivity proper-
ties is proposed and tested. The algorithm is implemented on single-CPU, multiple-CPU and GPU platforms.
An alternative algorithm, which implements reduced occlusion diffraction patterns for much faster but some-
what lower quality results, is also developed and tested. The algorithms allow GPU-aided calculations and
easy parallelization. Both numerical and optical reconstructions are conducted. The results indicate that the
presented algorithms compute diffraction patterns that provide successful photorealistic reconstructions; the
computation times are acceptable especially on the GPU implementations. © 2008 Optical Society of America

OCIS codes: 090.1760, 090.1995.

1. INTRODUCTION

Holography is a method to capture the physical nature of
light, usually on a planar surface (a hologram), so that
when the plate is later illuminated in a proper manner,
the originally recorded light is created in a volume [1,2].
If the reconstructed volume filling light is exactly the
same as the originally recorded light, an observer will see
the original environment, with all of its features includ-
ing the three-dimensional (3D) nature of the scene, when
looking into the reconstructed light. The fidelity of the re-
constructed light is directly related to the 3D reconstruc-
tion quality. The major difference between holography
and photography is the inability of the latter to record
properties of light other than its intensity.

Computation of the hologram pattern due to a given ob-
ject is the primary goal of computer-generated hologra-
phy, which has a long history [3—6]. Various methods for
different situations are reported [3,7-9]. Naturally, there
are two major concerns in computer-generated hologra-
phy: the quality of the eventual optical reconstruction
from these holograms and the speed of computations; the
latter is especially important in holographic television ap-
plications, where a real-time computation at the frame
rate is targeted. Fast computation methods to generate
the desired holograms are investigated and reported
[10-12], and hardware solutions are employed to increase
the speed of computations [13,14].

There are numerous methods that are quite fast for
computing holograms of planar objects, including a paral-
lel object and image planes as well as slanted planes
[15-19]. However, the benefits of holography show them-
selves best when the original is a 3D object. Therefore,
the fast computation of holograms of not only planar [two-

1084-7529/08/123083-14/$15.00

dimensional (2D)] objects but especially 3D objects is of
prime interest.

Digital simulation of optical diffraction and holography
invariably starts with discretization of the problem. That
necessitates understanding the effects of sampling and
quantization. Such effects are much more complicated
and interesting for diffraction and holographic patterns
than for more common applications, as analyzed in
[20-22].

In this paper, we present a complete discrete computa-
tional procedure that yields a planar discrete hologram of
a given 3D object (or a 3D environment). The object is de-
scribed in an abstract manner, as usual in computer
graphics, in the form of a 3D geometric structure whose
surfaces possess realistic texture and optical reflection
properties. Naturally, the problem is similar, in many as-
pects, to the classical rendering problem in computer
graphics [23-25]; however, the holography case involves
coherent light and does not possess classical camera with
a lens. The simulation of coherent light requires the in-
corporation of the phase into the calculations. Rendering
without a classical camera model requires accumulation
of light incident from different directions at the points on
the hologram plane.

Our computational approach is fundamentally different
from the approaches outlined above since it can handle
complicated realistic surface structures with occlusions
and realistic light reflectivity properties. Furthermore,
the proposed discretization scheme allows easier imple-
mentations in different computational environments
such as graphics processing units (GPUs) or parallel
computers in addition to implementations in classical
central processing unit- (CPU-) based architectures. Our

© 2008 Optical Society of America

3084 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

macrogeometric-structure model is a classical triangular
mesh; however, we are able to accommodate a very large
number of triangles to achieve realistic shapes. Further-
more, we employ a quite complicated surface reflectivity
model to render holograms that then provide realistic 3D
image reconstructions. A complete mathematical model
adopted for diffraction and subsequent holographic re-
cording is presented in Section 2. As commonly utilized in
the literature, we also employ the so-called source model
in the computations; this is an approximation, much more
efficient than the accurate field model, and it provides
quite good results for most 3D object shapes [11,26-29].
The discretization of the continuous model is given in Sec-
tion 3. We employ a photorealistic surface complexity that
consists of dense triangular meshes; furthermore, we im-
pose additional restrictions on the surface geometry, as
described in Section 4. The details of the algorithm to
achieve an efficient computation is presented in Section 5.
Implementations on distributed architectures and on
GPUs for improved speed are given in Sections 6 and 9,
respectively. Fresnel approximation together with its jus-
tification is given in Section 7, followed by an associated
acceleration method based on a stored and properly
zoomed Fresnel kernel given in Section 8.

In addition to numerical reconstructions, we tested our
generated holograms also by optical reconstructions using
state-of-the-art spatial light modulators (SLMs) [30].
Both numerical and optical results are presented in Sec-
tion 10. Finally, conclusions are drawn in Section 11.

2. BASIC MODEL FOR HOLOGRAPHIC
SETUP

The basic mathematical formulation that we adopt for dif-
fraction and hologram formation due to a 3D object or a
scene is presented in this section.

We consider the geometry shown in Fig. 1. Here we
have a surface S that radiates light with a directional am-
plitude distribution A(s,T), where s represents the coor-
dinates of a point on S, and r is the unit vector indicating
the reverse direction of radiation from s; A(s,r) is a
complex-valued function. The intensity |A(s,#)|? is the
light power emanating from the surface per unit area per

Fig. 1. Relation between a differential solid angle d6 and a dif-
ferential surface element dS. The line crossing the surface S de-
limits the surface Sy visible from x and the rest of the surface S.

Janda et al.

unit solid angle at the point s on S. We have the hologram
plane H, where we want to compute the optical field due
to the monochromatic coherent illumination from the sur-
face S. We chose the hologram plane H as the z=0 plane.

When we consider monochromatic coherent light
propagation from the surface S, the field u(x) at an arbi-
trary point x € H is modeled as

exp(ikr)
u(x):cj A(s,1r)— (g - 1)dS,
s r

X

r=s-x, r=|r|, r=r/r, (1)
where ny is the unit normal vector to the hologram plane
H, k=27/\, and \ is the wavelength. The range of inte-
gration S, represents the segments of S that are not oc-
cluded when looking from the point x. For convenience,
we will drop the complex constant ¢ for the rest of the
analysis.

The model adopted above is rather different from con-
ventional hologram representations; however, it is more
appropriate for our purposes since it associates the holo-
gram formation process with computer graphics concepts
very conveniently. The directional amplitude distribution
A(s, 1) is directly related to local 2D Fourier transform of
the local complex texture (amplitude) on S at s, and
therefore, the integral gives a 2D space-frequency repre-
sentation for u(x). Local frequencies at the location s are
directly associated with propagation directions of local
plane waves propagating away from s, and the associated
complex amplitudes corresponding to those frequencies
determine the amplitudes and phase variations of these
waves. Therefore, the model violates rigorous mathemati-
cal foundations since we need a surface patch, and not a
surface point, to describe the local frequency content. We
can also state that a point source should have a uniform
directional radiation pattern; that violates the nonuni-
form possibilities implied by the adopted model. Finally,
the amplitude decay by 1/r is associated with a point
source, and other directional radiation patterns as
adopted may violate that, as well. A rigorous analysis
based on local directional radiation pattern variations,
and therefore local frequency content of the surface pat-
tern, inevitably brings the associated uncertainity prin-
ciple into the model. Such a rigorous analysis is beyond
the scope and the purpose of this paper. Instead, in accor-
dance with our goal of bringing widely used computer
graphics methods to optical field and hologram computa-
tion, we adopt a diffraction model as given by Eq. (1),
which is an approximation. However, this model is a quite
good approximation that can be successfully used to
model frequently encountered real-life situations, and
thus it is fully adequate for our purposes.

We convert the surface integral above in Eq. (1) via a
change of variables to an integration over the solid angle
0 by observing that

r2de
dS=—, cos p=ng- T, (2)
|cos ¢

where ng is the unit normal to the surface S at the point

Janda et al.

Yy X

Fig. 2. Parameterization of a ray direction r by two angles £ and

.

s. Therefore, the complex valued optical field values u(x)
over the hologram plane H become

exp(ikr) r2
u(x) = f Acs, r) (g - £)——d9, (3)
cos ¢

where the integration is over the hemisphere Q.
For convenience, we define a new function A’(s,r) as

r2

A'(s, 1) =A(s,T) (4)

|cos ¢

In order to evaluate the integral over the solid angle,
we further parameterize it in terms of two angles ¢ and
depicted in Fig. 2. Accordingly, the differential solid angle
d6é becomes

d6=cos &dédy, (5)

and therefore the optical field over H takes the form
exp(ikr)
= f f A'(s,¥)———(ng - T)cos &dé&dy, (6)
—7/2 Y —7/2 r

where both s and t are functions of (x, ¢,). Equation (6)
above states the optical field at a point x on H as a super-
position of field contributions received from infinitesimal
solid angles associated with different directions ¥ by con-
sidering the change in phase and amplitude as a conse-
quence of the distance between the surface element and
the optical field point as well as the attenuation due to ob-
liqueness of the incident ray on the hologram plane H
from those directions.

Note that forming a hologram is straightforward once
the optical field on H due to S is found; e.g., a reference
beam can be added, and the intensity of the subsequent
field is recorded as the hologram [15].

We will discretize the result given by Eq. (6) in the next
section to obtain a form that is suitable for digital pro-
cessing.

3. DISCRETIZATION

Discretization of Eq. (6) is essential for subsequent digital
processing. We start by discretizing the angles ¢ and ¢ as

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3085

¢l = lDLb,

where [and m are integers and D, and D, are the dis-
cretization steps in radians. We also define a regular rect-
angular grid of discrete positions x,, on the hologram
plane H as

&n=mDy, (7)

Xp0 = (pD,,qD,,0) < H, ®)

where p and q are integers and D, and D, are the discreti-
zation steps in meters. Therefore, we label the optical
field value at a position x,, as u,,. Thus we get the dis-
crete form of Eq. (6) as

Upg = EE pglm™—

where we defined the discrete amplitude variable qulm
=A'(s,#)DD, and the attenuation factor w,y,,=hy ¥
Note that s and f are functions of (x,4,;,,) and there-
fore the amplitude, distance, and attenuation factor are
all functions of the indices p, q, [, and m.

We assume that the sampling over the hologram plane
H using the sampling intervals D, and D, does not result
in aliasing; this in turn imposes a band-limited u(x) with
a spatial radian frequency bandwidth of

explik7 g]
Wpqim cos gm) (9)
T'pqlm

a k T ar k T
- <k <=, - <k, <—, 10
D D D > D (10)

x x y y

where k, and k&, are the frequency variables along the x
and y directions with units in radians per unit length.
This bandwidth restriction imposes a limitation on the in-
cidence angles of light rays arriving at the hologram
plane H from the source surface S, because a plane wave
propagating along direction k is a 3D Fourier basis func-
tion exp(ik-x), whose spatial frequencies along the x, y,
and z directions are given by k., k,, and k,, where
(ky,ky,k,)=k. For monochromatic light [k|=k=2mw/\,
where \ is the wavelength of light. Once %, and k, are
fixed for a given wavelength \, k,=(k?—k2— 2)1’2 is also
fixed and therefore the direction of propagatlon is also
fixed as k=(k,,k,,k,). As a result, for a given D, and D,
and the bandwidth as in Eq. (10) to avoid aliasing, we can
get the maximum incidence angles as

kxmﬁx X
Hq = arcsin = arcsin ,
3 2D,
kymﬂx)\'
V¥, = arcsin =arcsin| — |, (11)
k 2D,

where %, s =m/D, and k, =7/D, [see Eq. (10)]. This ob-
servation further limits the range of [and m indices in
Eq. (7) and therefore improves the computational effi-
ciency. Note that since the propagation direction of a wave
does not change (free-space propagation) as it propagates
away (or toward) H, the frequency content, and therefore
the bandwidth, will be the same over any hypothetical
surface parallel to H. However, in the case of a slanted
plane, the same 3D propagation direction will impose
other 2D frequency components on the complex field on
the plane; the same angle limitations will then impose

3086 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

WS

b
Fig. 3. The propagation angle restrictions associated with
aliasing-free sampling of the optical field on H due to D, (lower
cones) determine the propagation angle restrictions associated

with the surface S (upper cones). The same restrictions are also
in place for the y direction due to D,

H

band-limited patterns with different center frequencies
over slanted planes [18]. Therefore, for arbitrary S, the
corresponding restriction on the surface texture owing to
limitations imposed on the pattern over H can be summa-
rized as locally band-limited functions whose local center
frequencies are related to the local slope of S. (See Fig. 3.)
If the slope is zero (parallel to H) the center frequency is
zero (low-pass signal), and as the slope increases, the cen-
ter frequency also increases. All these statements should
be interpreted in the sense of space-frequency represen-
tations, in line with the model adopted in the previous
section, and therefore the associated uncertainity prin-
ciple is in effect.

It is possible to impose further restrictions on the range
of l and m in Eq. (7) based on the spatial extent of a finite
Sx . Considering the bounding box around Sy , we see
that the range of angles is restricted to [\I'bp,q‘I’B] and
[Ep,ER]. (See Fig. 4.)

Therefore, combining all restrictions above, we fix the
range of [and m as

le [Lmianmax] : lﬂl € [_ \Pd,q’d] N [\I’byq,B];

m e [MminaMmax] : gm € [_ Ecb Ed] n [Eb’EB]- (12)

Fig. 4. Range [E;,Eg] inferred from the bounding box of the
surface S. The situation for [V}, V3] is similar.

Janda et al.

4. RESTRICTIONS ON THE SURFACE
GEOMETRY

In this section we will describe the restrictions we choose
to impose on the surface geometry S for both analytical
and computational convenience.

As we stated in Section 1, our goal is to compute holo-
grams for subsequent photorealistic reconstructions. The
formulation presented in Section 2 is readily applicable to
represent realistic texture reflectance properties since we
adopted a space-frequency based description that allows
spreading of radiated light within a solid angle. In addi-
tion, we target a realistic geometry that would allow the
level of detail we expect in a realistic case. To this end, we
may choose a triangular mesh that is commonly used in
computer graphics, with a large number of triangles.
However, as described in Section 3, the adopted aliasing-
free sampling strategy imposes restrictions on the
complex-valued texture A, over S. Even though it is
possible to satisfy these restrictions, the management of
such restrictions will be cumbersome and thus a compu-
tational burden. Therefore, we choose to restrict the ge-
ometry of S further, in such a way that the management
of the complex-valued-texture restrictions becomes easier.

To this end, we restrict S to consist only of planar seg-
ments that are always parallel to H. However, the seg-
ments are discontinuous, since each one may have a dif-
ferent distance from H. Such a geometry will ensure that
the texture on S will be a slowly varying (low-frequency
content) signal as described in Section 3. It is not difficult
to implement such restrictions on the texture. However,
the discontinuities between the segments could be prob-
lematic since they result in phase discontinuities, and
that in turn would generate high-frequency components
on the texture; this would then violate the restrictions de-
scribed in Section 3. Therefore, we restrict the disconti-
nuities to be integer multiples of the monochromatic light
wavelength \. Actually, for convenience, we restrict the
distance z from H to a point s on S to be always an integer
multiple of A. Such a restriction does not create any visual
degradation since the introduced step size N\ is
0.4-0.6 um for visible light, whereas the practical dis-
tances between the hologram and the object surface is of
the order of tens of centimeters in most applications.

The restriction outlined above eases the overall compu-
tational burden while conveniently ensuring the condi-
tions associated with discretization. However, in order to
keep the benefits of working with triangular meshes and
still impose the outlined stepwise-discontinuous surface,
we adopt a two-step approach. First, we start with a tri-
angular mesh S’ to represent S. Then, to get the actual S
from S’ we quantize the distance from H to be an integer
multiple of N\ so that the deviation from the triangular
mesh is minimum. (See Fig. 5.)

5. EFFICIENT COMPUTATION

The basic model for the continuous case and the subse-
quent discretization issues, as well as the restrictions on
the surface geometry, have already been discussed in pre-
vious sections. Therefore, we assume that now the prob-
lem is the actual implementation of the relation given by
Eqg. (9).

Janda et al.

One of the issues during the computation is the accu-
racy of the distances r,4;,, in Eq. (9) since the distance af-
fects the phase and the hologram computations are sensi-
tive to phase errors. The texture on S that is represented
by A,qim in Eq. (9) and the geometry S are input data. We
assume they both comply with the restrictions imposed on
them as described in Sections 3 and 4. As a consequence
of the already discussed restrictions on the signal u(x)
and the surface S, it is possible to further restrict A, to
be a real-valued function. This in turn restricts the angu-
lar propagation pattern to be symmetric around its cen-
ter. (See Fig. 3.) Effects of such an additional restriction
on the variety of surface textures is not important for our
purposes. Computation of other factors in Eq. (9) is rather
straightforward. Therefore, we emphasize only the accu-
rate computation of the distances, which also includes the
accurate computation of the intersection points of rays
with S.

Another primary issue is the efficiency of the computa-
tions and their suitability for specific implementations,
such as an implementation using a commercially avail-
able GPU. The actual order of the summations in Eq. (9)
and the exploitation of the associated parallelism in com-
putation are important in that regard. In this section we
describe computational procedures that address both of
the issues outlined above.

An important variable of Eq. (9) is the distance to the
intersection of a ray and a surface that is nearest to the
starting point of the ray on H. This is known as the ray
casting method [24,31]. The evaluation of the distance
pqim between the point x,, on H and the intersection
Spqim ON S is repeated many times, and therefore it is com-
putationally demanding. We describe an efficient way to
find the nearest intersection and then compute the dis-
tance r,q;, for the surface S that complies with the re-
strictions imposed on it as described in Section 4.

The ray from x,, toward S is

R,gim ={X X=X, +1T,}. (13)

As a consequence, the intersection point s,
=R,qim ﬁSqu corresponds to the point of R, with a pa-
rameter r=rpg/,-

As we outlined in Section 4, it is convenient to describe
the surface S in two steps: first as a triangular mesh S’
and then conversion of mesh structure to a discontinuous
surface S whose segments are parallel to H. (See Fig. 5.)

Therefore, we start with a triangular mesh G=(V,7) as

Se——-"

Fig. 5. Cross section of a surface S’ and its decomposition into a
stepwise surface S.

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3087

our surface S’, which consists of a set of vertices V and a
set of triangles 7. A triangle t5pc € 7 specifies a triangular
section of a plane between vertices vy, vp, and v.. Normal
of the plane is nypo=(vp—vy) X (vg=vy,). Our definition of
the mesh G reflects a data structure that is commonly
used in computer graphics [25].

In the case of multiple intersections of a ray with the
mesh, we need to find the one nearest to x,,. If the set
of intersection points is empty, then we assume that
Tpqlm =

As the number of triangles is expected to be high, test-
ing each triangle for an intersection might significantly
reduce the overall performance. However, we can detect
triangles that are completely invisible and omit them. For
us a triangle ¢5p(is completely invisible from a point x,,
if (X,4-fapc—Va-Nypc) <0. We denote such triangles as
back facing for x,,,.

Furthermore, we observe that in Eq. (9) for [=[., all
rays R, n are coplanar with a plane p;; . Considering the
left-handed coordinate system, the plane p;; is

P, (gD, - y)cos ¥y +zsiny; =0. (14)

This observation leads to efficient evaluation of the inter-
section points by adopting a two-step algorithm that is
based on slicing the surface. We start by intersecting the
mesh G with the plane p,; , and we obtain a slice W,
=(Vy,,€q), where V, is a set of vertices and &
={Eap : Eap € TNpy,, Va€Vy V€ Vy } is a set of edges.
An edge E p is

EAB={X:X=VA+e(vB_VA)’e € [0’1]}7 (15)

where the vertex v, is the beginning of the edge and the
vertex vp is the end of the edge. Considering only the slice
quc reduces the complexity of intersection search signifi-
cantly. Let us consider the simplest case where [,=0 and
therefore py is parallel with the plane 7 : y=0. This spe-
cial case is of great significance because each case where
L #0 can be converted by a geometric transformation to a
case where [=0. The transformation is described later in
this section.

Now that we have a set of edges £,9 and a ray R,qon,
the goal is to find £,0 N Rpgm- According to Egs. (13) and
(15) the ray parameter r and the edge parameter e, corre-
sponding to the intersection point are calculated from

Xpq + 10, =Va +e(VE—Vy). (16)

When reorganized and assuming f0m=(x,0m , y,Om,zr()m),
Eq. (16) becomes a set of two linear equations that can be
easily solved for r and e. Since edges are finite line seg-
ments, the solution is valid only ife € [0, 1]. Otherwise the
edge is not considered to be intersected.

When searching for the intersections, it is not neces-
sary to test all edges &, for each m. Since m is ascending,
the angle ¢,, is also ascending due to Eq. (7). We use an
easy framework to quickly select for each m only those
edges that are intersected by the ray R, ,o,,. For each ver-
tex v; € Vo and for a fixed ¢ we define an angle

3088 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

Xpg = Xy,
@y, = arctan| ——— |, (17)

zy,
and we sort edges E p € £, ascendantly by ag,. All edges
are oriented so that au,>ap, Then, as long as ¢,
€ [agp,asp), the edge E»p is intersected by the ray R0,

Further, let Q={E} 3}, QCE&,(be a set of active edges,
i.e., edges that are known to intersect with the specific
ray Rp,0n,. Every time m is increased, edges Exp, ap,
<§, are added to Q while edges Eap, as,<§, are re-
moved from Q. Since edges E»p € £, are sorted by ap, the
evaluation of the condition ag,<§,, is usually performed
only once per edge. We can further improve the algorithm
efficiency by employing proper sorting algorithms at dif-
ferent stages. Observing that for each edge E,p the
angles ay, and ap, corresponding to samples u,, and
Upy1q differ only a little and therefore the order of edges
do not change much, we use the Bubble Sort algorithm
[32] for reordering the edges according to the new values
of ap,,; since it is known that this algorithm is efficient
for sorting partially sorted data. Nevertheless, for the
first sample in a row, the edges are considered irregular
and therefore the Quick Sort algorithm [32] is used in this
case.

Up to now, we have described the evaluation of a single
row for a fixed q and fixed /. The rest of the rows for dif-
ferent ¢ are processed in the same fashion. When we
move from the row ¢ to the row g—1, we can exploit the
fact that [is kept constant and rows are spaced uniformly.
Because of this an efficient triangle scan-line conversion
algorithm [33] can be employed to obtain a slice W,_,
from a slice W,;. Thus we complete the computation of all
intersection points for fixed .

To find all intersection points, we repeat the above pro-
cedure for all [€ [Lppin,Lmax]- Since computing the slice
Wy is more convenient than computing arbitrary slice
Wy, we proceed with a transformed mesh G Ml=Ml{G}
such that the slice Wy ;=GNp, equals the slice Wy
=G p, N pyo; see Fig. 6.

The transformation operator M; skews the geometry
G=(V,7) by modifying vertices v € V in the direction of the
y axis accordingly, i.e. Gy =(M;{V},7). If veV then vy,
e M Z{V} is

va]=yv_Zv tan iy,

Janda et al.
qu qu Mg Wu,
™
| 1 GMZ
1
pqlm v : >
1
G I
t YIH T yIH
z z
(a) (b)

Fig. 6. (a) A mesh G and (b) its modified version G, trans-
formed by Eq. (18). The dashed mesh G/’MZ is the skewed mesh G
without correction on the distance z,,.

1

Zy =2y .
My cos

(18)

Finally, we modify each intersection point and the cor-
responding distance by moving the already computed in-
tersection with the triangular mesh S’ to the nearest in-
tersection with the stepwise-discontinuous S. We move
the intersection along the ray R,g,. As a consequence,
T'pqim Decomes an integer multiple of N/, where

A
N = —— (19)
Ny - Ty
and ny=(0,0,1) is the normal to the plane H. When r,4;,,
is rounded to the nearest integer multiple of \;,,, it is en-
sured that the corresponding distance to s,q;, on S’ is
rounded to the nearest integer multiple of \ to imply an S
as we described in Section 4.

Having the geometry of S, the intersection points of our
rays with S together with the associated distances, and
the texture Ay, on S, we are ready to complete the
evaluation of Eq. (9). The algorithm actually follows the
steps for the computation of the intersection points we
have outlined above: as we evaluate the intersection
points and the corresponding distances in the presented
order, we immediately compute the associated partial
field. First, we compute the partial result uﬁ,q for all p and
q but for fixed [and then get u,, of Eq. (9) as upq=Eluf,q.
Not that each ull,q can be interpreted as a “horizontal par-
allax only” component of u,, [34]. Thus we achieve an ef-
ficient and suitable algorithm, which we call Alg. 1, for
evaluating the complete discrete optical field value u,,;
naturally, the discrete variables p and ¢ run over a speci-
fied finite range. However, there are opportunities for fur-

ther acceleration, as presented in the following section.

Algorithm 1. Skeleton of the algorithm for diffraction pattern computation. See the referred sections in the text for de-

tails.
1: for /=K ;, to L, . do
Transform mesh G to mesh G,
for ¢g=-@ to @ do
Compute slice W,0=G v, N py0
for p=-P to P do
Compute «,, and ag, for each edge E g € &

Let Q=0

Sort edges in £, according to corresponding g,

> Sec. 3
> Sec. 5

> Sec. 5

> Eq. (17)

Janda et al.

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3089

9: for m=M_,;, to M., do > Sec. 3

10: Add edge E g € &y to Q, if ag, <&,

11: Remove edge E g € Q from Q, if ay,<§,

12: if O #0 then

13: Compute all intersection {r;qOm}=qu0mﬂEAB, E,peQ > Sec. 5

14: Obtain the nearest intersection 7,0, =mingr; o,

15: Add contribution A qlmexp(i2—77rpq0m)wpqlm cos &, to u,, > Eq. 9)
Tpqom N

16: end if

17: end for

18: end for

19: end for

20: end for

6. DISTRIBUTED COMPUTING

One strategy to accelerate digital optical field computa-
tion is distributing the task on a cluster of computers. A
linear speedup is desirable; however, it is practically im-
possible to reach such a speedup owing to the sequential
parts of the algorithm and the communication necessary
to coordinate the computation [35]. In this section we
present a distribution scheme that utilizes the algorithm
described in the previous section. We aim on minimizing
the communication load through an efficient task decom-
position.

We assume a homogeneous cluster of nodes connected
via a network; i.e., each node is a stand-alone computer
with identical configuration. In order to maintain a mini-
mal communication load, we exploit the homogeneous
cluster environment and we employ a static workload bal-
ancing. We algorithmically assign subtasks to nodes prior
to the evaluation, and after assigning the subtasks no
other communication is necessary until all nodes process
their assigned subtasks.

The key feature of the proposed distribution is a decom-
position of the algorithm into subtasks. Since we evaluate
each sample u,, independently of other samples, we can
partition the desired optical field into arbitrary segments,
i.e., tiles on H. There are two factors that control the tile
selection.

First, the algorithm Alg. 1, which is used for computing
the diffraction pattern, exploits preprocessing to speed up
the synthesis. It preprocesses the mesh G to speed up the
calculation of slices W,o, and it preprocesses each slice
W0 to speed up intersection evaluations. In order to limit
the communication load and to avoid synchronization,
each node needs to repeat the preprocessing procedure for
each subtask. This has a negative effect on the efficiency.
In order to minimize the number of repetitions of the pre-
processing step for each slice Wy the tiles are chosen to
be composed of the optical field rows.

Second, the static load balancing requires tasks to fin-
ish at the same time to be efficient. Therefore we assign
each N,th row to one tile, where N, is the number of
nodes. This is based on the assumption that a sequence of
N, slices (W,o’s) will have a similar number of edges and
vertices. This is justified by the small sampling step D,,
which is much smaller than the minimal details in com-
monly used meshes. Hence, the processing times of all
subtasks are similar. To be efficient, the entire subtask
has to fit into physical memory of a node. If the subtask

does not fit into node physical memory, we have to use a
lower number of rows so that we can generate n N, sub-
tasks where ng € N. In the following text, we keep n,=1 for
the sake of simplicity.

Once the subtasks are established, they are transferred
to the corresponding computation nodes for processing.
The total number of processed rows in each subtask is
equal to the number of rows processed by sequential com-
putation. As a consequence, the total time spent on dis-
tributed evaluation of the rows is reduced by almost 1/N,,
compared with the sequential computation.

The distribution described scheme can also be used in
conjunction with the GPU-based algorithm by replacing
the algorithm used with the one given in Section 9.

7. FRESNEL APPROXIMATION

As already discussed in Section 3 and as summarized by
Eq. (12), the propagation angles can be quite small. This
is true, in particular, for implementations targeted for op-
tical reconstructions using currently available SLMs. Un-
der these conditions, the Fresnel approximation is a valid
choice, and the term exp(ik7pgin)/pqm in Eq. (9) is ap-
proximated as [14,36]

exp(ikr,qm) 1)
~ —— exp(ikz,q)
Tpglm Zpqlm

k
Xexp| i——

> . (xizyqlm-'-ylzqum)) (20)
pgqim

where (qulm _qu) = (qulm »Ypglm >qulm)-

The benefits of the Fresnel approximation are even
more significant in our case due to restrictions imposed on
S as described in Section 4. First of all, since the distance
from H to S is always restricted to be an integer multiple
of \, the phase factor exp(ikz,q;,) in Eq. (20) is always
equal to 1. Therefore, we define a generic kernel

1 k
ho(x,y) =~ exp{i—(x2 +y2)} : (21)
z 2z
where z is a parameter. Observing that

thqlm(xyy) = O'th(a'x, 0'.')’) » (22)

where 0=(2/z,4,)"/?, we can easily compute the needed

kernel for any 2, from the precomputed and stored ge-

3090 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

neric kernel by properly zooming the kernel and by modi-
fying the gain factor. Please note that usually o is close to
1, and therefore the associated effect on the amplitude of
the kernel is negligible. However, the effect on phase due
to scaling of the variables (x,y) is important. We exploit
this property in the implementation given in Section 8 by
computing the generic kernel once and then by zooming it
using noninteger interpolation techniques.

8. ACCELERATION BY REDUCED
OCCLUSION

Synthesis of a diffraction pattern, as described in previ-
ous sections, is a computationally demanding task. There-
fore, it is worthwhile to investigate alternative methods
that sacrifice quality somewhat in return for a gain in
computational performance. We expect that the loss in
quality will be minimal, whereas the gain is significant.

As described in Section 5, our method computes many
intermediate horizontal parallax only (HPO) optical fields
and then combines those to get the full parallax photore-
alistic reconstructions. There is an alternative procedure
that needs a fewer number of HPO optical fields and still
yields full-parallax but reduced-occlusion reconstructions.

The approach is based on computing a full-parallax
partial optical field U, over H formed by a slice W, de-
fined in Section 5. However, each slice W is processed in-
dependently of the others without taking into consider-
ation the occlusions among the slices. The final diffraction
pattern is the sum of the optical fields generated by slices,
ie, U=2,U,. In other words, the proposed approach
solves the occlusion and solid-surface problems along the
x axis, but the occlusions along the y axis are omitted.
However, the result is still a full-parallax hologram.

The computational approach shares a part of the algo-
rithm presented in Section 5 that calculates the optical
field for [=0. The slicing, point-source generation, and oc-
clusion evaluation are the same. The difference in the al-
gorithm takes place when a sample u,, is processed and
the distance 7,4, to the nearest intersection s, is cal-
culated. In the original algorithm, the point source cre-
ated at the intersection s,,;,, contributes only to a single
sample u,, following Eq. (9); that, after all samples are
evaluated, results in an HPO optical field for a slice. How-
ever, when we do not care about the occlusions along the y
direction, each u,,, for a fixed p and variable g, receives a
field contribution from the source at the already com-
puted intersection point. We denote the field u,,, for fixed
p as the column 7, and take advantage of this observation
as described in the next paragraph.

We start by using the result obtained in Section 7 by
precomputing and storing a discrete generic kernel. This
gives us an optical field on H that would be obtained by a
point source located at (0,0,z). Using the coordinates of
the computed nearest intersection s,,;, and the point x,,
at 7,, we find the appropriate zoom o in Eq. (22) and the
spatial shift to be applied to the precomputed optical field.
Note that the needed zoom and shift might necessitate
subpixel accuracy. We handle this by interpolating the
precomputed field linearly along the ¢ direction. Since we
compute one column 7, at a time, only a column of the

Janda et al.

precomputed field is scaled and shifted. This results in an
efficient calculation. Also, due to the symmetry of the ge-
neric kernel, it is sufficient to store only its one quadrant
to reduce memory requirements.

9. GPU

The GPU is a central element of a graphics card. It is a
specialized processor based on highly parallel architec-
tures devoted to speeding up conventional computer
graphics tasks such as processing triangular meshes,
solving occlusion problems, and rendering final 2D im-
ages to be displayed on computer monitors. The current
generation of GPUs is programmable, and therefore it is
possible to transfer appropriate CPU tasks to the GPU.
One such application is digital hologram synthesis
[13,14,37,38]. In this section we describe a version of our
method that exploits the GPU to decrease computation
time.

The GPU is designed to transform triangular meshes
and sample them. The sampling task is performed by a
hard-wired unit called the rasterizer. The output of the
rasterizer is a rectangular grid of the samples to be dis-
played on the monitor. We use the GPU to output our op-
tical field on H, which is also discretized in a regular rect-
angular fashion. To show the relationship between the
rasterizer and our approach, let us assume an ortho-
graphic projection of the meshes. Then the task of the ras-
terizer is equivalent to casting a ray R, from each
sample point x,, on the grid. The directional vector of
each ray is constant: ¥(y=(0,0,1). The rasterizer finds in-
tersections of the rays with the meshes. In further pro-
cessing of intersections, the GPU selects the nearest in-
tersection by using the depth buffer technique [25]. The
diffraction computation described in this paper requires
similar computational steps.

In order for the rasterizer to be used to evaluate the in-
tersection discussed in Section 5, the vertices of a trian-
gular mesh G=(V,7) have to be transformed by a trans-
formation P;,,. The transformation 7}, is an extension of
the transformation M; used in Section 5. The extension
into the x axis, however, leads to a hemisphere param-
eterization different from Eq. (5). Let us define two angles

just for the sake of defining the transformation: &,, and .
The transformation exploits the fact that rqq:¥;,,=1/;,,
where {},, is proportional to the distance r,4,, used in
Eqgs. (9) and (13). For the left-handed coordinate system,
le is

1 0 0

Pm=| O 1o (23)
—tané, -tany; &m

A relation that maps hemisphere parameterization of Eq.
(23) to hemisphere parameterization of Eq. (5) is

_ _ tanyy 1
tan gm =tan gm’ tan fy=—, G

08 &,

~ cos £, COS Yy
(24)

Janda et al.

After transforming, the z-axis coordinate of the trans-

formed vertex v e P;,,{V} equals the distance r,4;,. The

whole GPU synthesis is summarized in Alg. 2. Neverthe-

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3091

less, there is still the issue of the numerical accuracy of
the GPU, which is discussed in the following paragraphs.

Algorithm 2. A skeleton of an algorithm that evaluates the diffraction pattern on the GPU as described in Section 9. For
details on computation, consult the referred portion of the text.

1: for all /=L, to L., do

for all m=M_;, to M., do
Build transformation metrix P,
:Let u;q=upq, V.4
for all G;CG do

end for

Replace samples u,, with u,,
end for
end for

=
= o

For performance reasons, the numerical accuracy
nowadays of the GPU is limited to 32-bit floating point
numbers. This accuracy is insufficient for some parts of
Alg. 2. One accuracy problem occurs in Eq. (24) for angles
¢, ~0 and ¢;=0. Regardless of the angles ¢, and ¢, {j,, is
rounded to 1 when stored as a 32-bit floating-point num-
ber. This issue is resolved by using {;,,,— 1 instead of {;,,,. A
more serious accuracy problem occurs during the phase-
shift calculation in Eq. (9).

In Eq. (9) the phase of a point source is shifted by
Xpqim=€XP(27@pq1,), Where @poim=Tpgm/N. The shift
Xpgim 18 stored as Xpqu, =€08(27@pq1,) +1 8IN(2T@,q0m)-
Since both the sine and the cosine functions are periodic,
only a fractional part of ¢,;,, is needed. For the usual sce-
nario, A=10"7 and Tpqim ™= 1071, and thus the phase shift
i @pgum~10°~220. This leaves only 4 bits of the frac-
tional part in the mantissa and causes disturbing arti-
facts in the reconstruction.

To address the insufficient accuracy we define planes
k;: z=1D,. The distance r, is the length of a ray R, be-
tween two successive planes k; and «;,; as depicted in Fig.
7(a). The distance r, is finite because || <m/2 and |&,,]
< /2. We choose D, so that the fractional part of r,/\ has
at least 10 bits. The maximum error of omitted bits is
27X 2710~10"3<1 rad. This also matches the condition
for the validity of the Fresnel approximation [15,36].

Compute fractional part of ®;,, with higher precision
Render G; to calculate relevant samples u,,

> Sec. 3
> Sec. 3
> Eq. (23), Eq. (24)

> Eq. (25)

In general cases, planes k; are used to split the trian-
gular mesh G into many triangular meshes G;. As a con-
sequence, ‘qulm=¢1/;qlm+q)ilm7 where

Zy iD,
; =6im™ > q)i m = Slm™ > 25
d’pqlm gl N L gl N ()

and z,=z,—1D, for each vertex v € G;; see Fig. 7(b). If the
mesh G fits between planes «; and «;,1, it is not divided.
Since ®;;,,, is constant for mesh G; and the given direction
17, it is calculated with higher accuracy outside the GPU
with minimal effect on performance.

10. RESULTS

Results obtained by the various computational proce-
dures outlined in previous sections are presented in this
section together with comparisons.

Numerical reconstruction results from the computed
optical fields are obtained by propagating the fields to
planes parallel to H. This is accomplished by taking the
discrete Fourier transform (DFT) of the computed optical
field, multiplying it by the transfer function correspond-
ing to an angular spectrum, and then taking the inverse
DFT [15,19]. We pad the optical field with zeros so that
the resolution becomes 8192 X 8192 samples. This pad-

Fig. 7. (a) Evaluation of the longest distance r, and (b) decomposition of z, including distances proportional to phase shifts <p1;qlm and
®;,,. The longest distance is computed from D, and R,1,,/, where I’ =max{|Lyin| , |Linax|} and m'=max{|M, ;.| , M a5}

3092 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

ding reduces the unwanted features associated with the
periodicity implied by the DFT. Figures 8-13 show the in-
tensity of the propagated optical fields.

Five different scenes with different levels of complexity
and properties are used. The magnitudes of A,;,,, over the
object surfaces are obtained according to Phong’s illumi-
nation model [39]. The “Photo” is the simplest scene,
which is a textured rectangular 2D pattern having a res-
olution equal to the resolution of the computed optical
field. The texture contains small details and smooth in-
tensity variations. The second scene, “Primitives”, con-
sists of four different simple 3D objects placed along the z
axis at different depths. This scene has the longest dis-

(d)

Fig. 8. (a) Numerical reconstruction (intensity) from a GPU-
computed optical field. The scene consists of a single textured
plane (2D object) parallel to H. The distance between the object
plane and the hologram plane is 0.42 m. The resulting image is
clipped to 2048 X 1320 pixels. (b) An enlarged detail of the recon-
struction is compared with (c) the original texture. (d) The mag-
nitude of the entire computed optical field pattern which is then
used to get the reconstruction. (The photo is courtesy of Libor
Vasa).

Janda et al.

Fig. 9. (a) Numerical reconstructions (intensity) from optical
fields calculated by a GPU and (b) details of the reconstructions.
Presented scenes are “Chess” and “Lancaster.” Both reconstruc-
tions are computed at a distance of 0.5 m.

tance between the nearest and the farthest object points
of all the scenes (0.2 m). The third scene, “Lancaster”,
contains a model of the Avro Lancaster airplane. This
model consists of over 80,000 triangles, and the magni-
tude of the texture is slowly varying. The fourth scene,
“Chess,” has several subsurfaces that occlude each other.
The last scene, “Bunny”, also has textured sub-surfaces.
This scene demonstrates well the ability of our method to
handle photorealistic content. The complete parameters
of all scenes are provided in Table 1.

Figure 8 presents a numerical reconstruction of 2D
“Photo” from its optical field computed as described in
Section 9. A closeup [Fig. 8(b)] is provided together with
the original photo [Fig. 8(c)] for visual comparison. A loss
of detail is visible in the closeup of the reconstruction. The
fur of the creature is blurred, but the details of the hairs
around its head are still visible. The magnitude of the en-
tire computed optical field, which is then used to get the
reconstruction, is presented in Fig. 8(d).

The numerical reconstructions from the optical fields
computed by our full-parallax method using “Chess” and
“Lancaster” are depicted in Fig. 9. Both scenes are suc-

Janda et al.

(d)

(b)

(e)

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3093

&)

Fig. 10. Numerical reconstructions from a GPU-computed optical field focused at the (a) cone, (b) cylinder, (¢) box, (d) sphere, (e) torus.
(f) An out-of-focus reconstruction. The optical field is calculated by a GPU. All images are clipped to a resolution of 1100 X 1100 pixels.

cessfully reconstructed. Note that the wood texture
present in the scene “Chess” is recognizable in Fig. 9(b).

The numerical reconstructions of the scene “Primitives”
at different depths are given in Fig. 10. The objects at the
focused depths are sharp, as expected. Even the farthest
object (torus) is successfully reconstructed; see Fig. 10(e).
Out-of-focus objects yield fringes around them, as ex-
pected.

We present the reconstruction of the scene “Bunny” in
Fig. 11. This reconstruction demonstrates the visual qual-
ity that we can achieve with our full-parallax method.
Unlike the previous results, the resolution of this optical
field is 4096 X 4096 samples. Actually, we computed three
different optical fields for three different wavelengths:
650 nm (red), 510 nm (green), and 475 nm (blue). From
those three optical fields we reconstructed three separate
images and digitally combined them into one color (on-
line) image.

In addition to the numerical reconstructions, optical re-
constructions were also carried out. Computed optical
fields are converted to off-axis holograms by adding a ref-
erence beam and then computing the intensity pattern.
An SLM that operates in the amplitude-only mode is used
for the optical reconstruction. The SLM has a resolution
of 1280 X 720 pixels, and the size of each pixel is 12 um.
The reconstructed optical fields were recorded by a CCD
camera stripped of all additional optics. The acquired im-
age for the “Lancaster” is shown in Fig. 12. The optical re-
construction reveals some degradation compared with the
numerical reconstruction, but this is expected because of

the much smaller SLM resolution and the noise inherent
in the physical setup including the camera.

For a comparison, the numerical reconstructions from
optical fields obtained by the full-parallax CPU imple-
mentation and the reduced-occlusion implementation are
shown in Figs. 13(a) and 13(b), respectively.

We compared the results obtained from the single-CPU,
multiple-CPU and GPU implementations of the full-
parallax and reduced-occlusion methods. The reconstruc-
tions obtained by these methods are almost indistinguish-
able visually. The numerical comparison, however, reveals
differences that are presented in Table 2. We compared
intensity images reconstructed numerically from optical
fields computed from the scene “Photo”.

For that purpose we used the maximum difference

maqu{||upq|2 - |u1;q|2|}

maqu{\upq\Q}
and the mean square error (MSE)
R e 1 U

E=
PQ

where u,, is a value of the optical field reconstructed from
a result calculated by the CPU full-parallax version (ref-
erence optical field); u/ is the value of the compared op-
tical field; and P and @ are the number of samples along
the x and y directions, respectively. From the numbers in
Table 2 it is apparent that the differences for the distrib-

max,,f{| upq|2}

3094 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

Fig. 11. (Color online) (a) Full-color (online) numerical recon-
struction. The color is composed of three components at wave-
lengths 650 mn (red), 510 nm (green), and 475 nm (blue). The
three optical fields are simultaneously computed by a GPU. (b) A
detail of the reconstruction. (¢) The same detail reconstructed at
a different depth.

uted CPU full-parallax method are negligible. The more
pronounced difference measured for the GPU implemen-
tation is caused by the reduced numerical accuracy of the
GPU and rounding operations of the rasterizer unit. As
expected, the reduced-occlusion case gives the highest dif-

Fig. 12. Optical reconstruction from an off-axis hologram. The
hologram is obtained from the optical field calculated by a GPU.
The incidence angle of the reference beam is 0.758° diagonally to
fit the SLM parameters. The reconstruction uses an amplitude-
only SLM, and the reconstructed image is captured by a CCD
camera without any lens.

Janda et al.

(b)

Fig. 13. Numerical reconstruction (a) from the CPU computed
full-parallax optical field and (b) from the CPU-computed
reduced-occlusion optical field. Focus of the numerical recon-
struction is approximately at the black pawn in the middle of the
picture.

ference. This is the result of the different evaluation of
the vertical parallax.

We also measured the processing times associated with
the described computational procedures. We tested imple-
mentations on a single CPU (Intel Xeon 3.2 GHz, 1 GB
RAM), on a cluster of CPU’s (10 XIntel Xeon 3.2 GHz,
1 GB RAM, 1 Gbps Ethernet), and on a computer
equipped with NVidia GeForce 8800 GTX GPU. Taking
into account the time requirements of the CPU implemen-
tations, we reduced the resolution to 1024 Xx1024
samples. The only exception is the scene “Bunny,” which
was computed just on a GPU and had a resolution of
4096 X 4096 samples. This resolution demonstrates the
ability of the GPU implementation to calculate large op-
tical fields in acceptable times. The computation times
are summarized in Table 3. Considering the rapid devel-
opment of the CPU and especially the GPU performance,
the measured values should be interpreted only for com-
parison purposes. Table 4 lists the speedup factors
achieved by different implementations with respect to the
single-CPU implementation. It is apparent that the
speedup achieved by distributing the computation is ap-
proximately linear. What is also apparent is the expected
superior computational performance of the GPU imple-

Table 1. Properties of Scenes Used for the Tests

Projected Size” Scene Distance Scene Depth

Scene Triangles (%) (m) (mm)
Photo 2 100 0.42 0
Primitives 972 30 0.40 202
Lancaster 83,848 23 0.49 12
Chess 42,566 32 0.49 13
Bunny 84,580 29 0.45 24

“Percentage of the hologram frame area covered by an orthogonal projection of
the scene.

Table 2. Difference Comparisons of the Scene

“Photo”

Version Aax MSE
Distributed on 5 CPUs 0.003 0.895x1077
CPU reduced occlusion 0.259 0.180x 102
GPU 0.104 0.970x 107*

Janda et al.

Vol. 25, No. 12/December 2008/J. Opt. Soc. Am. A 3095

Table 3. Computation Times (hr)

Distrib. on N CPUs:

CPU Full Parallax
GPU:
Scene Full Parallax Reduced Occl. N=5 N=10 Full Parallax

Photo 218.9 15.3 44.2 22.3 0.3
Primitives 65.4 5.2 13.1 6.4 0.2
Lancaster 53.3 3.8 10.5 5.2 0.4
Chess 78.6 5.5 16.4 8.2 0.3
Bunny“ 96.0

“Bunny was used for computing a large (4096 X 4096) optical field. The computation time applies for a GPU implementation that simultaneously computes three color chan-

nels.

Table 4. Relative Speedup

Distrib. on N CPUs:

CPU Full Parallax
GPU:
Scene Full Parallax Reduced Occl. N=5 N=10 Full Parallax
Photo 1.00 14.30 4.96 9.81 718.86
Primitives 1.00 12.58 5.00 10.53 327.10
Lancaster 1.00 13.95 5.11 10.16 140.16
Chess 1.00 14.40 4.80 9.58 245.69

mentation. This is due to the massive parallelism in the
GPU architecture. Thus, we expect that by increasing the
number of computation nodes of the cluster sufficiently,
we can achieve similar results in the distributed environ-
ment, as well. Finally, the acceleration by reducing the
parallax provides significantly shorter computation time
by sacrificing the quality. This approach is therefore quite
suitable for a fast preview mode.

11. SUMMARY AND CONCLUSIONS

We have presented detailed computational algorithms for
computing optical fields of objects; our primary goal was
to achieve photorealistic reconstructions. Therefore, our
3D objects had a large number of triangles in their mesh
representations. Furthermore, we adopted realistic sur-
face illumination as commonly employed in computer
graphics applications. A diffraction model suitable for this
goal was adopted and discretization effects were dis-
cussed. The model is based on the local angular reflectiv-
ity distribution of a textured surface. We developed two
algorithms for the full-parallax and reduced-occlusion
cases; the former algorithm is implemented on a single
CPU, multiple CPU, and a GPU, and the latter algorithm
is implemented only on a single CPU.

We conclude that the optical fields obtained from the
adopted diffraction model and various implementations of
its discrete version provide successful photorealistic re-
constructions. The presented algorithms perform well
both for simple (planar) objects and quite complicated 3D
scenes with large depth. Our conclusions are based both
on numerical reconstructions and on optical reconstruc-
tions.

In addition to full-parallax implementations, we inves-
tigated a reduced-occlusion alternative for faster compu-
tation. It is observed that a significant speedup with
rather small degradation is possible; this approach is
therefore quite suitable for generating fast previews. Op-
tical reconstruction quality is lower than numerical re-
construction quality. This is due to the SLM resolution
used as well as the noise inherent in the physical recon-
struction environment.

On the basis of comparisons of different hardware
(single-CPU, multiple-CPU, and GPU) implementations,
we conclude that all provide almost the same visual qual-
ity but that the needed computation times vary signifi-
cantly. As expected, GPU implementation is considerably
faster.

The proposed solution emphasizes the ability to exploit
parallel and distributed computing. We are convinced
that the computational complexity of the diffraction-
pattern computation cannot be significantly reduced
without sacrificing the quality of the reconstructed image.
As a consequence of the particular sampling scheme over
the object surface, our method allows a straightforward
exploitation of acceleration techniques such as computa-
tional cluster or GPU. The presented algorithms achieve
a speedup factor that is almost a linear function of the
number of processors. We showed that holograms with
one mega-pixel in size can be computed in tens of minutes
using commonly available computational resources.

We conclude that the presented algorithms and their
indicated implementations are able to generate holo-
grams of arbitrary scenes that have a format common in
modern 3D authoring tools used in the multimedia indus-
try. This feature is crucial for easy integration into well-
established computation pipelines. Furthermore, there

3096

J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

are no drawbacks that would prevent processing of more
complicated scenes and computation of larger holograms.
Therefore, the presented procedures can be easily used in
applications that require larger holograms of larger and
more complicated scenes.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Educa-
tion, Youth, and Sports of the Czech Republic under the
research program LC-06008 (Center for Computer Graph-
ics) and by the Europen Union (EU) project within FP6
under grant 511568 with the acronym 3DTV. The authors
thank Metodi Kovachev, Rossitza Ilieva, and Fahri Yaras
for the optical reconstructions conducted at Bilkent Uni-
versity holographic 3DTV Laboratories. The authors are
grateful to Vaclav Skala for his invaluable comments
while this work was conducted.

REFERENCES

1.
2.

3.

10.

11.

12.

13.

14.

15.

D. Gabor, “A new microscopic principle,” Nature 161,
TT77-778 (1948).

D. Gabor, “Microscopy by reconstructed wavefronts,” Proc.
R. Soc. London, Ser. A 197, 454487 (1949).

L. Onural, A. Gotchev, H. M. Ozaktas, and E. Stoykova, “A
survey of signal processing problems and tools in
holographic 3DTV,” IEEE Trans. Circuits Syst. Video
Technol. 17, 1631-1646 (2007).

L. Yaroslavskii and N. Merzlyakov, Methods of Digital
Holography, (Consultants Bureau, 1980).

G. Tricoles, “Computer generated holograms: an historical
review,” Appl. Opt. 26, 4351-4360 (1987).

J. Rosen, “Computer-generated holograms of images
reconstructed on curved surfaces,” Appl. Opt. 38,
6136-6140 (1999).

D. Mendlovic, G. Shabtay, U. Levi, Z. Zalevsky, and E.
Marom, “Encoding technique for design of zero-order (on-
axis) fraunhofer computer-generated holograms,” Appl.
Opt. 36, 8427-8434 (1997).

A. G. Kirk and T. J. Hall, “Design of computer generated
holograms by simulated annealing: observation of meta-
stable states,” J. Mod. Opt. 39, 2531-2539 (1992).

V. Arrizén, G. Méndez, and D. Sanchez-de La-Llave,
“Accurate encoding of arbitrary complex fields with
amplitude-only liquid crystal spatial light modulators,”
Opt. Express 13, 79137927 (2005).

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-
generated holograms using 3-D Fourier spectra,” Opt.
Express 12, 6246-6251 (2004).

K. Matsushima and M. Takai, “Recurrence formulas for
fast creation of synthetic three-dimensional holograms,”
Appl. Opt. 39, 6587-6594 (2000).

M. Cywiak, M. Servin, and F. M. Santoyo, “Wave-front
propagation by gaussian superposition,” Opt. Commun.
195, 351-359 (2001).

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson,
“Computer generated holography using parallel commodity
graphics hardware,” Opt. Express 14, 7636-7641 (2006).
A. Ritter, J. Bottger, O. Deussen, M. Konig, and T.
Strothotte, “Hardware-based rendering of full-parallax
synthetic holograms,” Appl. Opt. 38, 1364—1369 (1999).

J. Goodman, Introduction to Fourier Optics, 3rd ed.
(Roberts, 2005).

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Janda et al.

G. D. Sherman, “Application of the convolution theorem to
Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546-547
(1967).

N. Delen and B. Hooker, “Free-space beam propagation
between arbitrarily oriented planes based on full
diffraction theory: a fast Fourier transform approach,” J.
Opt. Soc. Am. A 15, 857-867 (1998).

G. Esmer and L. Onural, “Computation of holographic
patterns between tilted planes,” Proc. SPIE 6252, 62521K
(2006).

L. Onural and H. M. Ozaktas, “Signal processing issues in
diffraction and holographic 3DTV,” Signal Process. Image
Commun. 22, ss169-177 (2007).

L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39,
5929-5935 (2000).

A. Stern and B. Javidi, “Improved-resolution digital
holography using the generalized sampling theorem for
locally band-limited fields,” J. Opt. Soc. Am. A 23,
1227-1235 (2006).

L. Onural, “Exact analysis of the effects of sampling of the
scalar diffraction field,” J. Opt. Soc. Am. A 24, 359-367
(2007).

J. T. Kajiya, “The rendering equation,” ACM SIGGRAPH
Comput. Graph. 20, 143-150 (1986).

A. S. Glassner, Principles of Digital Image Synthesis,
(Morgan Kaufmann, 1995), 1st ed..

A. Watt, 3D Computer Graphics, 3rd ed. (Addison-Wesley,
2000).

M. Lucente, “Optimization of hologram computation for
real-time display,” Proc. SPIE 1667, 32—43 (1992).

M. Lucente and T. A. Galyean, “Rendering interactive
holographic images,” in Proceedings of SIGGRAPH °95
(ACM, 1995), pp. 387-394.

J. L. Judrez-Pérez, A. Olivares-Pérez, and L. R. Berriel-
Valdos, “Nonredundant calculation for creating digital
Fresnel holograms,” Appl. Opt. 36, 7437-7443 (1997).

G. B. Esmer, L. Onural, H. M. Ozaktas, V. Uzunov, and A.
Gotchev, “Performance assessment of a diffraction field
computation method based on source model,” in
Proceedings of the 3DTV-Conference 2008 (IEEE Xplore,
2008), pp. 257-260; http://ieeexplore.ieee.org.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural,
J. Watson, and T. Reyhan, Three-Dimensional Television:
Capture, Transmission, and Display, (Springer, 2007),
chap. 15.

S. D. Roth, “Ray Casting for Modeling Solids,” J. Comput.
Graph. Image Process. 18, 109-144 (1982).

D. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching 2nd ed. (Addison-Wesley, 1998).

M. Janda, I. Handak, and V. Skala, “Digital HPO hologram
rendering pipeline,” in Proceedings of EG2006 Short
Papers, (Eurographics Association, 2006), pp. 81-84.

M. Lucente, “Diffraction-specific fringe computation for
electro-holography,” Ph.D. thesis (MIT, 1994).

G. Amdahl, “Validity of the single-processor approach to
achieving large scale computing capabilities,” in AFIPS
Conference Proceedings, Vol. 30 (American Federation of
Information Processing Societies Press, 1967), pp. 483—485.
M. Born and E. Wolf, Principles of Optics, 7th ed.
(Cambridge U. Press, 2005).

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie,
“Computer generated holography using parallel commodity
graphics hardware,” Opt. Express 14, 603-608 (2006).

C. Petz and M. Magnor, “Fast hologram synthesis for 3d
geometry models using graphics hardware,” Proc. SPIE
5005, 266275 (2003).

B. Phong, “Illumination for computer generated pictures,”
Commun. ACM 18, 311-317 (1975).

