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Abstract We study the Fano varieties of projective k-planes lying in hypersurfaces and
investigate the associated motives.
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1 Introduction

Let X ⊂ P
n+1 be a general smooth hypersurface of degree d ≥ 3, and assume given a positive

integer k satisfying the numerical conditions in main theorem below. Then one can find a
smooth projective variety ΩX of dimension n − 2k, parameterizing a family of k-planes in
X , such that the essential motivic information about X is encoded in ΩX via the cylinder
correspondence

P(X) := {(c, x) ∈ ΩX × X | x ∈ P
k
c}.

Roughly speaking, and up to a normalizing constant, T P(X) ◦ P(X) defines a projector on
the motive of ΩX , where by motive, we mean in the sense of Chow motives (with respect
to rational equivalence, see [9, p. 131]). This enables us to decompose the motive of ΩX in
terms of a submotive of X . Our main result is the following:
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532 J. D. Lewis, A. S. Sertöz

Theorem 1.1 (Main Theorem) (i) Let X ⊂ P
n+1 be given above, and assume (k, n, d) satisfy

the following:

k =
[

n + 1

d

]
and k(n + 2 − k)+ 1 −

(
d + k

k

)
≥ 0.

Then there is a motivic decomposition:

(ΩX , Id) = (ΩX , τ̃ )⊕ (ΩX , Id − τ̃ ),

where (ΩX , τ̃ , 0) � (X, π̃ X
n ,−k) as virtual motives, and π̃n

X is a certain primitive projector
associated to the middle dimensional cohomology of X.

(ii) Let σ = (
T P(X) ◦ P(X)

)
∗ : CH•(ΩX ) → CH•(ΩX ). Then there is a short exact

sequence:

0 → (σ − m)CH•−k
hom(ΩX ; Q) → CH•−k

hom(ΩX ; Q)
Φ∗→ CH•

hom(X; Q) → 0,

where Φ∗ = P(X)∗ and m is a nonzero integer defined in §4 below. Moreover

Φ∗ : σ
(

CH•−k
hom(ΩX ; Q)

) ∼→ CH•
hom(X; Q),

is an isomorphism.

Remarks (i) Part (ii) of the above theorem generalizes the main theorem in [6], where only
the case k = 1 was considered.

(ii) In the Appendix, we apply our results to Chow–Künneth decompositions in the sense
of [9]. For any smooth projective variety Y , which admits a Chow–Künneth decomposition
in the sense of Murre, we let πY

i be the projector corresponding to∆Y (2 dim Y − i, i), where
[∆Y (2 dim Y − i, i)] ∈ H2 dim Y−i (Y,Q) ⊗ Hi (Y,Q) induces the identity map on singular
cohomology Hi (Y,Q). Murre states a series of conjectures (Conjectures I, II, III, IV in [9]).
Our main interest is his Conjecture II, which is a statement about the vanishing of a subset
of the projectors {πY

i } on CH•(Y ; Q). In this Appendix, we generalize this Conjecture II to
Bloch’s higher Chow groups [2], and under the reasonable assumption that (conjecturally!)
the projectorπΩX

n−2k can be chosen such thatπΩX
n−2k,∗◦τ̃∗ = τ̃∗ = τ̃∗◦πΩX

n−2k,∗ on CH•(ΩX ; Q),
together with a conjecture of Soulé on the vanishing of certain higher Chow groups of a field,
we show that this generalized Conjecture II for ΩX implies a corresponding (generalized)
Conjecture II for X . More precisely,

Theorem 1.2 Assume the notation and setting in the Main Theorem 1.1. Assume given a
Chow–Künneth decomposition of ΩX (in the sense of Murre) such that

π
ΩX
n−2k,∗ ◦ τ̃∗ = τ̃∗ = τ̃∗ ◦ πΩX

n−2k,∗,

on CH•(ΩX ,m; Q). Further, let us assume either that m = 0, 1, 2 or a conjecture of Soulé
(see Appendix) for m ≥ 3. Then Murre’s (generalized) Conjecture II forΩX implies Murre’s
(generalized) Conjecture II for X.

2 Notation

(i) Throughout this paper X will be assumed to be a projective algebraic manifold of dimen-
sion n.
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Motives of some Fano varieties 533

(ii) CHr (X) is the Chow group of algebraic cycles of codimension r on X , modulo rational
equivalence [3]. We put CH•(X; Q) := CH•(X)⊗ Q. CH•

alg(X) ⊂ CH•(X) is the subgroup
of cycles algebraically equivalent to zero, and CH•

hom(X; Q) ⊂ CH•(X; Q) the subspace of
nullhomologous cycles.

(iii) The diagonal class of X is denoted by ∆X ∈ CHn(X × X).
(iv) The intersection pairing on CH•(X) is denoted by ( • )X .
(v) Let Y be a projective algebraic manifold, and z ∈ CHr (X ×Y ). Then z∗ : CH•(X) →

CHr−n+•(Y ) is given by

z∗(ξ) := Pr2,∗
(
(Pr∗1(ξ) • z)X×Y

)
,

and z∗ is given by (Tz)∗, where Tz ∈ CHr (Y × X) is the transpose of z.
(vi) If Z is also a projective algebraic manifold, with correspondences z ∈ CH•(X × Y )

and w ∈ CH•(Y × Z), then:

w ◦ z := Pr13,∗
(
(Pr∗12(z) • Pr∗23(w))X×Y×Z

) ∈ CH•(X × Z).

(vii) By a general hypersurface X ⊂ P
n+1 of a given degree, we mean a hypersurface

corresponding to a point in a Zariski open subset of the universal family of such hypersurfaces,
governed by certain properties (e.g. nonsingularity of X and of ΩX , etc.).

3 Review of some known results

First some notation: X ⊂ P
n+1 is a general hypersurface of degree d ≥ 3. We can assume

that X = P
n+1 ∩ Z , where Z ⊂ P

n+2 is a general hypersurface of degree d . Fix k ≥ 1 and
for a variety W , let ΩW (k) = {Pk’s ⊂ W }. ΩW ⊂ ΩW (k) will denote a given subvariety.
We assume that Z is covered by P

k’s, together with this setting:

(i) π and πZ are generically finite to one and onto of degree q say.
(ii) ρX : P(X) → ΩX and ρZ : P(Z) → ΩZ are P

k-bundles.

(iii) X̃
def ′n= π−1

Z (X) is smooth.

(iv) ρ̃
def ′n= ρ|X̃\P(X) : X̃\P(X) → ΩZ \ΩX is a P

k−1-bundle.

(v) dim X = dim X̃ = n, dim Z = dim P(Z) = n + 1, dim P(X) = n − k, dimΩX =
n − 2k, dimΩZ = n − k + 1, and that all varieties in the above diagram are smooth.

Let HZ
def ′n= P

n+1 ∩ Z be a general hyperplane section of Z , and also set HX = HZ ∩ X .
(vi) µ = π−1(HX ), µ̃ = µ ∩ {X̃\P(X)}, µZ = π−1

Z (HZ ), µX = π−1
X (HX ).

We will also identify {µ, µ̃, µZ , µX } with their respective cohomology classes.
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534 J. D. Lewis, A. S. Sertöz

Proposition 3.1 [7] This setting holds in the case where

k =
[

n + 1

d

]
and k(n + 2 − k)+ 1 −

(
d + k

k

)
≥ 0.

Unless otherwise specified, the above setting, together with the numerical condition in
Proposition 3.1 will be assumed throughout the remainder of this paper.

Proposition 3.2 [7] There is an isomorphism{
k−1⊕
	=0

CH•−	(ΩZ )

} ⊕
CH•−k(ΩX )

∼−→ CH•(X̃)

given by (
k−1∑
	=0

µ	 ◦ ρ∗
)

+ j1,∗ ◦ ρ∗
X .

We now recall the mapπ : X̃ → X . Thenπ∗◦π∗ = ×q , and thereforeπ∗ : CH•(X̃; Q) →
CH•(X; Q) is surjective. Using the last proposition we note that π∗ splits into 2 parts:

(1) Φ∗ = π∗ ◦ j1,∗ ◦ ρ∗
X = πX,∗ ◦ ρ∗

X : CH•−k(ΩX ; Q) −→ CH•(X; Q) is the cylinder
homomorphism.

(2) π∗ ◦ (∑k−1
	=0 µ

	 ◦ ρ∗) : ⊕k−1
	=0 CH•−	(ΩZ ; Q) −→ CH•(X; Q).

We analyze (2): With the aid of the above diagram, we have:

π∗ ◦
(

k−1∑
	=0

µ	 ◦ ρ∗
)

= π∗ ◦
(

k−1∑
	=0

µ	 ◦ j∗2 ◦ ρ∗
Z

)

= π∗ ◦ j∗2 ◦
(

k−1∑
	=0

µ	Z ◦ ρ∗
Z

)
= j∗ ◦ πZ ,∗ ◦

(
k−1∑
	=0

µ	Z ◦ ρ∗
Z

)
.

It follows from analyzing (2) that the composite below is surjective:

CH•−k(ΩX ; Q)
Φ∗−→CH•(X; Q) −→ CH•(X; Q)/j∗(CH•(Z; Q)).

To analyze the contribution of j∗CH•(Z; Q), we consider a particular choice of Z and
the following.

Lemma 3.3 [6] Let X = V (F(z0, . . . , zn+1)) ⊂ P
n+1 be a smooth hypersurface of degree

d, and put Z := V (F + zd
n+2) ⊂ P

n+2. Let j : X � V (zn+2) ∩ Z ⊂ Z be the inclusion,
ν : P

n+2 → P
n+1 the projection from [0, . . . , 0, 1] ∈ P

n+2, and i : X ↪→ P
n+1 the inclusion.

Then with regard to the following (commutative diagram)

we have

d j∗ = i∗ ◦ ν∗.
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Motives of some Fano varieties 535

From now on our choice of Z will be given as in Lemma 3.3, with X of course still assumed
general.

Corollary 3.4 [7] Φ∗ : CH•−k(ΩX ; Q) −→ CH•(X; Q)/Q · H•
X is surjective.

Proof

j∗CH•(Z; Q) = i∗ ◦ ν∗CH•(Z; Q) = i∗CH•(Pn+1; Q) = Q · H•
X .

�
One can also show that:

Corollary 3.5 [7] (i) Φ∗ : CH•−k
alg (ΩX ) → CH•

alg(X) is surjective.

(ii) Φ∗ : CH•−k
hom(ΩX ; Q) → CH•

hom(X; Q) is surjective.

4 The kernel of the cylinder map

We would like to compute kerΦ∗, whereΦ∗ is given in Corollary 3.4. This has been done in
the special case when k = 1 in some earlier work [6]. It is useful to viewΦ∗ andΦ∗ in terms
of the correspondences, viz., Φ∗ = P(X)∗, and Φ∗ = (

T P(X)
)
∗. Now set σ = Φ∗ ◦Φ∗ =(

T P(X) ◦ P(X)
)
∗.

We wish to show that σ satisfies a quadratic relation

σ ◦ (σ − m) ≡ 0,

where ≡ means equality on CH•(ΩX ; Q) modulo contributions arising from j∗CH•(Z; Q)

via Φ∗, and where m = (−1)kq is given by its corresponding multiplication. For this we
consider an idea communicated to us by Kapil Paranjape. Namely, the crucial ingredient we
need is this:

Proposition 4.1 [10] Let c ∈ ΩX be given. Then

ρ∗
(
(P(X) • P

k
c)X̃

)
= (−1)k j0,∗(c),

where we have identified P
k
c with j1,∗ ◦ ρ∗

X (c).

Proof Let G be the Grassmannian of k-planes in P
n+2, and let E complete the fiber square

below:

E → U (k + 1)

↓ ↓

ΩZ ↪→ G,

i.e. E is the pullback of the universal bundle over G toΩZ . Then P[E] = P(Z). Now recall
ρZ : P(Z) → ΩZ . Then ρ∗

Z (E) lives over P(Z) with tautological bundle L∗
Z ↪→ ρ∗

Z (E).
Pulling back to X̃ , we define Q∗

k+1 = ρ∗
Z (E)

∣∣
X̃ and L∗ = L∗

Z

∣∣
X̃ . Define Q′,∗ by the s.e.s.:

0 → L∗ → Q∗
k+1 → Q′,∗ → 0,
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536 J. D. Lewis, A. S. Sertöz

which dualizes to:

0 → Q′ → Qk+1
ψ→ L → 0.

Let F = 0 be the defining equation for X ⊂ Z , and note that F is linear (and homogeneous).
Then F defines a section σF of Qk+1 over X̃ as follows: Let v ∈ C

k+1 ⊂ Q∗
k+1 live over a

point in X̃ . Then F(v) ∈ C defines σF . It is clearly obvious that σF vanishes along P(X) and
thatψ(σF ) = 0. Note that rank(Q′) = k and that σF ∈ H0(X̃ , Q′), hence ck(Q′) = [P(X)].
By Whitney,

c(Qk+1) = c(Q′)c(L) = c(Q′)(1 + ξ),

where ξ = c1(L). Hence

c(Q′) = c(Qk+1)(1 + ξ)−1 = c(Qk+1)
(
1 − ξ + ξ2 + · · · + (−1)nξn)

.

Therefore

[P(X)] = ck(Q
′) = (−1)k

(
ξ k − c1(Qk+1)ξ

k−1 + c2(Qk+1)ξ
k−2 + · · ·

)
.

But by functoriality,

ci (Qk+1) = ρ∗ (
ci (E

∗)
)
,

where we recall ρ : X̃ → ΩZ . Observe that for i > 0 we can assume that the support of
ci (E∗) ∈ CHi (ΩZ ) does not meet a given c ∈ ΩX . Therefore for such c ∈ ΩX ,

ρ∗
(
P

k
c • ci (Qk+1) • ξ k−i

)
X̃

= 0, for i > 0.

Hence

ρ∗
(
(P(X) • P

k
c)X̃

)
= (−1)k j0,∗(c).

In short, the numerical intersection gives
(
P(X) • P

k
c

)
X̃ = (−1)k . �

Corollary 4.2 For any ξ ∈ CH•(ΩX ), we have

ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ ρ∗
X (ξ) = (−1)kξ.

Proof For a morphism f : V1 → V2 of smooth varieties, let { f } ⊂ V1 × V2 represent the
graph of f . Now put

W = {ρX } ◦ T{ j1} ◦ { j1} ◦ T{ρX }.
Then

W∗ = ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ ρ∗
X ,

moreover an explicit calculation shows that in CHn−2k(ΩX ×ΩX ), W is a multiple of the
diagonal class ∆ΩX . By Proposition 4.1, that multiple is precisely (−1)k . �

For c ∈ ΩX put

ζ := π∗(Φ∗(c)) ∈ CHn−k(X̃),

and observe that

σ(c) = Φ∗ ◦Φ∗(c) = ρX,∗ ◦ j∗1 (ζ ).
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Motives of some Fano varieties 537

By Propositions 3.2 and 4.1, we can write

ζ =
(

k−1∑
	=0

µ	 ◦ ρ∗(ζ	)
)

+ (−1)k j1,∗ ◦ ρ∗
X (σ (c))

for some ζ	 ∈ CHn−k−	(ΩZ ). But modulo j∗CHk+1(Z),

π∗

(
k−1∑
	=0

µ	 ◦ ρ∗(ζ	)
)

∼rat 0,

and hence if we write ≡ to mean equality modulo j∗CHk+1(Z; Q) we have

q ·Φ∗(c) = π∗ ◦ π∗ (Φ∗(c)) ≡ (−1)kΦ∗(σ (c)),

and

Φ∗
(
[σ − (−1)kq](c)

)
≡ 0.

Thus by applying Φ∗, we have

σ ◦ ([σ − m](c)) = Φ∗ ◦Φ∗ ([σ − m](c)) = 0 modulo Φ∗ (
j∗CHk+1(Z; Q)

)
.

Quite generally, using Corollary 4.2, one can apply the same arguments to arbitrary dimen-
sion cycles. More specifically, on CH•

hom(ΩX ; Q), as well as on CH•(ΩX ; Q)/Φ∗( j∗CH•+k

(Z; Q)) one can argue that

σ ◦ (σ − m) = 0.

We deduce:

Theorem 4.3 There is a short exact sequence:

0 → (σ − m)CH•−k
hom(ΩX ; Q) → CH•−k

hom(ΩX ; Q)
Φ∗→ CH•

hom(X; Q) → 0.

Moreover

Φ∗ : σ
(

CH•−k
hom(ΩX ; Q)

) ∼→ CH•
hom(X; Q).

Next we want to analyze the contribution of Φ∗ (
j∗CHk+•(Z; Q)

)
in CH•(ΩX ; Q).

Let H ( j)
X , j = 1, 2, 3, . . . be a general collection of hyperplane sections of X . Observe

that

ρX : π−1
X

(
H (1)

X ∩ · · · ∩ H (k)
X

) ≈−→ ΩX ,

is a birational morphism. We note in passing the following.

Proposition 4.4 Let HΩX = Φ∗ (
H (1)

X ∩ · · · ∩ H (k+1)
X

)
∈ CH1(ΩX ). Then HΩX is ample

in ΩX .

Proof Let C ⊂ ΩX be any curve.

(C • HΩX )ΩX =
(

C •Φ∗ (
H (1)

X • · · · • H (k+1)
X

))
ΩX

=
(
Φ∗(C) • H (1)

X • · · · • H (k+1)
X

)
X

> 0

since Φ∗(C) is effective. The result now follows from Nakai’s criterion. �
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538 J. D. Lewis, A. S. Sertöz

Proposition 4.5 Φ∗ (
H (1)

X • · · · • H (k+i)
X

)
= Hi

ΩX
∈ CHi (ΩX ) for all i ≥ 0, where HΩX

is given in Proposition 4.4.

Proof Put V ( j)
X = H (1)

X ∩ · · · ∩ H (k)
X ∩ H (k+ j)

X , j = 1, . . . , i . It is obvious that Hi
ΩX

={
ρX

(
π−1

X (V (1)
X ∩ · · · ∩ V (i)

X )
)}

∈ CHi (ΩX ), where {(· · · )} means the class in the Chow

group of an intersection operation (· · · ) defined on the level of subvarieties. We then have

Hi
ΩX

= Φ∗ (
V (1)

X

)
• · · · •Φ∗ (

V (i)
X

)

=
{
ρX

(
π−1

X

(
V (1)

X ∩ · · · ∩ V (i)
X

))}

=
{
ρX

(
π−1

X

(
H (1)

X ∩ · · · ∩ H (k)
X ∩ H (k+1)

X ∩ · · · ∩ H (k+i)
X

))}

= ρX,∗ ◦ π∗
X

(
H (1)

X • · · · • H (k+i)
X

)

= Φ∗ (
H (1)

X • · · · • H (k+i)
X

)
.

�
Corollary 4.6 σ ◦ (σ − m) = 0 on CH•(ΩX ; Q)/Q · H•

ΩX
.

5 Applications to Chow motives

We work with the aforementioned quadratic relation:

σ ◦ (σ − m) = 0 on CH•(ΩX ; Q)/Q · H•
ΩX
,

where σ = Φ∗ ◦Φ∗. Equivalently, if we replace σ by σ := m−1σ , then we arrive at

σ ◦ (σ − 1) = 0 on CH•(ΩX ; Q)/Q · H•
ΩX
.

Note that σ is the map induced by the correspondence T P(X) ◦ P(X) ∈ CHn−2k(ΩX ×
ΩX ), and likewise σ induced by τ := (m−1)

(
T P(X)

) ◦ P(X) ∈ CHn−2k(ΩX × ΩX ; Q).
Furthermore

σ ◦ (σ − 1) = 0 ⇒ σ ◦ σ = σ .

We first show that the correspondence

τ ∈ CHn−2k(ΩX ×ΩX ; Q)

satisfies

τ ◦ (τ − 1) = 0 in CHn−2k(ΩX ×ΩX ; Q)

/n−k⊕
	=k

CHn−k−	(ΩX ; Q)⊗ H 	−k
ΩX

.

To show this, observe that we can apply the Cartesian product ΩX× to both the earlier
diagrams. As a formal consequence of our previous results, we arrive at the relation

(1 × σ) ((1 × σ)− m)) (∆ΩX ) = 0

in

CHn−2k(ΩX ×ΩX ; Q)

/n−k⊕
	=k

CHn−k−	(ΩX ; Q)⊗ H 	−k
ΩX

.

123



Motives of some Fano varieties 539

But

(1 × σ) ((1 × σ)− m · 1)) (∆ΩX )

is precisely (T P(X) ◦ P(X)
) ◦ ((T P(X) ◦ P(X)

) − m∆ΩX

)
and the aforementioned quadratic relation for τ follows. (Here we use the fact that if W is a
smooth projective variety and Ξ ⊂ W × W is a correspondence, then (∆W ×Ξ)∗(∆W ) =
Ξ .) Later, we will need to modify τ slightly in order to obtain a quadratic relation on
CHn−2k(ΩX × ΩX ; Q). Towards this goal, we will introduce in the next section a natural
choice of Chow–Künneth decomposition for X .

6 Chow–Künneth decomposition

For this section only, we will assume that X ⊂ P
n+1 is any given smooth hypersurface.

Let H•(X) be the singular cohomology of X with Q-coefficients. We have the Künneth
decomposition

[∆X ] ∈ H2n(X × X) =
⊕

p+q=2n

H p(X)⊗ Hq(X).

We construct a Chow–Künneth decomposition (in the sense of Murre [9]):

∆X =
⊕

p+q=2n

∆X (p, q) ∈ CHn(X × X; Q),

where

[∆X (p, q)] ∈ H p(X)⊗ Hq(X),

is given as follows. Recall that for i �= n:

Hi (X,Q) =
{

0 if i is odd,
Q · (

P
n+1−m ∩ X

) = Q · Hm
X if i = 2m for 0 ≤ m ≤ n.

For p + q = 2n, we set

∆X (p, q) =
{

0 if p or q is odd,
1

(Hn
X )X

(
H 	

X ⊗ Hn−	
X

)
if (p, q) = (2	, 2n − 2	) �= (n, n),

where we observe that
(
Hn

X

)
X = deg X . Then

∆X (n, n) = ∆X −
∑

(p,q)�=(n,n)
∆X (p, q).

In CHn(X × X; Q), put

π X
	 =

⎧⎪⎨
⎪⎩
(deg X)−1

(
Hn−	/2

X × H 	/2
X

)
if 	 �= n is even,

0 if 	 �= n is odd,
∆X (n, n) if 	 = n.

We have π X
m ◦ π X

m = π X
m and π X

m ◦ π X
	 = 0 for m �= 	. In summary:
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540 J. D. Lewis, A. S. Sertöz

Lemma 6.1 Let X ⊂ P
n+1 be a smooth hypersurface. The projectors {π X

	 } defined above
give a Chow–Künneth decomposition:

∆X = π X
0 + · · · + π X

2n .

Remarks Conjecture II by Murre [9, p. 149] states that on CHr (X; Q),π X
	,∗ = 0 for 	 < r and

for 	 > 2r . For 	 �= n, we observe that for dimension reasons alone together with the formula
for π X

	 above, that π X
	,∗ = 0 on CHr (X; Q), provided that 	 �= 2r , which is outside the range

of Murre’s Conjecture II. Thus the only projector to consider is π X
n,∗. But 	 = n < r implies

that CHr (X) = 0 for dimension reasons alone, hence π X
n,∗ = 0 for r < n. Thus Murre’s

Conjecture II in this case translates to saying thatπ X
n,∗ = 0 on CHr (X; Q) if 2r < n. However,

an affirmative answer to a question of Hartshorne, [4, p. 142], implies that CHr
hom(X; Q) = 0

for r < n/2. This further implies Murre’s Conjecture II for hypersurfaces (and more generally
complete intersections), since for r < n/2, π X

n,∗CHr (X; Q) ⊂ CHr
hom(X; Q) = 0. We will

have more to say about this in the Appendix.

7 Conclusion of the main theorem

Put

h X
n =

{
(deg X)−1

(
Hn/2

X × Hn/2
X

)
if n is even,

0 if n is odd.

Put

π̃ X
n = π X

n − h X
n ,

which we call a primitive projector. Observe that

π X
n ◦ h X

n = h X
n = h X

n ◦ π X
n

and hence

π̃ X
n ◦ h X

n = h X
n ◦ π̃ X

n = 0.

We now want to emphasize that X is now assumed a general hypersurface given as in the
setting of Proposition 3.1, with Z given in Lemma 3.3. We need the following result.
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Proposition 7.1 Φ∗ ◦Φ∗ = ×m on CH•(X; Q)/Q · H•
X .

Proof We have

Φ∗ ◦Φ∗ ◦Φ∗ = Φ∗ ◦ σ = mΦ∗ on CH•(X; Q)/Q · H•
X .

Now use the fact that

Φ∗ : CH•−k(ΩX ; Q) → CH•(X; Q)/Q · H•
X ,

is onto. �
By first applying X× to both the earlier diagrams, and using the same reasoning as in §5,

we deduce:

Corollary 7.2

P(X) ◦ T P(X)− m∆X = 0

in

CHn(X × X; Q)

/ n⊕
	=0

CHn−	(X; Q)⊗ H 	
X .

Hence

π̃ X
n ◦ P(X) ◦ T P(X) = mπ̃ X

n in CHn(X × X; Q).

Now put

τ̃ = m−1 ( T P(X)
) ◦ π̃ X

n ◦ P(X).

One easily checks that

τ̃ ◦ (τ̃ −∆ΩX ) = 0 in CHn−2k(ΩX ×ΩX ; Q),

and from this, together with Theorem 4.3, we arrive at the proof of Theorem 1.1 except the
proof of the isomorphism of the related motives, which we now show. For the proposition
below, we adopt the terminology in [9].

Proposition 7.3 The motives M = (ΩX , τ̃ , 0) and N = (X, π̃ X
n ,−k) are isomorphic as

virtual motives.

Proof Define the morphisms

α = 1

m
TP(X) ∈ Corr−k(X,ΩX )

and

β = P(X) ∈ Corrk(ΩX , X).

Then by associativity of correspondences we observe that

π̃ X
n ◦ β ◦ τ̃ ◦ α ◦ π̃ X

n = π̃ X
n ∈ Corr0(X, X)

and

τ̃ ◦ α ◦ π̃ X
n ◦ β ◦ τ̃ = τ̃ ∈ Corr0(ΩX ,ΩX ),

which establishes the required isomorphism. �
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8 Appendix: Murre’s conjectures for higher Chow groups

In this section, we will assume the reader has some familiarity with Bloch’s higher Chow
groups [2] CHr (W,m), where for our purposes, W is a projective algebraic manifold of
dimension n. Further, the reader can consult [9] for the definition of a Bloch–Beilinson
filtration FνCHr (W ; Q) on W . Generalizations of the Bloch–Beilinson filtration to the
CHr (W,m; Q) have been considered by others (e.g. [1,5,11]). A generalization of a conjec-
ture of Beilinson says that

GrνF CHr (W,m; Q) � ExtνMM
(
1, h2r−m−ν(W )(r)

)
,

where MM is the conjectural category of mixed motives, 1 = Spec(C) is the trivial motive,
and h•(−) is motivic cohomology. Implicit in the above formula is an underlying (conjectural)
Bloch–Beilinson filtration involving r -steps:

CHr (W,m; Q) = F0 ⊃ F1 ⊃ · · · ⊃ Fr ⊃ {0},
whose graded pieces factor through the Grothendieck motive. More explicitly, assume given
a Chow–Künneth decomposition (or we can work with the weaker assumption of such a
decomposition on the level of Grothendieck motives):

∆W =
⊕

p+q=2n

∆W (p, q),

then

GrνF CHr (W,m; Q) = ∆W (2n − 2r + ν + m, 2r − ν − m)∗CHr (W,m; Q).

Again, from the above formula, and for reasons involving weights, one has F0 = F1 if
m ≥ 1. Recall

πW
	,∗ := ∆W (2n − 	, 	)∗.

Since we anticipate

∆W (2n − 2r + ν + m, 2r − ν − m)∗CHr (W,m; Q) = 0,

for ν < 0 (and if m > 0, ν ≤ 0) and for ν > r , this translates to
Generalized Murre Conjecture II. πW

	,∗ = 0 for 	 > 2r − m (and 	 ≥ 2r − m if m > 0),
and for 	 < r − m.

We leave it as an exercise for the reader to generalize Murre’s remaining conjectures (I,
III and IV) to the higher Chow group setting. Before we state our next theorem, we need to
recall a conjecture of Soulé:
Conjecture. (Soulé, 1985; see [8]) Let F be a field. Then for m ≥ 2r ≥ 2, CHr (Spec(F),
m; Q) = 0. This is an open problem for r ≥ 2.

We now prove:

Theorem 8.1 Assume the notation and setting in the Main Theorem 1.1. Assume given a
Chow–Künneth decomposition of ΩX (in the sense of Murre) such that

π
ΩX
n−2k,∗ ◦ τ̃∗ = τ̃∗ = τ̃∗ ◦ πΩX

n−2k,∗,

on CH•(ΩX ,m; Q). Further, let us assume either that m = 0, 1, 2 or Soulé’s conjecture for
m ≥ 3. Then Murre’s (generalized) Conjecture II for W = ΩX implies Murre’s (generalized)
Conjecture II for W = X.
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Proof By the Main Theorem 1.1,

π
ΩX
n−2k,∗ = τ̃∗ +

(
π
ΩX
n−2k,∗ − τ̃∗

)
,

is a decomposition into idempotents. Thus

π
ΩX
n−2k,∗ = 0 ⇒ τ̃∗ = 0 ⇒ π̃ X

n,∗ = 0.

We first consider the case m = 0. According to the remarks at the end of §6, we need only
consider the vanishing of π̃ X

n,∗ on CHr (X; Q) when n > 2r . Thus it suffices to show that

π
ΩX
n−2k,∗ = 0 on CHr−k(ΩX ; Q) for n > 2r . But this is immediate from Murre’s (generalized)

Conjecture II forΩX , since n − 2k > 2(r − k) precisely when n > 2r . So now let us assume
that m > 0. Then we must show that π X

	,∗ = 0 on CHr (X,m; Q) in the ranges 	 < r − m
and 	 ≥ 2r − m. We first introduce

h X
	 :=

{
0 if 	 is odd,
Hn−	/2

X × H 	/2
X if 	 is even.

Note that

π X
	 =

⎧⎨
⎩

h X
	 if 	 �= n,

π̃ X
n + h X

n if 	 = n.

Let∆m � C
m be the standard algebraic m-simplex as defined in [2]. Any ξ ∈ CHr (X,m; Q)

arises from a cycle of codimension r in X × ∆m . Consider the product X × X × ∆m . We
compute for 	 even:

h X
	,∗(ξ) = Pr23,∗

(
Pr∗13(ξ) • Pr∗12

(
Hn−	/2

X × H 	/2
X

))

= Pr23,∗
{(

Hn−	/2
X • ξ

)
⊗ H 	/2

X

}

∈ Pr23,∗
{

CHn+r−	/2(X,m; Q)⊗ H 	/2
X

}

∈ H 	/2
X • λ∗CHr−	/2(Spec(C),m; Q),

where λ : X → Spec(C). Note that CHn+r−	/2(X,m; Q) = 0 if n +r −	/2 > n +m, which
is precisely the situation when 	 < 2(r − m). Note that r < m and 	 < 2(r − m) ⇒ 	 < 0,
hence dim X = n ⇒ Hn−	/2

X = 0 for 	 < 0 even, and therefore h X
	,∗(ξ) = 0. On the other

hand r ≥ m and 	 < r − m ⇒ 	 < 2(r − m). Thus π X
	,∗ = 0 for 	 < r − m. Next, if

	 ≥ 2r − m is even, then r − 	/2 ≤ [m/2], where [−] is the greatest integer function. Thus
the vanishing of h X

	,∗ for 	 ≥ 2r − m is a consequence of CH•≤[m/2](Spec(C),m; Q) = 0,
that which is the case for m = 1, 2, and more generally which is implied by our assumption
of Soulé’s conjecture. Thus the final step is to show the vanishing of π̃ X

n,∗ in the case where
n < r −m and n ≥ 2r −m. But n < r −m ⇒ r > n +m ⇒ CHr (X,m) = 0 for dimension
reasons. Thus we are reduced to the case n ≥ 2r − m. This is equivalent to the statement
n − 2k ≥ 2(r − k)− m and the vanishing of πΩX

n−2k,∗ for n − 2k ≥ 2(r − k)− m, which is
precisely Murre’s (generalized) Conjecture II for ΩX . �
Acknowledgments The authors are grateful to the referee for suggested improvements in presentation.
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