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In this paper, we consider the stabilization problem of unstable periodic orbits of one-dimensional
discrete time chaotic systems. We propose a novel generalization of the classical delayed feedback
law and present some stability results. These results show that for period 1 all hyperbolic periodic
orbits can be stabilized by the proposed method; for higher order periods the proposed scheme
possesses some inherent limitations. However, some more improvement over the classical delayed
feedback scheme can be achieved with the proposed scheme. The stability proofs also give the
possible feedback gains which achieve stabilization. We will also present some simulation results.
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1. Introduction

It has been well known that the mathematical mod-
els of many physical systems exhibit chaotic behav-
ior, see e.g. [Chen & Dong, 1998]. As a result, the
possibility of controlling chaos has attracted a great
deal of attention among scientists from various dis-
ciplines including physicists over the past decade,
see e.g. [Chen & Dong, 1998; Boccaletti et al., 2000],
and the references therein.

Chaotic systems possess strange attractors and
usually many unstable periodic orbits are embed-
ded in them, see e.g. [Devaney, 1987]. One of the
control problems is to stabilize some of these peri-
odic orbits hence forcing the chaotic systems to
exhibit regular behavior, see e.g. [Chen & Dong,
1998]. A remarkable result first given in [Ott et al.,
1990] proves that some of these orbits can be stabi-
lized by using small external forces. Following the
seminal work of [Ott et al., 1990], various other
control methods have been proposed for the cited
problem. Among these, the Delayed Feedback Con-
trol (DFC) scheme first proposed in [Pyragas, 1992]

has received attention due to its various attractive
features. This scheme has also been used in vari-
ous applications, see e.g. [Ishii et al., 1997; Pyra-
gas, 2001; Morgül, 2003, 2006], and the references
therein. As it is shown in [Ushio, 1996; Nakajima,
1997; Morgül, 2003, 2005a; Zhu & Tian, 2005b] the
classical DFC has certain inherent limitations, i.e.
it cannot stabilize certain periodic orbits. This lim-
itation is known as the odd-number limitation of
the DFC schemes. More precisely, the question is
whether a hyperbolic and unstable periodic orbit
with an odd number of real unstable modes can
be stabilized with DFC or not. Early investigations
indicated that this property holds for discrete-time
systems, see e.g. [Ushio, 1996], and later an exten-
sion of this result to continuous time case was
claimed in e.g. [Nakajima, 1997]. At this point,
we must comment on a recent result presented in
[Fiedler et al., 2007], which showed clearly that
under certain cases, odd number limitation prop-
erty does not hold. An autonomous continuous
time system is considered in [Fiedler et al., 2007]
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and by way of constructing a feedback gain it was
shown that DFC can stabilize a hyperbolic unsta-
ble orbit which has an odd number of real unsta-
ble modes, hence clearly refutes the claim given in
[Nakajima, 1997] for at least autonomous continu-
ous time systems. However, whether such a refuta-
tion can be extended to nonautonomous continuous
time case or not is still an open question, see e.g.
[Höhne et al., 2007]. Although the subject is still
open and deserves further investigation, we note
that the limitation of DFC stated above holds for
discrete time case, see e.g. [Ushio, 1996; Morgül,
2003, 2005a; Zhu & Tian, 2005b].

To overcome the limitations of classical DFC
scheme, various modifications have been proposed,
see e.g. [Socolar et al., 1994; Kittel et al., 1995;
Pyragas, 1995; Bleich & Socolar, 1996; Vieira &
Lichtenberg, 1996; Schuster & Stemmler, 1997;
Nakajima & Ueda, 1998a; Pyragas, 2001; Hino
et al., 2002], and the references therein. One of these
schemes is the so-called periodic, or oscillating feed-
back, see [Schuster & Stemmler, 1997], and is known
that it eliminates the limitations of classical DFC
for period T = 1 case. This scheme can be gener-
alized to the case T > 1 in various ways, and two
such generalizations are given in [Morgül, 2005b,
2006]; it has been shown in these references that
any hyperbolic periodic orbit can be stabilized with
these schemes. Another modification is the so-called
extended DFC (EDFC), see [Socolar et al., 1994].
This scheme is then analyzed and various modifica-
tions have been proposed, see e.g. [Pyragas, 1995;
Bleich & Socolar, 1996; Vieira & Lichtenberg, 1996;
Ishii et al., 1997; Pyragas, 2001; Harrington & Soco-
lar, 2004], and the references therein. It has also
been shown that EDFC also has inherent limita-
tions similar to the DFC, see [Ishii et al., 1997;
Nakajima & Ueda, 1998b]. In [Vieira & Lichten-
berg, 1996], a nonlinear version of EDFC has been
proposed and it was shown that an optimal ver-
sion of this scheme becomes quite simple, e.g. the
dimension of the phase space of the controlled sys-
tem becomes the same as that of the original system
for T = 1. In this paper we will propose a scheme
which is related to the optimal control law pro-
posed in [Vieira & Lichtenberg, 1996] for the case
T = 1 and we then generalize the proposed scheme
for T > 1.

This paper is organized as follows. In Sec. 2
we will outline the basic problem. In Sec. 3 we will
propose a new generalization of the DFC scheme
and in Sec. 4 we will provide some stability results.

In Sec. 5 we will provide some simulation results
and finally we will give some concluding remarks.

2. Problem Statement

Let us consider the following discrete-time system

x(k + 1) = f(x(k)), (1)

where k = 1, 2 . . . is the discrete time index, x ∈
R, f : R → R is an appropriate function, which
is assumed to be differentiable wherever required.
We assume that the system given by (1) possesses
a period T orbit characterized by the set

ΣT = {x∗
1, x

∗
2, . . . , x

∗
T }, (2)

i.e. for x(1) = x∗
1, the iterates of (1) yields x(2) =

x∗
2, . . . , x(T ) = x∗

T , x(k) = x(k − T ) for k > T .
Let x(·) be a solution of (1). To characterize the

convergence of x(·) to ΣT , we need a distance mea-
sure, which is defined as follows. For x∗

i , we will use
circular notation, i.e. x∗

i = x∗
j for i = j(mod(T )).

Let us define the following indices (j = 1, . . . , T ):

dk(j) =

√√√√T−1∑
i=0

|x(k + i) − x∗
i+j|2. (3)

We then define the following distance measure

d(x(k),ΣT ) = min{dk(1), . . . , dk(T )}. (4)

Clearly, if x(1) ∈ ΣT , then d(x(k),ΣT ) = 0, ∀ k.
Conversely if d(x(k),ΣT ) = 0 for some k0, then it
remains 0 and x(k) ∈ ΣT , for k ≥ k0. We will use
d(x(k),ΣT ) as a measure of convergence to the peri-
odic solution given by ΣT .

Let x(·) be a solution of (1) starting with
x(1) = x1. We say that ΣT is (locally) asymptoti-
cally stable if there exists an ε > 0 such that for any
x(1) ∈ R for which d(x(1),ΣT ) < ε holds, we have
limk→∞ d(x(k),ΣT ) = 0. Moreover if this decay is
exponential, i.e. the following holds for some M ≥ 1
and 0 < ρ < 1, (k > 1):

d(x(k),ΣT ) ≤ Mρkd(x(1),ΣT ), (5)

then we say that ΣT is (locally) exponentially
stable.

To stabilize the periodic orbits of (1), let us
apply the following control law:

x(k + 1) = f(x(k)) + u(k) (6)

where u(·) is the control input. In classical DFC,
the following feedback law is used (k > T ):

u(k) = K(x(k) − x(k − T )), (7)

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

9.
19

:3
65

-3
77

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

09
/2

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 23, 2009 18:2 02292

A New Generalization of Delayed Feedback Control 367

where K ∈ R is a constant gain to be determined.
It is known that the scheme given above has certain
inherent limitations, see e.g. [Ushio, 1996]. For ΣT ,
let us set ai = f ′(x∗

i ). It can be shown that ΣT can-
not be stabilized with this scheme if a =

∏T
i=1 ai >

1, see e.g. [Ushio, 1996; Morgül, 2003], and a similar
condition can be generalized to higher dimensional
case [Nakajima, 1997; Hino et al., 2002; Morgül,
2005a; Zhu & Tian, 2005b]. A set of necessary
and sufficient conditions to guarantee exponential
stabilization can be found in [Morgül, 2003] for
one-dimensional and in [Morgül, 2005a] for higher
dimensional cases. By using these results one can
find a suitable gain K when stabilization is possible.
We note that even if a < 1, the stabilization is not
guaranteed for classical DFC scheme. For example,
for one-dimensional and period 1 case, stabilization
is only possible when −3 < a < 1, see e.g. [Ushio,
1996; Morgül, 2003].

3. A Different Generalization of DFC

To overcome the basic limitations of DFC, various
modifications have been proposed as mentioned in
the introduction. Among these, the EDFC scheme
first proposed in [Socolar et al., 1994] and its non-
linear version proposed in [Vieira & Lichtenberg,
1996] deserve special attention. In the sequel we will
propose a scheme which is related to the optimal
version of the scheme proposed in [Vieira & Licht-
enberg, 1996] for the case T = 1 and then generalize
it to the case T > 1.

To motivate our approach, let Σ1 = {x∗
1} be a

period 1 orbit of (1) (i.e. fixed point of f : R → R),
and consider the controlled system given by (6).
Instead of the DFC scheme given by (7), let us pro-
pose the following law:

u(k) =
K

K + 1
(x(k) − f(x(k))), (8)

where K ∈ R is a constant gain to be determined.
We could also use the gain as K̂ = K/(K + 1),
however the suitability of the form of gain K as
given in (8) will become clear in the sequel, see e.g.
Remark 2 below. Obviously we assume K �= −1. If
we use (8) in (6), we obtain:

x(k + 1) = f(x(k)) +
K

K + 1
(x(k) − f(x(k)))

=
1

K + 1
f(x(k)) +

K

K + 1
x(k). (9)

First note that on Σ1, we have u(k) = 0; more-
over if x(k) → Σ1 (i.e. Σ1 becomes asymptoti-
cally stable) we have u(k) → 0 as well. Hence, the
scheme proposed in (8) enjoys similar properties of
DFC. Moreover, note that unlike the DFC scheme,
since the delay term does not appear in the con-
trol term for the period 1 case, the dimension of
the phase space of the controlled system given by
(9) is 1, i.e. (9) is defined on R. On the other hand,
for T = 1, if one uses the classical DFC scheme
as given by (6) and (7), by defining the standard
variables x1(k) = x(k − 1) and x2(k) = x(k), see
e.g. [Khalil, 2002], one obtains x1(k + 1) = x2(k),
x2(k + 1) = f(x2(k)) + K(x2(k) − x1(k)), which
shows that the actual dimension of the phase space
is 2. This argument may be considered as an advan-
tage of the proposed scheme over the classical DFC
and EDFC. Later we will show that for the higher
order periodic orbits, a similar conclusion holds.

Remark 1. At this point if we compare the form
given by (9) with the optimal control law given in
[Vieira & Lichtenberg, 1996], we see that they have
the same form except for that of the constant gain.
If in (9) we set K̂ = K/(K + 1), with the gain K̂,
we obtain the form of the optimal control law given
by Eq. (22) in [Vieira & Lichtenberg, 1996]. A sim-
ilar control law is also used in [Ushio & Yamamoto,
1999] for period 1 case, see Eq. (5) of the latter refer-
ence. Hence for period 1 case, our proposed method
is similar to those as given in [Vieira & Lichtenberg,
1996] and [Ushio & Yamamoto, 1999]. However, in
the sequel we will show that for higher order periods
(i.e. T > 1), our proposed method is quite different
than those proposed in these references.

Remark 2. The scheme given above has an interest-
ing relation with the classical DFC scheme. To see
that, if we multiply (9) with K + 1, after simplifi-
cation we obtain:

x(k + 1) = f(x(k)) + K(x(k) − x(k + 1)). (10)

If we compare (10) with (6), we see that they
become similar if we use the following equation for
u(k):

u(k) = K(x(k) − x(k + 1)). (11)

However, this is only a mathematical similarity
since u(k) given by (11) is not implementable
as a control law. Note that the control schemes
given in [Vieira & Lichtenberg, 1996] and [Ushio &
Yamamoto, 1999] for period 1 case also have this
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property. Nevertheless, we think that this mathe-
matical equivalence is interesting at least for two
reasons. First, it shows the mathematical relation
of the proposed scheme with the classical DFC,
see (11) and (7). Secondly, the form given by
(11), although not meaningful from implementa-
tion point of view, could help us to generalize this
scheme for higher order periodic orbits. This will be
done in the sequel.

For the stability analysis, set Σ1 = {x∗
1}, a =

a1 = f ′(x∗
1). By using linearization, (9) and the clas-

sical Lyapunov stability analysis, we see that Σ1 is
exponentially stable for (9) if and only if

∣∣∣∣K + a

K + 1

∣∣∣∣ < 1. (12)

Clearly, if a �= 1, then any Σ1 can be stabilized by
choosing K appropriately to satisfy (12). Hence the
limitation of DFC is eliminated greatly by the pro-
posed approach. It appears that the only restric-
tion that remains (i.e. a �= 1) is quite inherent
and appears in [Morgül, 2005b], and [Morgül, 2006]
as well; see also [Harrington & Socolar, 2004] for
the same restriction, where it is referred to as a
stationary mode. By using the arguments given in
these latter references, we can state that all hyper-
bolic fixed points can be stabilized by the proposed
scheme.

4. General Case and Stability Analysis

In the sequel, we will generalize the control law
given by (9) to T = m case. To motivate our anal-
ysis, first let us consider the case T = 2, in which
case we propose the following control law:

u(k) =
K

K + 1
(x(k − 1) − f(x(k)), (13)

where K ∈ R is a constant gain to be determined.
If we use (13) in (6), we obtain:

x(k+1) = f(x(k))+
K

K + 1
(x(k − 1)−f(x(k)))

=
1

K + 1
f(x(k)) +

K

K + 1
x(k − 1). (14)

Note that, the dimension of the phase space for
the controlled system given by (14) is 2, whereas for
period 2 case, the dimension of the phase space of
the classical DFC given by (6) and (7) is 3.

Remark 3. As mentioned in Remark 2, the scheme
given above has an interesting relation with the clas-
sical DFC scheme. To see that, if we multiply (14)
with K + 1, after simplification we obtain:

x(k + 1) = f(x(k)) + K(x(k − 1)− x(k + 1)). (15)

If we compare (15) with (6), we see that they
become similar if we use the following equation
for u(k):

u(k) = K(x(k − 1) − x(k + 1)). (16)

However, this is only a mathematical similarity
since u(k) given by (16) is not implementable as a
control law. Nevertheless, this form may help us to
generalize the proposed control scheme to the case
T > 1.

Let Σ2 = {x∗
1, x

∗
2} be a period 2 orbit of (1) and

let us set

a1 = f ′(x∗
1), a2 = f ′(x∗

2), a = a1a2. (17)

For stability analysis, we will follow the methodol-
ogy given in [Morgül, 2003, 2005a]. Let us define
x1(k) = x(k − 1), x2(k) = x(k) and z = (x1 x2)T

where the superscript T denotes the transpose. Let
us define a map F : R2 → R2 as F (z) = (x2 Y1)T

where Y1 = (1/(K + 1))f(x2) + (K/(K + 1))x1.
Clearly we have F 2(z) = (Y1 Y2)T where Y2 =
(1/(K + 1))f(Y1)+(K/(K + 1))x2. Let us consider
the system:

z(k + 1) = F 2(z(k)). (18)

Consider the fixed points of (18), i.e. F 2(z∗) = z∗
where z∗ = (x∗

1 x∗
2)

T . Solving the fixed point equa-
tion, after simple calculations we obtain x∗

2 = f(x∗
1)

and x∗
1 = f(x∗

2). Hence the fixed point z∗ of (18)
corresponds to a period 2 orbit Σ2 of (1), and vice
versa. Therefore, for the stability of Σ2, we study
the stability of the corresponding fixed point z∗ for
the map F 2. This can be done by standard lineariza-
tion. The Jacobian J2 = (∂F 2/∂z)|Σ2 can easily be
obtained as:

J2 =




K

K + 1
a1

K + 1

Ka2

(K + 1)2
K

K + 1
+

a

(K + 1)2


 . (19)

For stability analysis, we may calculate the charac-
teristic polynomial p2(λ) = det(λI − J2) where I
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is an identity matrix with appropriate dimensions.
The latter can easily be found as

p2(λ) =
(

λ − K

K + 1

)2

− a

(K + 1)2
λ. (20)

At this point we can generalize the control law
given by (9) to T = m case. By following the ideas
given above, we propose the following control law:

u(k) =
K

K + 1
(x(k − m + 1) − f(x(k)), (21)

where K ∈ R is a constant gain to be determined.
If we use (21) in (6), we obtain:

x(k + 1) = f(x(k))+
K

K +1
(x(k−m + 1)− f(x(k))

=
1

K + 1
f(x(k)) +

K

K + 1
x(k − m + 1).

(22)

Note that, the dimension of the phase space for
the controlled system given by (22) is m, whereas
for period m case, the dimension of the phase space
of the classical DFC given by (6) and (7) is m + 1.

Remark 4. As mentioned in Remarks 2 and 3,
the scheme given above has an interesting relation
with the classical DFC scheme. To see that, if we
multiply (22) with K + 1, after simplification we
obtain:

x(k + 1) = f(x(k)) + K(x(k − m + 1) − x(k + 1)).
(23)

If we compare (23) with (6), we see that they
become similar if we use the following equation
for u(k):

u(k) = K(x(k − m + 1) − x(k + 1)). (24)

However, this is only a mathematical similarity
since u(k) given by (24) is not implementable as
a control law.

For stability analysis, we will follow the
methodology given in [Morgül, 2003, 2005a]. As
before, let us define xi(k) = x(k − m + i), i =
1, 2, . . . ,m and z = (x1 · · · xm)T . Let us define

Yi =
1

K + 1
f(Yi−1) +

K

K + 1
xi, Y0 = xm,

i = 1, 2, . . . ,m. (25)

Let us define the map F : Rm → Rm as
F (z) = (x2x3 · · · xmY1)T . Clearly we have Fm =
(Y1Y2 · · ·Ym)T . Now, consider the map

z(k + 1) = Fm(z(k)). (26)

Now consider the fixed points of (26), i.e. Fm(z∗) =
z∗ where z∗ = (x∗

1x
∗
2 . . . x∗

m)T . Clearly we will have
x∗

i = Yi where i = 1, 2, . . . ,m and Yi are given
by (25). Solving these equations we easily obtain
x∗

i+1 = f(x∗
i ), i = 1, 2, . . . ,m − 1 and x∗

1 = f(x∗
m).

This shows that a fixed point z∗ of (26) corre-
sponds to a period m orbit Σm of (1), and vice
versa. Therefore for the stability of Σm, we can
study the stability of the fixed point z∗ of (26). This
can be done by standard linearization, i.e. by find-
ing the Jacobian Jm = (∂Fm/∂z)|Σm. Clearly we
have Jm(i, j) = (∂Yi/∂xj)|Σm. By using (25), after
straightforward calculations we obtain:

∂Yi

∂xi
=

K

K + 1
, i = 1, 2, . . . ,m − 1,

∂Ym

∂xm
=

K

K + 1
+

a

(K + 1)m
, (27)

∂Yi

∂xj
=

ai−1

K + 1
∂Yi−1

∂xj
, i, j = 1, 2, . . . ,m, i �= j,

(28)

where by convention we have a0 = am, Y0 = Ym. For
stability analysis, we need the characteristic polyno-
mial of Jm, which is given in the following Theorem.

Theorem 1. Let Σm given by (2) be a period T =
m orbit of (1) and set ai = f ′(xi), i = 1, 2, . . . ,m,
a =

∏m
i−1 ai. Consider the Jacobian Jm given by

(25)–(28). Then for m ≥ 1 we have:

pm(λ) = det(λI − Jm)

=
(

λ − K

K + 1

)m

− a

(K + 1)m
λm−1, (29)

where I is an identity matrix with appropriate
dimensions.

Proof. This result can easily be shown either by
using direct calculation or by using a mathematical
induction. The calculations are straightforward but
rather lengthy and hence are omitted here. �

We say that a polynomial is Schur stable if all
of its roots are inside the unit disc of the complex
plane, i.e. have magnitude less than unity. Hence the
asymptotic stability of the fixed points of (26) hence
the asymptotic stability of Σm for (6) and (21) could
be analyzed by considering the Schur stability of
pm(λ). Moreover note that the exponential stability
is equivalent to Schur stability, see [Khalil, 2002]. By
using these, we can state our next result.
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Theorem 2. Let Σm given by (2) be a period T =
m orbit of (1) and set ai = f ′(xi), i = 1, 2, . . . ,m,
a =

∏m
i−1 ai. Consider the control scheme given by

(6) and (21). Then:

(i) Σm is exponentially stable if and only if pm(λ)
given by (29) is Schur stable. This condition is
only sufficient for asymptotic stability.

(ii) If pm(λ) has at least one unstable root, i.e. out-
side the unit disc, then Σm is unstable as well.

(iii) If pm(λ) is marginally stable, i.e. has at least
one root on the unit disc while the rest of the
roots are inside the unit disc, then the pro-
posed method to test the stability of Σm is
inconclusive.

Proof. The proof of this Theorem easily follows
from standard Lyapunov stability arguments, see
e.g. [Khalil, 2002], and [Morgül, 2003, 2005a] for
similar arguments. �

At this point several comments are in order.

Remark 5. For m = 1, we have p1(λ) = λ −
((K + a)/(K + 1)). Hence, according to Theorem
2, Σ1 is exponentially stable if and only if
|((K + a)/(K + 1))| < 1, which confirms (12).
Obviously such a gain K can always be found if
and only if a �= 1. Hence for m = 1, the proposed
scheme eliminates the inherent limitations of DFC.
As in periodic feedback case, by using the argu-
ments given in [Morgül, 2005b, 2006], a periodic
extension of this result to stabilize arbitrary Σm

could be studied. However, this approach is beyond
the scope of the present work.

Remark 6. Let m > 1. First note that for m = 2, the
polynomials pm(λ) given by (29) and (20) coincide.
For an arbitrary m > 1, the Schur stability of pm(λ)
given by (29) can be checked by applying the Schur–
Cohn criterion, or equivalently the Jury test, see
[Elaydi, 1996]. These tests give some necessary and
sufficient conditions in terms of the coefficients of
pm(λ). Since these coefficients depend on the gain
K, these tests result in a finite set of inequalities
in terms of K, hence by solving these one may find
the range of K when the stabilization is possible.
See e.g. [Morgül, 2003] for a similar approach.

Remark 7. The polynomial pm(λ) given by (29)
depends only on K and a. However, in DFC, a simi-
lar polynomial depends on all ai, see [Morgül, 2003].
As a result, some periodic orbits which cannot be

stabilized by DFC may be stabilized with the pro-
posed approach, see simulation examples.

Remark 8. The proposed scheme also has the same
inherent limitations of DFC and EDFC for m > 1.
To see this, let λi be the roots of pm(λ) given by
(29). Obviously, for stability we require

∏m
i=1 |λi| <

1, which requires |K/(K + 1)| < 1 for m > 1. The
last inequality implies K > −0.5, hence K + 1 > 0
in the stable case. A necessary condition for Schur
stability of pm(λ) is pm(1) > 0, see [Elaydi, 1996].
The latter results in 1 − a > 0. This shows that
for the case m > 1, stabilization is not possible for
a > 1, similar to DFC and EDFC schemes.

Remark 9. Another necessary condition for the
Schur stability of pm(λ) is (−1)mpm(−1) > 0, see
[Elaydi, 1996]. By using (29) and the fact that
K + 1 > 0 for stability, we obtain:

K > Kcr = −0.5 + 0.5(−a)1/m. (30)

Note that if Σm is unstable, then we must have
|a| ≥ 1, and if stabilizable with the proposed scheme
then we need a < 1. Hence if Σm is unstable and is
stabilizable by our scheme, we need a < −1, which
implies −a > 1 in our case. It can be shown that
if m = 2 and a < −1, then Σ2 is always stabiliz-
able with the proposed scheme and in this case (30)
gives the exact range of stabilizing gains for our
scheme. Note that many Σ2 cannot be stabilizable
with DFC, see e.g. [Morgül, 2003].

Remark 10. Let m ≥ 3. It is clear from (29) that
if |a| is sufficiently small, pm(λ) is always Schur
stable. In other words, let m > 2, and a < −1.
For any m, there exists an amcr > 0 such that for
|a| < amcr, the stabilization is possible with the
proposed scheme. After some extensive numerical
calculations, we found that a3cr = 27, a4cr = 15,
a5cr = 11.5, a6cr = 9.8. It seems that amcr → 1
as m → ∞. However, this point requires further
justification. (Note that for |a| < 1, Σm is already
stable).

Remark 11. In our simulations we observed that for
a given a < −1, if for K = Kcr given by (30), pm(λ)
is marginally stable, see Theorem 2, then one can
find an upper bound Km such that stabilization is
possible for Kcr < K < Km. However, this is just
an observation and requires further justification.

Remark 12. At this point we may compare the
control law proposed here with the control laws
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given in [Vieira & Lichtenberg, 1996] and [Ushio
& Yamamoto, 1999]. As stated in Remark 1, for
T = 1 case, these control laws are similar. However,
for T > 1, these control laws are quite different.
In particular, for T = m > 1 case, the control law
given in [Vieira & Lichtenberg, 1996] becomes (see
Eq. (31) of the latter reference):

x(k+m) = fm(x(k))+K̂(x(k)−fm(x(k))), (31)

and for the problem considered in this paper the
control law proposed in [Ushio & Yamamoto, 1999]
becomes (see Eq. (6) of the latter reference)

x(k + 1) = f(x(k)) − K̂(x(k) − fm(x(k))). (32)

By comparing (22) with (31) and (32), we see that
these schemes are quite different for T = m > 1.
While in (22), a delay term is present, such a term
does not appear in (31) and (32). The usage of
fm(x(k)) in (31) and (32) may pose some computa-
tional problems especially for higher order periodic
orbits. Moreover, although these methods are pro-
posed for an arbitrary m, the stability analysis are
given for m = 1 case; the extension of these sta-
bility results to case m > 1 is not clear. We note
that this is an interesting topic which requires and
deserves further investigation. Another difference
between the method proposed here and the ones
mentioned above is related to the periodic orbits
of the controlled and uncontrolled systems. Now let
Σm as given by (2) be a period m orbit of the uncon-
trolled system given by (1). It follows easily that
Σm is also a period m orbit of the controlled sys-
tem given by (6) and (7). Converse of this property
also holds, i.e. any period m orbit Σm of the con-
trolled system given by (6) and (7) is also a period
m orbit of the uncontrolled system given by (1).
This is a general property of DFC scheme for dis-
crete time systems and can be shown easily since
the control input given by (7) vanishes for any K
on the periodic orbit. This property also holds for
our scheme, and the proof of this statement follows
easily from the mathematically equivalent form of
u(k) given by (24); obviously with some straightfor-
ward algebra this property can also be proven by
using the actual controlled system equations given
by (22). However, this equivalence fails for the sys-
tem given by e.g. (32). More precisely, for some K̂,
the system given by (32) may possess a periodic
orbit which is not a periodic orbit of the uncon-
trolled system given by (1) for case m > 1 . As an
example, let m = 2, and let x∗ be a point which

satisfies x∗ �= f(x∗) and x∗ �= f2(x∗). Now choose
K̂ = K̂∗ = (f(x∗) − x∗)/(x∗ − f2(x∗)). Clearly for
m = 2, if we choose K̂ = K̂∗ as given above, for
x(k) = x∗, we have x(k+1) = x∗, hence x∗ becomes
a fixed point of (32), which is not a fixed point of
(1). Moreover, depending on f and the chosen x∗, it
may be possible to stabilize both x∗ and an unsta-
ble fixed point of (1) for the system given by (32)
under certain conditions by using the gain K̂∗ as
given above. This is an interesting feature of (32)
and requires further investigation.

Remark 13. Note that the feedback law given by
(6)–(7) is linear, whereas the feedback law given
by (6) and (21) is nonlinear. This point might be
considered as a drawback since the linear control
laws are simpler than the nonlinear ones, see e.g.
[Harrington & Socolar, 2004]. However, to stabilize
an unstable periodic orbit for a nonlinear system
is a difficult task and in general for such complex
problems many research results presented in the lit-
erature in recent years resort to nonlinear feedback
laws, see e.g. [Khalil, 2002]. For example, a well-
known technique called computed torque in robotics
and related areas relies on the usage of the non-
linear vector field (i.e. f(x) in our case), see e.g.
[Khalil, 2002]. Another well-known technique called
feedback linearization relies on a nonlinear transfor-
mation and a nonlinear feedback law, and in deter-
mining the appropriate controller the knowledge of
the vector field (i.e. f(x) in our case) is essential,
see e.g. [Khalil, 2002]. Such nonlinear techniques
are also used in the literature for both the control
of chaotic systems and for the problem considered
above, see e.g. [Fuh & Tung, 1995; Vieira & Licht-
enberg, 1996; Ushio & Yamamoto, 1998; Liu & Tan,
1998; Ushio & Yamamoto, 1999; Solak et al., 2001;
Hino et al., 2002; Fradkov & Evans, 2005; Zhu &
Tian, 2005a, 2005b; Zhu & Tian, 2006], and the
references therein. Hence, from this point, apply-
ing a nonlinear control law to a nonlinear system
to solve a complex problem should be considered
as a natural approach. Also note that the control
law given by (21) is not based on cancelation, con-
trary to some existing schemes, see e.g. [Zhu & Tian,
2005a]. One may also argue that to implement the
control law given by (21), one needs the knowledge
of f(·), whereas this is not required to implement
(7). First, the knowledge of f(·) is also required
in many nonlinear control techniques, see e.g. the
references cited above. Secondly, although in (7)
the knowledge of f(·) is not explicitly required, to
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determine whether a stabilizing gain K exists or
not, and in affirmative case to determine the sta-
bilizing gains one needs the knowledge of f(·), see
e.g. [Ushio, 1996; Morgül, 2003, 2005a]. Note that
if f(·) is known and if x is available, as in (7), then
constructing f(x) will not pose a problem.

5. Simulation Results

We consider the well-known logistic map given as

x(k + 1) = rx(k)(1 − x(k)). (33)

We will not consider case T = 1 since it can
also be stabilized by EDFC. Let us consider case
T = 2. For r = 4, it is well-known that (33) has
periodic orbits of all orders, and in particular it

has a period 2 orbit given by Σ2 = {x∗
1x

∗
2} with

x∗
1 = 0.90450849718747, x∗

2 = 0.34549150281253,
with a = −4. By Remark 5, Σ2 is stabilizable with
any K > 0.5. In Fig. 1, we show the simulation
result of a typical case with K = 1; the initial con-
dition is chosen as x(0) = 0.6. In Fig. 1(a), we show
d(x(k),Σ2) versus k, and as can be seen the decay
is exponential. The x(k − 1) versus x(k) plot in
Fig. 1(b) is plotted for k ≥ 500. As can be seen from
these figures, the solutions converge to the period 2
orbit characterized by Σ2. The required input u(k)
given by (21) is given in Fig. 1(c). As can be seen,
u(k) is quite small and → 0 as k → ∞. Finally
Fig. 1(d) shows x(k) versus k for 980 ≤ k ≤ 1000.
Note that this orbit, in fact none of the period 2
orbits of (33) with r > 3.77, can be stabilized by
DFC, see [Morgül, 2003].
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Fig. 1. Proposed scheme applied to logistic map, r = 4, T = 2, (a) d(x(k),Σ2) versus k, (b) x(k− 1) versus x(k) for k ≥ 500,
(c) u(k) versus k, (d) x(k) versus k for 980 ≤ k ≤ 1000.
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Now let us choose r = 4 and T = 3. The
system (33) has a period 3 orbit given by Σ2 =
{x∗

1x
∗
2x

∗
3} with x∗

1 = 0.41317591116653, x∗
2 =

0.96984631039295, x∗
3 = 0.11697777844051, with

a = −8. By Remark 6, since a3cr = 27, this orbit is
stabilizable by the proposed scheme. In fact, simu-
lations show that for the range 0.5 < K < 150000,
the stabilization is possible. In Fig. 2, we show sim-
ulation result of a typical case with K = 1; initial
condition is chosen as x(0) = 0.6. In Fig. 2(a), we
show d(x(k),Σ3) versus k, and as can be seen the
decay is exponential. The x(k−1) versus x(k) plot in
Fig. 2(b) is plotted for k ≥ 500. As can be seen from
these figures, the solutions converge to period 3
orbit characterized by Σ3. The required input u(k)
given by (21) is given in Fig. 2(c). As can be seen,

u(k) is quite small and → 0 as k → ∞. Finally
Fig. 2(d) shows x(k) versus k for 980 ≤ k ≤ 1000.
Note that this orbit, in fact none of period 3 orbits
of (33) with r > 3.88, can be stabilized by DFC, see
[Morgül, 2003].

Now let us choose r = 3.97 and T = 4.
The system (33) has a period 4 orbit given by
Σ4 = {x∗

1x
∗
2x

∗
3x

∗
4} with x∗

1 = 0.28059766388136,
x∗

2 = 0.80139458117555, x∗
3 = 0.63187038655891,

x∗
4 = 0.92346249856075 with a = −14.676. By

Remark 6, since a4cr = 15, this orbit is stabiliz-
able with the proposed scheme, and the critical gain
given by (30) is Kcr = 0.4786. In fact, simulations
show that for the range Kcr < K < 0.546, stabi-
lization is possible. In Fig. 3, we show the simula-
tion result of a typical case with K = 0.48; initial
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Fig. 2. Proposed scheme applied to logistic map, r = 4, T = 3, (a) d(x(k),Σ3) versus k, (b) x(k− 1) versus x(k) for k ≥ 500,
(c) u(k) versus k, (d) x(k) versus k for 980 ≤ k ≤ 1000.
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Fig. 3. Proposed scheme applied to logistic map, r = 3.97, T = 4, (a) d(x(k), Σ4) versus k, (b) x(k − 1) versus x(k) for
k ≥ 1500, (c) u(k) versus k, (d) x(k) versus k for 1980 ≤ k ≤ 2000.

condition is chosen as x(0) = 0.4. In Fig. 3(a), we
show d(x(k),Σ4) versus k, and as can be seen the
decay is exponential. The x(k − 1) versus x(k) plot
in Fig. 3(b) is plotted for k ≥ 1500. As can be seen
from these figures, the solutions converge to period
4 orbit characterized by Σ4. The required input u(k)
given by (21) is given in Fig. 3(c). As can be seen,
u(k) is quite small and → 0 as k → ∞. Finally
Fig. 3(d) shows x(k) versus k for 1980 ≤ k ≤ 2000.

Now let us choose r = 3.75 and T = 5.
The system (33) has a period 5 orbit given by
Σ5 = {x∗

1x
∗
2x

∗
3x

∗
4x

∗
5} with x∗

1 = 0.93597631662827,
x∗

2 = 0.22471744252216, x∗
3 = 0.65332317580673,

x∗
4 = 0.84934501410202, x∗

5 = 0.47984272920771
with a = −3.0749. By Remark 6, since a5cr = 11.5,
this orbit is stabilizable with the proposed scheme,

and the critical gain given by (30) is Kcr = 0.1259.
In fact, simulations show that for the range Kcr <
K < 11, the stabilization is possible. In Fig. 4, we
show the simulation result of a typical case with
K = 1; initial condition is chosen as x(0) = 0.5. In
Fig. 4(a), we show d(x(k),Σ5) versus k, and as can
be seen the decay is exponential. The x(k−1) versus
x(k) plot in Fig. 4(b) is plotted for k ≥ 500. As can
be seen from these figures, the solutions converge
to period 5 orbit characterized by Σ5. The required
input u(k) given by (21) is given in Fig. 4(c).
As can be seen, u(k) is quite small and → 0 as
k → ∞. Finally Fig. 4(d) shows x(k) versus k for
980 ≤ k ≤ 1000.

Finally, let us choose r = 3.65 and T = 6. The
system (33) has a period 6 orbit given by Σ6 =
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Fig. 4. Proposed scheme applied to logistic map, r = 3.75, T = 5, (a) d(x(k), Σ5) versus k, (b) x(k − 1) versus x(k) for
k ≥ 500, (c) u(k) versus k, (d) x(k) versus k for 980 ≤ k ≤ 1000.

{x∗
1x

∗
2x

∗
3x4x

∗
5x

∗
6} with x∗

1 = 0.52704092694303, x∗
2 =

0.90983107718572, x∗
3 = 0.29944048183068, x∗

4 =
0.76568196080167, x∗

5 = 0.65485779932172, x∗
6 =

0.82496957626070 with a = −4.4972. By Remark 6,
since a6cr = 9.8, this orbit is stabilizable with the
proposed scheme, and the critical gain given by (30)
is Kcr = 0.1423. In fact, simulations show that for
the range Kcr < K < 0.846, stabilization is possi-
ble. In Fig. 5, we show simulation result of a typical
case with K = 0.15; initial condition is chosen as
x(0) = 0.52. In Fig. 5(a), we show d(x(k),Σ6) ver-
sus k, and as can be seen the decay is exponential.
The x(k − 1) versus x(k) plot in Fig. 5(b) is plot-
ted for k ≥ 500. As can be seen from these figures,
the solutions converge to period 6 orbit character-
ized by Σ6. The required input u(k) given by (21)

is given in Fig. 5(c). As can be seen, u(k) is quite
small and → 0 as k → ∞. Finally Fig. 5(d) shows
x(k) versus k for 970 ≤ k ≤ 1000.

One may argue that for higher order periodic
solutions stabilization may become increasingly dif-
ficult, and after some period number, may become
impossible for the proposed method. Clearly, not all
periodic solutions can be stabilized with the pro-
posed algorithm; however some of the higher order
periodic solutions can still be stabilized with the
proposed scheme. This apparently depends crucially
on a and amcr. We also considered (33) with r =
3.65, and find a period 10 solution, with a = −7.74,
and it turned out that this orbit can be stabilized
with the gain Kcr = 0.1135 < K < 0.151. We have
also considered the case r = 3.57 and find a period
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Fig. 5. Proposed scheme applied to logistic map, r = 3.65, T = 6, (a) d(x(k), Σ6) versus k, (b) x(k − 1) versus x(k) for
k ≥ 500, (c) u(k) versus k, (d) x(k) versus k for 970 ≤ k ≤ 1000.

16 solution with a = −1.629, and it turned out
that this orbit can also be stabilized with the gain
Kcr = 0.0155 < K < 1.455.

6. Conclusion

In this letter we have considered the problem of
stabilization of unstable periodic orbits of one-
dimensional discrete-time chaotic systems. Our
approach is related to that of [Vieira & Lichten-
berg, 1996] for T = 1. However, the form of our
proposed control law is different for higher order
periodic orbits and the extension to case T > 1
is novel. We show that for T = 1, the proposed
scheme does not have the inherent limitations of
DFC, however, for case T > 1, the same limitation
is also valid as for our scheme as well. However, we

show that still many periodic orbits which cannot be
stabilized by the DFC can be stabilized by the pro-
posed scheme. In particular, for T = 1 any hyper-
bolic periodic orbit, and for T = 2 any orbit with
a < −1 can be stabilized by the proposed scheme.
Following a technique used in [Morgül, 2003, 2005a],
we first constructed a map whose fixed points corre-
spond to the periodic orbits of the uncontrolled sys-
tem. Then we studied the stability of the proposed
scheme by using the constructed map. We found
the Jacobian of the constructed map at the peri-
odic orbit in question and obtained its characteris-
tic polynomial, which has a very simple structure.
Then the stability problem is reduced to study-
ing the Schur stability of the characteristic polyno-
mial in question. We also presented some simulation
results.
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Various generalizations of the proposed scheme
can be done. First, the proposed scheme can be
generalized to higher dimensions. Since for T = 1
the proposed scheme does not have a serious limita-
tion for stabilization, we may combine the proposed
scheme with a possible generalization of periodic
feedback to stabilize periodic orbits with T > 1
without serious limitations, see e.g. [Schuster &
Stemmler, 1997; Morgül, 2005b, 2006].
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