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an atomic Bose-Einstein condensate. Based on careful examinations with both analytical and numerical ap-
proaches, we conclude that as a result of the swap mechanism, Einstein-Podolsky-Rosen-type quantum corre-
lations can be detected among the scattered light pulses.
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I. INTRODUCTION

Superradiance �SR� commonly refers to cooperative emis-
sion from an ensemble of excited atoms with initial coher-
ence or from an ensemble of radiators with an initial macro-
scopic dipole moment. As coherence-enhanced radiation, SR
was introduced by Dicke �1� in 1954 and first observed ex-
perimentally in 1973 �2�. It occurs in many systems �3�, from
thermal gases of excited atoms �4� and molecules �2�, quan-
tum dots and quantum wires �5–7�, to atomic Bose-Einstein
condensates �BECs� �8�, Rydberg gases �9�, and molecular
nanomagnets �10�. Recently, serious efforts have been di-
rected toward the study of quantum entanglement between
condensed atoms and SR light pulses �11� and entanglement
between atoms through SR �6�. Several promising applica-
tions, including prospect for quantum teleportation in en-
tangled quantum dots via SR, are proposed �6�.

In a pioneering experiment of SR from an elongated con-
densate, a continuous-wave �cw� pump laser intersects along
the short transverse direction �8�. The scattered radiation is
dominated by axial or the so-called end-fire modes �1�. The
atoms experience recoils as a result of the momentum con-
servation, exhibiting a fanlike pattern, which reflects the con-
densate side-mode distribution. More recently, the Kapitza-
Dirac regime of SR was observed �12� in a pulsed pump
scheme, with momentum side modes displaying the charac-
teristic X-shaped patterns. In this regime, it is predicted that
SR pulses must contain quantum-entangled counterpropagat-
ing photons from the end-fire modes �13�. It was proposed
that quantum entanglement arises from correlations of back-
ward and forward scattered atoms and from the interplay
between optical and atomic fields �13�. In this study we show
that even for a cw-pumped condensate with scattered atoms
forming a forward fanlike pattern, quantum entanglement of
the end-fire modes still exists due to an entanglement swap
mechanism which we clearly identify during sequential SR
process. In quantum information language, entanglement
swap is a technique to entangle particles that never before
interacted �14–17�.

Sequential SR involves successive scattering of the pump
laser from the initial momentum distribution of a condensate
�8�. Previous studies on SR from an atomic gas have ob-
served multiple pulses or ringing effects, especially among
dense atomic samples. Ringing is often explained in terms of

the pulse propagation effect �18�, where the finite size and
shape of the medium play significant roles �19,20�. Adopting
semiclassical theories, detailed modeling of SR from atomic
condensates has been very successful, essentially capable of
explaining both spatial and temporal evolutions of atomic
and optical fields �21–24�. The semiclassical treatments,
however, can account neither for the influence on sequential
scattering associated with ring from side-mode patterns nor
for quantum correlations between end-fire modes.

In this paper, we investigate Einstein-Podolsky-Rosen
�EPR�-type �25,26� quantum correlations between end-fire
modes. Such correlations can be detected with well-known
methods developed for continuous variable entanglement in
down-converted two-photon systems �27,28�, employing
equivalent momentum and position quadrature variables as
observable.

The paper is organized as follows. In Sec. II, we introduce
the relevant concepts and describe the model system we con-
sider for investigating sequential SR. We identify the various
approximations and derive the full second-quantized effec-
tive Hamiltonian. In Sec. III, we review the criteria for con-
tinuous variable entanglement, with which we confirm the
existence of quantum correlation between SR photons from
the end-fire modes. In Sec. IV, we analytically solve the ef-
fective Hamiltonian under parametric and steady-state ap-
proximations. We clearly identify the swap mechanism and
intuitively explain the steps involved for the model Hamil-
tonian to generate EPR pairs out of noninteracting photons.
This represents the key result for this paper. In Sec. V, we
describe the method of our numerical calculations under a
proper decorrelation approximation. The results are pre-
sented in Sec. VI, where we first examine the temporal dy-
namics of the entanglement in connection with the accompa-
nying field and atomic populations. This helps to illustrate
the swap of atom-photon entanglement to the photon-photon
entanglement. We then study carefully this swap effect, in-
troduce the effect of decoherence, and consider the effect of
SR initialization from a two-mode squeezed vacuum and the
dependence on the increase/decrease of number of atoms.
Section VII contains our conclusion.

II. SEQUENTIAL SUPERRADIANCE
AND THE EFFECTIVE HAMILTONIAN

In this section, we briefly describe the unique properties
of SR, i.e., the directional and sequential natures of the emit-
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ted pulses. We will introduce the concept of sequential SR, in
terms of what occurs in an elongated cigar-shaped atomic
condensate. We derive the second-quantized effective Hamil-
tonian, where the optical fields are treated quantum mechani-
cally, in order to take into account the interaction of all side
modes with common photonic fields.

A. Sequential SR

We consider an elongated condensate, of length L and
width W, that is axially symmetric with respect to the long
direction of the z axis. It is optically excited with a strong
pump laser of frequency �0; detuned from the atomic reso-
nance frequency �A by �=�A−�0. The laser beam is di-
rected along the y axis, perpendicular to the long axis of the
condensate, and linearly polarized in the x axis.

When the pump laser is sufficiently strong, the occupation
of atoms in the excited state becomes macroscopic, beyond
the threshold for collective emission. The excited atoms, in-
teracting through the common electromagnetic field, start to
make collective spontaneous emission �1�. In the earliest
times, relatively small number of atoms will be recoiled by
emission in comparison to condensate atoms. In this so-
called linear regime �29–32�, dynamical equations can be
linearized assuming time-independent macroscopic number
of condensate atoms. As the condensate atoms are depleted
while more and more atoms are recoiled into other momen-
tum states after emission, such a linearization can no longer
be done. The atom-optical system then evolves according to
general, coupled nonlinear equations. The linear regime is
where the initiation of a superradiant pulse happens due to
vacuum-field or medium fluctuations �30�. Due to their small
number, recoiled atoms and emitted photons are treated
quantum mechanically and it is revealed that the initial un-
correlated atom and field states get entangled as a result of
simultaneous creation of recoiled atoms and associated su-
perradiant photons �31�. The subsequent development of dy-
namics in the nonlinear regime leads to fully developed SR
pulse which eventually decays in a final dynamical stage. At
the peak of SR, the collective radiation time of the system
TR= �8� /n�2L�T�10−3T�10−10 s becomes much smaller
than the normal spontaneous emission time T�60 ns for
typical systems, where n is the density of atoms in the ex-
cited state and � is the resonant transition wavelength. Full
rigorous and detailed quantum-mechanical treatment investi-
gations of quantum correlations among atoms and emitted
photons are not available for the regimes beyond the initial
linear regime of SR.

For an elongated radiating sample, such as the condensate
along the z axis being discussed here, superradiant emission
occurs dominantly along the �ẑ directions, i.e., emitted pho-
tons leaving the cigar-shaped sample mainly from both ends
as depicted in Fig. 1. The corresponding spatial modes are
called end-fire modes. They are perpendicular to the propa-
gation direction of the pump-laser beam. Due to momentum
conservation for individual scattering events, the emission of
an end-fire photon is accompanied by collective recoils of
the condensate atoms. The momentum of recoiled atoms is
significantly larger in magnitude than the residue momentum

spread of the trapped condensate. Thus, collective recoil
gives rise to distinct condensate components clearly observ-
able in the free expansion images. These are the so-called
condensate side modes. When the side modes are occupied
significantly, they serve as new sources for higher order SR
or sequential SR. They, too, emit end-fire mode photons and
contribute to the next order side modes. The resulting pattern
for atomic distribution after expansion, as shown in Fig. 1,
corresponds to what was observed for a certain choice of
pump power and duration in the first BEC SR experiment
�8�. The directions of the emitted end-fire mode photons and
the corresponding recoiled side-mode condensate bosons are
indicated with the same line type.

B. Effective Hamiltonian

The effective second-quantized Hamiltonian, governing
the dynamics of sequential SR system, is derived as follows.
Due to the large energy scale difference between the center
of mass �CM� dynamics for the atoms ��MHz� and the in-
ternal electronic degrees of freedom ��PHz�, we can treat
their respective motions separately. As in Ref. �31�, the
Hamiltonian of an atomic condensate with two-level atoms
interacting with a near-resonant laser pump takes the follow-
ing form:

Ĥ =� d3r�̂g
†�r��−

�2

2m
�2 + Vtg�r���̂g�r� +� d3r�̂e

†�r�

��−
�2

2m
�2 + Vte�r� + ����̂e�r� +� d3k��kâk

†âk

+� d3rd3k��g��k�e−ik·r�̂g
†�r�âk

†�̂e�r� + H.c.� �1�

under the dipole and rotating wave approximations. We have
further neglected the static atom-atom interactions. The first
two terms are the atomic Hamiltonians for the CM motion in
their respective trapping potentials �Vtg�r� , Vte�r�� of the in-
ternal states. The atomic fields, described by annihilation
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FIG. 1. �Color online� A fanlike atomic side-mode pattern up to
second-order sequential superradiant scattering.
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�creation� operator �̂g,e�r� ��̂g,e
† �r��, obey the usual bosonic

algebra. ��=���A−�0� is the electronic excitation energy
of the atom in the rotating frame defined by the pump-laser
field. The third term comes from the free electromagnetic
field, while its interaction with the atoms is described with

the last term �Ĥaf�, which includes both the laser photons
and the scattered photons. The operator âk �âk

†� annihilates
�creates� a photon with wave vector k, polarization 	̂k,
and frequency �k=ck−�0 �again in the rotating frame with

frequency �0�. g�k�= �c	k	d2 /2�	0�2��3�1/2	k̂� x̂	 is the di-

pole coupling coefficient, with d� = 
e	r�	g� the matrix element
for the atomic dipole transition.

In typical SR experiments �8�, the detuning ��109 Hz is
much larger than both the CM motion energy scale �106 Hz
and the Rabi frequency 
0�108 Hz. The excited-state op-

erator can be eliminated adiabatically via replacing �̂e�r��
−�1 /���
dkg�k�eik·râk��̂g�r� in the equations of motion,
yielding an effective Hamiltonian

Ĥ =� d3r�̂g
†�r��−

�2

2m
�2 + Vtg�r���̂g�r� +� d3k��kâk

†âk

−
�

�
� d3rd3kd3k�g̃�k,k�,r��̂g

†�r�âk
†âk��̂g�r� , �2�

with g̃�k ,k� ,r�=g��k�g�k��exp�−i�k−k�� ·r�, proportional
to the effective coupling between the absorbed and subse-
quently emitted photons.

The atomic field operators can be expanded in terms of

the quasiparticle excitations of BEC �̂g�r�=�q
q 	r�ĉq, as de-
scribed in Ref. �32�, with ĉq �ĉq

†� annihilating �creating� a
scattered boson in the momentum side mode q in the form

r 	q�=�0�r�eiq·r. The initial condensate mode is described
by the spatial wave function �0�r�. The quasimodes for ex-
citations approximately form an orthonormal basis because

q 	q��=�q,q�. In the second-quantized form within the side-
mode representation Eq. �2� becomes

Ĥ = �
q

��qĉq
†ĉq +� d3k��kâk

†âk

−
�

�
�
q,q�

� d3kd3k�g��k�g�k��
q,q��k,k��ĉq
†âk

†âk�ĉq�,

�3�

where 
q,q��k ,k��=
dr	�0�r�	2ei��k+q�−�k�+q���·r is the struc-
ture form factor of the condensate density, which is respon-
sible for the highly directional emission of the end-fire mode
photons. �q=�	q	2 /2m is the side-mode energy at the recoil
momentum of q. The first two terms in Eq. �3� are diagonal
in their respective Fock spaces and can be omitted by per-
forming further rotating-frame transformations ĉq→ ĉqe−i�qt

and âk→ âke−i�kt. Thus, the effective Hamiltonian takes the
form

Ĥ = −
�

�
�
q,q�

� d3kd3k�g��k�g�k��
q,q��k,k��

�ĉq
†âk

†âk�ĉq�e
i��k+�q−�k�−�q��t. �4�

In a sufficiently elongated condensate, large off-axis Ray-
leigh scattering is suppressed with respect to the end-fire
modes �33�. The angular distribution of the scattered light is
sharply peaked at the axial directions �ke= �keẑ� if the
Fresnel number is larger than 1, F=W2 /L�0�1, at the pump
wavelength �0 for a condensate of length L and width W
�32�. This makes it possible to consider only the axial end-
fire modes. To investigate sequential SR, we further take into
account the first-order side modes at q=k0�ke and the
second-order side mode at q�2k0. The rest of the side
modes are assumed to remain unpopulated �21�. The Hamil-
tonian �4� that originally contains the contributions from all
the side modes and the end-fire modes as well as the laser
field then reduces to the following simple model:

Ĥ = − �
g2

�
�ĉ+

†â−
†â0ĉ0 + ĉ−

†â+
†â0ĉ0 + ĉ2

†â−
†â0ĉ− + ĉ2

†â+
†â0ĉ+�

+ H.c., �5�

with g�g�ke�. We have adopted a shorthand notation where
â�� â�ke

, â0� âk0
, ĉ�� ĉ�k0�ke�, and ĉ2� ĉ2k0

. This is the
model Hamiltonian involving the interplay of the four atomic
side modes with three photonic modes. Before we further
discuss and reveal the built-in entanglement swap mecha-
nism for EPR-type quantum correlations in this model
Hamiltonian, in the next section we shall briefly review con-
tinuous variable entanglement and extend its criteria to our
case.

III. CRITERIA FOR CONTINUOUS
VARIABLE ENTANGLEMENT

The existence of continuous variable entanglement is de-
termined by a sufficient condition on the inseparability of
continuous variable states as given in Ref. �34�. If the density
matrix of a quantum system is inseparable within two well-
defined modes �34–36�, these two modes are entangled. For
two entangled modes the total variance of EPR-type opera-
tors, û= 	c	x̂1+ x̂2 /c and v̂= 	c	p̂1− p̂2 /c, satisfies the inequal-
ity


�û2� + 
�v̂2� � �c2 + 1/c2� �6�

for a real number c, where x̂1,2= �â1,2+ â1,2
† � /�2 and p̂1,2

= �â1,2− â1,2
† � / i�2 are analogous to position and momentum

operators as in the case of a simple harmonic oscillator. The
indices correspond to mode numbers.

Defining the inseparability parameter

� = 
�û2� + 
�v̂2� − �c2 + 1/c2� , �7�

the presence of continuous variable entanglement is then
characterized by the sufficient condition ��0. For the two
modes to be entangled, it suffices to find only one value of c
that leads to ��0 and hence c can be taken at which � is
minimum.
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The parameter � we adopt here clearly corresponds to an
entanglement witness, but not an entanglement measure.
This is because the states for more negative � do not neces-
sarily correspond to more entangled states.

The total variance of the EPR operators is bounded below
by the Heisenberg uncertainty relation 
�û2�+ 
�v̂2�� 	c2

−1 /c2	. Thus, � has a lower bound �low= 	c2−1 /c2	− �c2

+1 /c2�.
After minimization with respect to c, a more explicit ex-

pression of � can be given as

� = 2�c2
â1
†â1� + 
â2

†â2�/c2 + sgn�c�
â1â2 + â1
†â2

†��

− 
û�2 − 
v̂�2, �8�

where c2= ��
â−
†â−�− 	
â−�	2� / �
â+

†â+�− 	
â+�	2��1/2, with
sgn�c�=−sgn�Re�
â+â−��−�+�−+�+�−�, ��=Re�
â���, and
��=Im�
â���.

In the system we study here, the bosonic mode operators
will be either end-fire mode pairs a1,2=a� or end-fire modes
and first-side modes, a1=a�, a2=c�. Unlike other model in-
vestigations �36� of EPR-type correlations based upon �, we
need to keep track of the 
û�2 and 
v̂�2 terms because 
x̂1,2�
and 
p̂1,2� do not necessarily vanish for our model during
time evolution. Furthermore, since the time evolutions of the
two end-fire modes are symmetric in our case, we find c2

=1 and �low=−2.
In the remainder of this paper, we examine the time evo-

lutions of the continuous variable entanglement witness ��t�
both for the opposite end-fire modes and for the end-fire
modes with side modes. This study is expected to provide
insight into the temporal development and the swap of quan-
tum correlations between different subsystems/modes. The
following section is aimed at establishing an intuitive under-
standing of how EPR-type correlations between opposite
end-fire modes are built up.

IV. ENTANGLEMENT SWAP MECHANISM

In Sec. VI we will exhibit the numerical results for the
time evolution of the entanglement parameter ��t� governed
by the Hamiltonian �5�. We will observe that there exist re-
gions in time where � becomes negative, i.e., conclusive
evidence for the presence of entanglement during dynamical
evolution. In this section, we hope to provide an intuitive
understanding to support the result revealed through the nu-
merical approach. We will show that it is due to the presence
of an inherent swap mechanism which leads to the genera-
tion of the EPR photon pair. We shall examine the dynamical
behavior of the system in two different time regimes: the
early times when the first side modes just start to grow and
the later times when the second-order side mode contributes
to the dynamics.

A. Early times

In the initial stage, occupation of the second-order side
mode �	c2�� can be neglected. During this initiation period of
the short-time dynamics, the number of atoms in the zero-
momentum state can be assumed undepleted ĉ0��Nei�1

with a constant N standing for the number of condensed

atoms like in the treatment of degenerate parametric pro-
cesses. Since the pump is very strong and the number of
pump photons is much larger than the number of condensate
atoms M �N, it can also be treated within the parametric
pump approximation â0��Mei�0 as undepleted. Thus, the
initial behavior of the system is governed by the Hamiltonian

Ĥ1 = − ��1�ei�1�â+
†ĉ−

† + â−
†ĉ+

†� + H.c.� , �9�

with �1=�NM	g	2 /� and �1=�0+�1 is the initial phases dif-

ference. This form of Ĥ1 is exactly the same as that of two
uncoupled optical parametric amplifiers �OPAs�. It allows for
the growth of the first-order side modes �32� as well as the
entanglement of side-mode atoms with the end-fire mode

photons �37�. The solution to Ĥ1 in the Heisenberg picture is
given by the following time dependencies of operators �38�:

â��t� = cosh��1t�â� + iei� sinh��1t�ĉ�
† , �10�

ĉ��t� = cosh��1t�ĉ� + iei� sinh��1t�â�
† , �11�

where the operators without time arguments are at the initial
time.

The side modes and the end-fire modes are initially unoc-
cupied 	a+ ,a− ,c+ ,c−�= 	0,0 ,0 ,0� or taken to be in their re-
spective vacuum states. The time dependencies for the popu-
lations of the side modes and end-fire modes come out as


Î��= 
n̂��=sinh2��1t�, analogous to the classical results
�38�. Evaluating correlations between the two end-fire modes
�e�, we find

� � �ee = 4 sinh2��1t� , �12�

which is always positive �ee�0. On the other hand, the cor-
relation between the end-fire mode �e� and side mode �s�,
scattered in the opposite directions, takes the following form:

�se = 2�2 sinh2��1t� − 	sin��1�	sinh�2�1t�� , �13�

which starts with �se�t�=0 and evolves down to �se�t0�2�
�−2; the lowest possible value of �low=−2 imposed by the
Heisenberg uncertainty at 	sin��1�	�1.

In Figs. 2�a� and 2�b�, this is further supported by more
elaborate results from numerical calculations of � and �se.
Same conclusions can be seen for the analytical results �12�
over the range t=0− t=0.3 ms in Fig. 2�a� and �13� over the
range t=0–0.2 ms in Fig. 2�b�.

B. Later times

At later times, the first-order side modes become signifi-
cantly populated, giving rise to noticeable second sequence
of SR from the edges of these side-mode condensates. In this
case, the occupancy for the 	c0� mode is not an important
issue, but the 	c2� mode becomes populated due to the
second-order SR.

We construct an approximate model by assuming that the
occupation of 	c2� is not changing too much or effective
treating it as in the steady state with ĉ2��N2e−i�2. N2 is the
number of atoms in the 	c2� state. The later stage dynamics of
the system, where the second-order SR is effective, is then
governed by the model Hamiltonian
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Ĥ2 = − ��2�ei�2�â−
†ĉ− + â+

†ĉ+� + H.c.� , �14�

with �2=�N2M	g	2 /� and �2= �̄0+�2. As before we again

neglect the depletion of the pump â0��Mei�̄0.

This model Ĥ2 is also exactly solvable. The time depen-
dencies of the annihilation operators in the Heisenberg pic-
ture are

â��t� = cos��2�t�â� + iei�2 sin��2�t�ĉ�, �15�

ĉ��t� = cos��2�t�ĉ� + ie−i�2 sin��2�t�â�, �16�

where t� t0, the operators without time arguments are at t
= t0, and �t= t− t0. We can approximately connect these two
models together into smooth temporal dynamics if we use

the solutions of Ĥ1 as the initial state for dynamics due to Ĥ2
so that â��t0� and ĉ��t0� are calculated at t= t0 from the Eqs.
�10� and �11�, respectively. We define t0 as the time at which
all the 	c0� atoms are scattered into the side modes and thus it
is determined from sinh2��1t0�=N /2.

In this later dynamical stage, the entanglement witness
parameter in between the end-fire modes �e� is evaluated to
be ����ee�

��t� = 4 sinh2��1t0� − 	cos��̄�sin�2�2�t�	sinh�2�1t0� ,

�17�

where �̄=�1+�2. When 	cos��̄�	�1, � evolves from 2N
down to the minimum possible negative value of �low=−2 at
�t=� /4�2. An analogous calculation for entanglement be-
tween the end-fire mode �e� and side mode �s� gives

�se�t� = 4 sinh2��1t0� − 2	sin��2�cos�2�2�t�	sinh�2�1t0� ,

�18�

which starts at �se�t0�=−2 and increases to values of order
�N for proper choices of �2. Many of these features revealed
from simple analytic models find their parallels in numerical
solutions as displayed in Fig. 2.

The results from the two model Hamiltonians are found to
depend on the initial phase difference between �1 and �2, but
not the individual phases. Such a phase dependence of the
results is analogous to the cases of parametric down conver-
sion and the two-mode squeezing �38�. The phases intro-
duced in the second stage reflects the accumulating temporal
phase difference of the operators through the time evolution.
In the numerical calculation it is sufficient to assign initial
phases for the pump laser and the condensate or just their
difference.

Without any detailed analysis, simply consider the behav-
iors of Eqs. �13� and �17� instead, one can already appreciate
the built-in entanglement swap mechanism within the super-
radiant BEC in action. The entanglement created between the
side mode and end-fire mode Eq. �13� in the initial stage is
swapped to entanglement between the two end-fire modes
Eq. �17� due to the second-order SR. The model Hamiltonian

Ĥ1 couples the 	a��↔ 	c�� modes, but leaves 	a+�↔ 	a−�
modes decoupled at the initial times. The model Hamiltonian

Ĥ2, at later times, couples the 	a��↔ 	c�� states. Two nonin-
teracting modes 	a+�↔ 	a−� are coupled through their com-
mon interaction with the same side mode and become en-
tangled due to the swap mechanism.

V. NUMERICAL CALCULATION
OF THE ENTANGLEMENT PARAMETER

We study the dynamics of the entanglement parameter
��t� and the accompanying populations for the fields
�I0�t� , I��t�� and the atomic states �n0 ,n��t� ,n2�. Their com-
plete temporal evolution is governed by the Hamiltonian Eq.
�5�. Our calculation will be numerically obtained, aided by a
decorrelation approximation that neglects higher-order corre-
lations. The numerical results will be illustrated and dis-
cussed in the next section.

The entanglement parameter �, given in Eq. �8�, is deter-
mined by the expectation values of both â� operators and
their products. Their equations of motion in operator forms
can be derived from the full Hamiltonian Eq. �5�. The dy-
namics of two operator products is found to depend on four
operator products, four operator products depend on six op-
erator products, and so on so forth. Such a hierarchy of op-
erator equations is impossible to manage in general. We
therefore resort to a decorrelation approximation that trun-
cates it to a closed form. The usual treatment of this kind
�39� for the SR system closes the chain early by a simple
decorrelation of atomic and optical operators, which is
clearly inappropriate when entanglement swap is to be stud-
ied.

We adopt a decorrelation rule that factorizes condensate
and the second-order side-mode operators in operator prod-
ucts. Since quantum correlations between the condensate and
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FIG. 2. �Color online� The temporal evolutions for atomic side-
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other modes are expected to be weak due to the almost clas-
sical coherent-state-like nature for the condensate and its di-
minishing population when the second-order side mode is
significantly populated at later stages of dynamics. Operators
for the pump photons will also be factorized, again relying
on the almost classical coherent-state nature of the pump
field.

Our approach makes it possible to keep quantum cor-
relations between the end-fire modes and the interme-
diate side modes. The hierarchy of equations is closed
under 
xyz��
xy�
z�, with x ,y� �1,c� ,c�

† ,a� ,a�
† � and z

� �c0 ,c0
† ,c2 ,c2

†�. The resulting equations, governing the dy-
namics of the expectations, are given in the Appendix. These
equations are solved numerically.

For the initial conditions, both the end-fire modes and side
modes are taken to be their vacuum Fock states while the
laser and the condensate are in coherent states. We consider a
system with typical parameters of a condensate with number
of atoms N=8�106 and a pump with M =2�108 photons.
Additionally, phenomenological decoherence rates are intro-
duced by assuming the same damping rates �33� for the
atomic and photonic modes. The decay rates are obtained
from the effective decay of the experimentally measured
contrast for the atomic density distribution pattern �8�. In
addition, we also explored an interesting scheme where the
coupled Eqs. �A1�–�A18� were solved, in the presence of
phenomenological damping, for an initial two-mode
squeezed vacuum �for the end-fire modes� with a squeezing
parameter �=r exp�i�r�.

VI. RESULTS AND DISCUSSION

In Sec. IV we discussed the origins of the entanglement
swap in sequential SR. In this section, in order to provide for
a more detailed and quantitative understanding, we present
results obtained from numerical calculations. We will discuss
the time evolution of the entanglement parameter ��t�, be-
tween the two end-fire modes, within the parameter regime
of the experiment �8�. At first, we will disregard decoherence
and examine the nature of fully coherent sequential dynam-
ics. We will show that � attains negative values, confirming
the presence of entanglement due to the swap mechanism as
we intuitively discussed in the previous section. We then
introduce effective damping rates specific to the experimen-
tal situation. Finally, we will examine the effect of initializ-
ing the quantum dynamics of our model system from in a
two-mode �end-fire modes� squeezed vacuum, in the pres-
ence of decoherence and dissipations. We will end with in-
vestigations of the dependence of correlations on the number
of condensate atoms.

A. Dynamics of entanglement

In Fig. 3, we plot the temporal evolution of optical-field
intensities and atomic side-mode populations. The plot is
found to be totally symmetric with respect to t= tc
=0.35 ms. The peak in the intensity after tc is the analog of
the Chiao ringing �40�. In the experiments such a complete
ringing cannot be observed due to the finite lifetime of the
excited levels, which is treated in the following section.

In Fig. 2, we plot the temporal evolution of entanglement
parameters �ee �photon-photon� and �se �atom-photon� over
the population dynamics, depicted in Fig. 3. The lower panel
of Fig. 2 demonstrates the swap dynamics. The initial atom-
photon entanglement ��se� is seen to evolve continuously
into entanglement between the two end-fire modes ���. Both
the parameters �se and � are found to be able to reach down
to the lowest possible value, �low=−2, set by the Heisenberg
uncertainty principle �as in Sec. III�. The complete numerical
results match well with the analytic solutions, discussed pre-
viously in Sec. IV, for the model Hamiltonians �9� at early
times and �14� at later times.

In the time interval of t=0–0.30 ms, we find the system
is dominated by the first sequence of SR. The atomic con-
densate, initially in the zero-momentum state 	c0�, is pumped
into the first-order side modes 	c��. This is the reason for the
overlap of n��t� with I��t� during this interval. Due to the
interaction between the side modes and the end-fire modes,
scattered into opposite directions, �se becomes negative in
this region.

When the 	c�� side modes become maximally occupied at
about t=0.30 ms, the first sequence of SR is completed. At
this time, these side modes are sufficiently populated to give
rise to the second sequence of SR. In the interval t
=0.30–0.35 ms atoms in the side modes 	c�� are pumped
into the second-order side mode 	c2�. The majority of the
populations, however, oscillate back to the 	c0� mode because
of the more dominant Rabi oscillation between the 	c0� and
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FIG. 3. �Color online� �a� The temporal evolutions of atom-
photon �	a��↔ 	c��� and photon-photon �	a+�↔ 	a−�� mode corre-
lations as evidenced by the entanglement parameters �se and �
��ee, respectively. Accompanying population dynamics is plotted
in Fig. 3. �b� An expanded view of the early time dynamics for �se

and �. �c� An expanded view of � around tc=0.35 ms.
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	c�� modes. Two other reasons also contribute to the repopu-
lation of the condensate mode: first, the neglect of the
propagation-induced departure of the end-fire mode photons
from the atomic medium and second, the neglect of the other
two second-order side modes 	c2k0�2ke

� for atoms to get into.
Two end-fire modes get indirectly coupled by the entangle-
ment swapping and between t=0.30–0.35 ms ��t� gradually
becomes negative.

Entanglement of the end-fire modes arises at t= tc
=0.35 ms, when the 	c2� mode is maximally occupied as
shown in Fig. 2. The minimum value of �, which occurs at
t= tc, is found to coincide with the maximum value of n2�t�.

When t� tc, however, due to our limited mode approxi-
mation of not including even higher side modes, we cannot
study any effects which could potentially give rise to higher-
order correlations, such as the onset of the third sequence of
SR. The oscillatory Chiao type ringing revivals in the present
result after t� tc mainly arise from the exclusion of decoher-
ence, dephasing, dissipations, and the higher order side
modes in the model system. In the present work, we limited
ourselves to a particular side-mode pattern as actually ob-
served in available experiments �8�. Despite its simplicity,
we find our model can reasonably explain effects of decoher-
ence and dephasing on the entanglement dynamics, which is
further illustrated in the next section.

B. Vacuum squeezing and decoherence

The introduction of experimentally reported decoherence
rate of � /2�=1.3�104 Hz phenomenologically into the dy-
namical equations for the coupled system is found to not
change the nature of the entanglement and swap dynamics
significantly, which is supported by the numerical results
shown in Fig. 4. We find that � can still become negative in
certain time window, although it now stops short of reaching
the theoretical lower bound of −2.

In the lower panel in Fig. 4 the temporal window for the
negative values of � or the presence of entanglement is
found to become narrower and the minimum value of �,
�min, is now somewhat larger for stronger decoherence, as
may be expected. According to Sec. III, a less negative value
of � does not necessarily imply less entanglement because �
is simply an entanglement witness parameter but not an en-
tanglement measure. On the other hand, it is still beneficial
to aim for lower values of � because the numerical results we
obtain associate lower values with longer entanglement du-
rations and furthermore more tolerant to decoherence, which
means photon-photon entanglement can withstand the higher
decoherence rates.

For this aim, we choose to consider end-fire modes which
are initially in two-mode squeezed vacuum states. The lower
panel in Fig. 4 shows that an initially two-mode squeezed
vacuum, for the end-fire modes, can indeed compensate to a
certain degree for decoherence. This shows that initially in-
duced two-mode squeezing �or entanglement� in between the
end-fire modes enhances their subsequent entanglement after
the entanglement swap.

This observation can be interpreted as follows based on
the numerical results. Any initial correlation between the

end-fire modes is lost in the early dynamical stage where the
end-fire modes are entangled with the first side modes. The
presence of initial correlation, however, causes the resultant
atom-photon entanglement to be more resistant to decoher-
ence. As a result, photon-photon correlations established by
swapping from the atom-photon correlations in the subse-
quent dynamical stage also become more resistant to deco-
herence.

Finally, we examine the influence on � from the number
of atoms in a condensate. We find that, as illustrated in Fig.
5, �min becomes more negative for larger condensates. In the
small condensate limit, �min is found to decrease linearly
with N when the Fock vacuum is considered as initial con-
ditions for other modes. The lower limit of −2 is never at-
tained. When a small amount of initial squeezing is intro-
duced, however, � can be brought down to theoretical
minimum of −2. It approaches −2 in the large condensate
limit with or without any help from initial squeezing in the
two end-fire modes.

In addition to the amplitude of squeezing parameter, its
phase could also influence �min. In Fig. 6, we plot the mini-
mum value of the entanglement parameter as a function of
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the phase and amplitude of the squeezing parameter �=rei�r.
We performed this study for a small condensate with N
=100 atoms and ignored the phenomenological decoherence.
We find that the most efficient enhancement occurs along the
line �r=�. For larger condensates we find that the center of
Fig. 6, where ��0, spreads out to the �r=0 and �r=� edges
as N is increased. Entanglement is enhanced mainly along
�r=0 and �r=� lines.

VII. CONCLUSIONS

We investigate photon-photon entanglement between the
counterpropagating end-fire modes of a sequentially superra-
diant atomic Bose-Einstein condensate. We calculate the
temporal evolution of the continuous variable entanglement
witness parameter for suitable realistic experimental param-
eters in the cw-pump laser regime �8� and find that EPR-type
correlations can be generated between the oppositely di-
rected end-fire modes despite the fact that they do not di-
rectly interact.

The generation of entanglement is shown to be due to a
built-in entanglement swap mechanism we uncover in the
sequential SR system. It is shown that end-fire mode photons
become entangled immediately after the second sequence of
the superradiance. In the second sequence, one of the end-
fire modes interacts with the side mode, with which the other
end-fire mode has already interacted before in the first se-
quence. This mechanism allows for swapping the entangle-
ment established between the end-fire modes and the side
modes in the first sequence to the entanglement of the end-
fire modes per se.

Increasing the number of atoms in the condensate, or ini-
tializing superradiance with a two-mode squeezed vacuum
�for the end-fire modes�, is found to be beneficial to the
efficient construction of entanglement between end-fire
modes via the increasing of entanglement durations and
making the entanglement more tolerant to decoherence.

The initial phase difference of the incoming pump laser
and the condensate, the phase and the amplitude of the

squeezing parameter for the end-fire mode vacuum, and the
number of atoms in a condensate and its geometric shape all
play certain roles in order to achieve the optimum ERP-type
correlations in between the end-fire modes and these param-
eters are discussed in detail in the present paper for the cases
of both small and large condensates.
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APPENDIX

We calculate temporal evolution of entanglement param-
eter ��t�, given in Eq. �8�, starting from the Heisenberg op-
erator equations, obtained from Eq. �5�. We evaluate the ex-
pectations for both single operators and two operator
products. We arrive at a closed set from the expectations via
performing decorrelation approximation, in parallel with the
development and understanding of the swap mechanism
�Sec. IV�.

The resulting closed set of equations for expectation val-
ues is given through Eqs. �A1�–�A18�, where time is scaled
by frequency �=g2 /2�, with g�2�103 Hz, while opera-
tors are not scaled. � is related to � of Ref. �33� as �
=�M�=10.7 Hz. Phenomenological decay rates can be in-
troduced in Eqs. �A1�–�A18� by scaling ��=1.3�104 Hz
with �. However, since the decay rates are introduced, in
�33�, for three-operator products, we use �� /3 for single
operators and 2�� /3 for two-operator products. We have
also checked the parallelism of our density dynamics with
�33�, which are in good agreement with the experiment �8�
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