
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2009; 39:869–889
Published online 20 January 2009 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.916

FLORA: a framework for
decomposing software
architecture to introduce local
recovery

Hasan Sözer1,∗,†, Bedir Tekinerdoğan2 andMehmet Akşit1

1Department of Computer Science, University of Twente, 7500 AE Enschede,
The Netherlands
2Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey

SUMMARY

The decomposition of software architecture into modular units is usually driven by the required quality
concerns. In this paper we focus on the impact of local recovery concern on the decomposition of the
software system. For achieving local recovery, the system needs to be decomposed into separate units that
can be recovered in isolation. However, it appears that this required decomposition for recovery is usually
not aligned with the decomposition based on functional concerns. Moreover, introducing local recovery
to a software system, while preserving the existing decomposition, is not trivial and requires substantial
development and maintenance effort. To reduce this effort we propose a framework that supports the
decomposition and implementation of software architecture for local recovery. The framework provides
reusable abstractions for defining recoverable units and the necessary coordination and communication
protocols for recovery. We discuss our experiences in the application and evaluation of the framework
for introducing local recovery to the open-source media player called MPlayer. Copyright © 2009 John
Wiley & Sons, Ltd.

Received 4 June 2008; Revised 20 November 2008; Accepted 5 December 2008

KEY WORDS: local recovery; software architecture; availability; fault-tolerance

1. INTRODUCTION

One of the key principles in software architecture design is modularity that aims to decompose the
system into separate, modular units [1]. The decomposition of a system into modules is usually

∗Correspondence to: Hasan Sözer, Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands.

†E-mail: sozerh@cs.utwente.nl, sozerh@ewi.utwente.nl

Copyright q 2009 John Wiley & Sons, Ltd.

870 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

driven by the required quality concerns such as adaptability, reuse, and performance. In this paper
we focus on the impact of recovery concern on the decomposition of the software system.
The context of this research is from the Television Related Architecture and Design to Enhance

Reliability (TRADER) project [2], which is carried out together with NXP Semiconductors and
several other academic and industrial partners. One of the key objectives of the project is to develop
techniques for analyzing recovery at the architecture design level for digital TVs (DTVs). Recovery
can be applied at different levels of granularity in the system. In case of global recovery, the system
is recovered as a whole when errors are detected. For example, in case of a deadlock, restarting
the whole system makes it completely unavailable until the system is in its normal operational
mode again. This lack of availability can be avoided by applying local recovery in which only the
erroneous parts of the system are recovered. To recover from a deadlock, for instance, only the
modules that are involved in the deadlock need to be restarted, while the other parts can remain
available. Local recovery has an additional benefit because it also decreases the mean time to recover
[3]. Hence, for better availability and faster recovery, it is necessary to reduce the granularity of
the parts in the system that can be recovered and as such realize local recovery. For achieving local
recovery, the corresponding system needs to be separated into a set of isolated recoverable units
(RUs) so that the propagation of errors can be prevented. However, it appears that this required
decomposition for recovery is usually not aligned with the decomposition based on functional
concerns.
To resolve this issue we can redesign the architecture and define the decomposition of the

modules solely based on the recovery concern. Usually, this is not the desired approach, because
the existing decomposition based on functional concerns supports other important quality concerns
such as adaptability, reuse and extendibility. Another alternative for introducing local recovery
is to preserve the existing modular structure but adapt the existing modules and introduce new
modules. This alternative, however, is not trivial and requires a substantial maintenance effort.
This is mainly because the interactions of a module with all the other parts of the system
need to be captured and appropriately handled during recovery. The recovery actions need to
be coordinated with the normal operation of the system at run-time, and new architectural
elements and complex interactions need to be introduced for communication control and recovery
coordination [3–5].
We propose the framework FLORA for supporting the decomposition and implementation of

software architecture for local recovery. Using the framework we can preserve the existing decom-
position while reducing the effort for introducing local recovery. The framework includes a set of
reusable abstractions for defining RUs and introducing error detection, diagnosis, communication
control between RUs. The framework can be extended for defining customized recovery properties.
We discuss our experiences in the application and evaluation of the framework by introducing local
recovery to an open-source media player called MPlayer [6].
The remainder of this paper is organized as follows. Section 2 outlines the requirements for local

recovery. In Section 3, we discuss the impact of local recovery on the architectural decomposition
using a case study. In Section 4, we introduce FLORA and its main elements. In Section 5, we
illustrate its application. In Section 6, we evaluate the improvement of system availability that is
achieved by decomposing the software architecture and introducing local recovery with FLORA.
We discuss the applicability of FLORA in Section 7. In Section 8, we discuss the limitations and
possible extensions of the approach. We provide a summary of previous related studies in Section 9
and the conclusions in Section 10.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 871

2. REQUIREMENTS FOR LOCAL RECOVERY

Recovery from errors is an essential step to achieve fault tolerance for reliability [7]. Introducing
local recovery to a system imposes certain requirements to its architecture. Based on the literature
and our experiences in the project we have identified the following three basic requirements:

• Isolation: An error occurring in one part of the system can easily propagate and lead to errors
in other parts. To prevent this error propagation and support local recovery we need to be able
to decompose the system into a set of units that can be isolated. We call each such unit an RU.
Isolation is usually supported by either the operating system (e.g. process isolation [8]) or a
middleware (e.g. encapsulation of Enterprise Java Bean objects) and the existing design (i.e.
crash-only design) [9].
• Communication control: Although an RU is unavailable during its recovery, the other RUs
might still need to access it in the mean time. Therefore, the communication between RUs
must be captured to deal with the unavailability of RUs, for example, by queuing and retrying
messages or by generating exceptions. In [3], for instance, the communication is mediated
by an application server. In general, various alternatives can be considered for realizing the
communication control like completely distributed, hierarchical or centralized approaches.
• System-recovery coordination: In case recovery actions need to take place while the system is
still operational, interference with the normal system functions can occur. For this reason, the
required recovery actions need to be coordinated. Similar to communication control, coordina-
tion can also be realized in different ways ranging from completely distributed to completely
centralized solutions.

3. DECOMPOSITION FOR LOCAL RECOVERY

In this section we will discuss the adaptation of an architecture for local recovery. We will illustrate
this using an example case, MPlayer [6]. The reason for selecting MPlayer is that it resembles DTV
software with respect to its code size, the adopted components and the audio and video streaming.
MPlayer is a media player, which supports many input formats, codecs and output drivers. It
embodies approximately 700K lines of code (LOC) and it is available under the GNU General
Public License. In our case study, we have used version v1.0rc1 of this software that is compiled on
Linux Platform (Ubuntu version 7.04). Figure 1 presents a simplified view of the MPlayer software
architecture with basic implementation units and direct dependencies among them. In the following,
we briefly explain the important modules, which are shown in this view.
Stream reads the input media by bytes/blocks and provides buffering, seek and skip functions.

Demuxer demultiplexers (separates) the input into audio and video channels. Mplayer connects the
other modules, and maintains the synchronization of audio and video. Libmpcodecs embodies the set
of available codecs. Libvo displays video frames. Libao controls the playing of audio. Gui provides
the graphical user interface of MPlayer. We have derived the main modules of MPlayer from its
package structure. For example, the source files that are related to the graphical user interface are
collected under the folder ‘./Gui’.
To achieve local recovery, we need to fulfill the requirements that were mentioned in Section 2.

First of all, we need to decompose the system into a set of RUs to support isolation. One possible

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

872 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Figure 1. A simplified view of the MPlayer software architecture.

decomposition for the MPlayer case is to partition the system modules into 3 RUs: (1) RU AUDIO,
which provides the functionality of Libao (2) RU GUI, which encapsulates the Gui functionality
and (3) RU MPCORE, which comprises the rest of the system. Figure 2 depicts the boundaries of
these RUs, which are overlayed on the MPlayer software architecture shown in Figure 1.
As we can see in Figure 2, introducing local recovery requires a different decomposition that

is not aligned with the decomposition of the system based on functional concerns. The original
architecture as displayed in Figure 1 separates the different modules based on functional concerns
and as such supports quality concerns such as adaptability, reuse and extensibility. Obviously, we
do not wish to break the modular structure and as such impede these quality concerns. We could
therefore decide to keep the original structure and adapt the modules and if necessary introduce
new modules to introduce local recovery. Unfortunately, this approach is also not viable because
it requires a substantial development and maintenance effort. We need to meet the second and
third requirements that are mentioned in Section 2. That is, the interactions of a module (in the
original architecture) with all the other parts of the system need to be captured and appropriately
handled during recovery. Accordingly, new architectural elements and complex interactions need
to be introduced for communication control and system-recovery coordination.
We have also experienced these problems in our industrial research project [2]. Traditionally the

recovery of TVs is based on restarting either the complete system or a large part of the system.
However, current trends show that the size and complexity of software in future releases of TVs
will increase dramatically and global recovery techniques will be less effective with respect to
the desired availability and the mean time to recover. The size of software in TVs is doubled in

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 873

Figure 2. MPlayer software architecture with the boundaries of the recoverable units.

every product generation. Currently, a TV includes more than 1 million LOC and it takes several
seconds to restart the system. Therefore, it is necessary to reduce the granularity of the parts in the
system that can be recovered and as such realize local recovery. However, realizing local recovery
without changing the modular structure of the original architecture is not trivial and requires lots
of maintenance effort.

4. FLORA: A FRAMEWORK FOR LOCAL RECOVERY

To reduce the development and maintenance effort for introducing local recovery while preserving
the existing decomposition we have developed the framework FLORA. The framework includes
a set of reusable abstractions for introducing error detection, diagnosis, communication control
between RUs. The framework can also be extended for defining customized recovery properties.
Figure 3 shows a conceptual view of FLORA as a UML class diagram. The framework comprises
three main components: RU, Connector and Recovery Manager.
Each RU uses the Connector to communicate with other RUs. The Connector mediates all

inter-RU communication and employs a set of communication policies (e.g. drop, queue, retry
messages). Note that a communication policy can be composed of a combination of other primitive
or composite policies. The Recovery Manager uses the Connector to apply these policies based
on the executed recovery strategy. The Recovery Manager also uses RUs to control them (e.g. kill,

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

874 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Figure 3. A conceptual view of FLORA.

restart) in accordance with the recovery strategy being executed. Recovery strategies are coupled
with error types, from which they can recover. They can also be composed of a combination of
other primitive or composite strategies and they can have multiple states.
FLORA comprises Inter-Process Communication (IPC) utilities, serialization/de-serialization

primitives, error detection and diagnosis mechanisms, an RUwrapper template, one central recovery
manager and one central communication manager (i.e. Connector) that communicate with one or
more instances of RU. The framework has been implemented in the C language on a Linux platform.
Currently, FLORA implements the detection of fatal and deadlock errors. Other error types can be
implemented in due time but this does not impact the framework itself. In the following section,
we explain how FLORA can be applied to adapt a given architecture for local recovery.

5. APPLICATION OF FLORA

Figure 4 depicts the overall process for applying FLORA, which consists of the steps Architecture
Design, Analysis and Realization. In the Architecture Design step, we expect that a module view
of the architecture is provided. The application of FLORA is agnostic to the architecture design
method that is used in this step. The module view of the described architecture is provided to the
Analysis step as an input. In the Analysis step, the system is analyzed to define the decomposition

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 875

Figure 4. The overall process for the application of FLORA.

of the architecture into a set of RUs. In the Realization step, the local recovery is realized with
FLORA according to this decomposition. In the following section, we discuss the Analysis and
Realization steps in detail.

5.1. Analysis

There are several ways in which a system can be partitioned into a set of RUs. Each alternative
may have both benefits and drawbacks. In the following subsections, we first discuss the design
space. Then we outline the basic criteria to be considered and the analysis necessary to select an
alternative systematically.

5.1.1. The design space

Figure 2 shows an alternative decomposition for decomposing the system into RUs and as such
introducing local recovery. Obviously, the partitioning of modules can be done in many different
ways. To reason about the number of decomposition alternatives, we first need to model the design
space that defines the set of decomposition alternatives. In fact, the partitioning of architecture into
a set of RUs can be generalized to the well-known set partitioning problem [10]. The total number
of ways to partition a set of n elements into arbitrary number of nonempty sets is counted by the nth

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

876 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Bell number, Bn [10]. In theory, Bn is the total number of partitions of a system with n modules. Bn
grows exponentially with n. For example, B1=1, B3=5, B4=15, B5=52, B7=877 (The MPlayer
case), B15=1382958545.
However, not all theoretically possible decompositions are practically possible because modules

of the architecture cannot be freely allocated to RUs due to domain constraints. Usually such
constraints are specified with mutex and require relations [11]. For example, we have specified the
following constraints for the MPlayer case.

• Demuxer requires Stream
• Demuxer requires Libmpcodecs

The constraints above simply specify that the Demuxer module must be in the same RU as
the Stream and Libmpcodecs modules. We have used a recursive lexicographic algorithm [12] to
generate all possible decomposition alternatives‡. There exist in total 877 decomposition alterna-
tives for the MPlayer case. After applying the above constraints, 52 alternatives were left§ . To
select one of the remaining decomposition alternatives, we will assess them for availability and
performance criteria, as discussed in the following subsections.

5.1.2. Selecting decomposition alternatives for availability

The main goal of local recovery is to make the system available to the user as much as possible.
The total availability of a system depends on the availability of its individual RUs. Equation (1)
shows the formula of availability.

Availability= MTTF

MTTF+MTTR
(1)

In Equation (1), MTTF and MTTR stand for the mean time to failure and the mean time to
recover, respectively. To maximize the availability of the overall system, MTTF of RUs must be
kept high and MTTR of RUs must be kept low. The MTTF and MTTR of RUs on their turn depend
on the MTTF and MTTR values of the contained modules. As such, the overall value of MTTF
and MTTR properties of the system depends on the decomposition alternative, that is, how we
separate and isolate the modules into a set of RUs. As a general heuristic, system modules with high
MTTR should be placed in different RUs than the ones with low MTTF [13]. Otherwise, frequent
errors introduced by a module with low MTTF can trigger the slow recovery of modules with high
MTTR. To improve the availability as much as possible, mutex relations can be used as constraints
for enforcing that the system modules with high MTTR are placed in different RUs than the ones
with low MTTF. For example, the audio and video processing is very critical for MPlayer and the
recovery of the corresponding modules is slow (the whole audio–video streaming graph must be
initialized). These modules must be isolated from the Gui module, which can be recovered fast and

‡In general, there exist combinatorial generation algorithms for the set partitioning problem [10].
§Note that these numbers are just examples. They illustrate the dramatic decrease in the design space that can be achieved
with just a few constraints.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 877

which is subject to various errors based on the user interaction. Accordingly, we have specified the
following constraints for the MPlayer case.

• Gui mutex Libao
• Gui mutex Libvo

The constraints above simply specify that the Gui module must be in a separate RU than the
Libao and Libvomodules. After applying the above constraints together with the domain constraints
as specified before, 27 alternatives were left.

5.1.3. Assessing performance overhead of decomposition alternatives

Decomposing the architecture into a set of RUs leads to a performance overhead due to the dependen-
cies between the separated modules. We distinguish between two important types of dependencies
that cause a performance overhead; (1) function dependency and (2) data dependency.

• Function dependency: By function dependency, we mean the amount of function calls between
modules across different RUs. For transparent recovery, these function calls must be redirected,
which leads to an additional performance overhead. For example, FLORA captures all function
calls across different RUs and redirects them through IPC calls. For this reason, we should
consider the amount of interactions between the chosen RU boundaries before selecting RUs.
• Data dependency: In the current literature on local recovery [3,4] it is assumed that the RUs
do not contain shared state variables and as such are stateless. This assumption can hold, for
example, for stateless components [3] and stateless device drivers in [4]. However, when we
decompose an existing system into RUs, there might be shared state variables leading to data
dependencies between RUs. Data dependencies complicate the recovery and increase the time
to recover since such data need to be kept synchronized after recovery. This makes the amount
of data dependency between RUs an important criteria for selecting RUs.

In the following subsections, we discuss our experiences and results with the analysis approaches
that we utilized for assessing the decomposition alternatives with respect to the performance criteria.

• Static analysis: To assess the performance overhead introduced by a particular decomposition
alternative, we need to analyze the function and data dependencies between the modules. For
this aim, we have first tried to utilize static analysis approaches. Static analysis approaches
inspect the source code of programs and perform the analysis without actually executing
these programs. The sophistication of the analysis performed by tools varies depending on the
granularity of the analysis (e.g. individual statements, individual source files) and the purpose
(e.g. spotting potential errors, verifying specified properties) [14]. We have used several static
source code analysis tools to derive both the function call graph and data dependency graph
of the analyzed system. Our aim was to utilize these graphs for deriving the function and
data dependencies among the modules of the system. However, static function call graph is
not sufficient for function dependency analysis. This is because, for calculating the actual
performance overhead introduced by a particular decomposition, we also need the frequency
of function calls and their execution times. Moreover, also static data flow analysis turned out
not to be practical and scalable. Even for the MPlayer code base with approximately 700K
lines of C code, we were unable to obtain a data flow information with the state-of-the-art
source code analysis tools [15,16]. The computation becomes even more expensive, and very

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

878 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

soon intractable, when we employ detailed data analysis such as pointer analysis [17]. As a
result, static analysis approaches appear to be inappropriate for our purpose.
• Dynamic analysis: Because of the problems we have faced with static analysis approaches, we
have adopted a dynamic analysis approach and we have utilized existing profiling tools [18,19]
for this purpose. Again, we have considered both function dependency and data dependency
analysis.
For the function dependency analysis, we have derived the function call graph and function

call profile of the system (i.e. frequency of performed function calls and the execution time
of functions) with the GNU gprof tool [18]. We have stored this information in a database for
querying the number of function calls between the selected RU boundaries. We have calculated
the function dependency overhead by taking the ratio of the number of function calls that pass
the boundaries of RUs to the total number of function calls in the system.
For the data dependency analysis, we have derived the memory access profile of the system

modules (i.e. which modules accesses which memory locations of what size) by utilizing the
Valgrind [19] tool. We have also stored this information in a database for querying the size of
the memory that is shared by the modules from different RUs.

Figure 5 shows the function dependency overhead and data dependency size for the 27 decom-
position alternatives that were within the previously specified constraints. In Figure 5 the third
decomposition alternative corresponds to the decomposition of the system into the three recoverable
units RU AUDIO, RU GUI and RUMPCORE as defined in Figure 2. This decomposition alternative
has function dependency overhead and data dependency size calculated as approximately 5% and
5KB, respectively.
As a result of the analysis step, we select a particular decomposition with a set of RUs. In this

case, we have selected the third decomposition alternative shown in Figure 2. The next step is to
realize local recovery for this decomposition by applying FLORA.

0

5

10

15

20

25

0 5 10 15 20 25

RU Decomposition Alternatives

F
u

n
ct

io
n

 D
ep

en
d

en
cy

 O
ve

rh
ea

d
 (

%
)

4

5

6

7

8

9

10

D
at

a
D

ep
en

d
en

cy
 S

iz
e

(K
B

)

Function Dependency Overhead (%) Data Dependency Size (KB)

Figure 5. Function dependencies and data dependency sizes for decomposition alternatives that
satisfy the decomposition constraints.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 879

Figure 6. RU Wrapper code for RU GUI.

5.2. Realization

Once the RUs have been defined, we can use FLORA to realize local recovery (See Figure 4). In
this realization step, each RU is wrapped using the RU wrapper template as shown in Figure 6. The
wrapper includes the necessary set of utilities for isolating and controlling an RU (lines 1–3). A set
of state variables can be declared to be checkpointed (line 5). If needed, cleanup specific to the RU
(e.g. allocated resources) can be specified (lines 8–10) as a preparation for recovery. Post-recovery
initialization (lines 12–18) by default includes: (1) maintaining the connection with the Connector
and the Recovery Manager (line 13), (2) obtaining the checkpointed state variables (line 15) and (3)
start processing incoming messages from other RUs (line 17). Additional RU-specific initialization
actions can also be specified here.
Each RU provides a set of interfaces, which are captured based on the specification in the wrapper

(lines 20–24). Each interface defines a set of functions that are marshaled [20] and transferred
through IPC. On reception of these calls, the corresponding functions are called and then the results
are returned (lines 26–29). In all other RUs where this function is declared, function calls are
redirected through IPC to the corresponding interface with C MACRO definitions. In principle we
could also use aspect-oriented programming techniques [21] for this, provided that an appropriate

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

880 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Figure 7. Function redirection through RU interfaces.

weaver for the C language is available. In Figure 7, a code section is shown from one of the
modules of RU MPCORE, where all calls to the function guiInit are redirected to the function
mpcore gui guiInit (line 1), which activates the corresponding interface (INTERFACE GUI) instead
of performing the function call (lines 4–6).
Figure 8 depicts the design of the MPlayer after local recovery is introduced using the framework.

Note that this is a separate architectural view [22] defined for local recovery in particular. The local
recovery view is based on the recovery style that we have introduced earlier in [5]. In Figure 8,
we can see the three RUs, RU MPCORE, RU GUI and RU AUDIO. In addition, the components
Connector and Recovery Manager have been introduced by the framework. Each RU can detect
deadlock errors¶ . Recovery Manager can detect fatal errors‖. All error notifications are sent to
Connector, which comprises the diagnosis facility. Diagnosis information is conveyed to Recovery
Manager, which kills a set of RUs and/or restarts a dead RU. Messages that are sent from RUs to
Connector are stored (i.e. queued) by RUs in case the destination RU is not available and they are
forwarded when the RU becomes operational again.

6. EVALUATION

The main goal of local recovery is to increase the system availability. In this section we discuss the
increase of availability as a result of applying FLORA. For this purpose, we have used FLORA to
introduce local recovery to MPlayer for 3 different decomposition alternatives: (1) global recovery,
where all the modules are places in a single RU ({ [Mplayer, Libmpcodecs, Libvo,Demuxer, Stream,
Gui, Libao] }) (2) local recovery with two RUs, where the moduleGui is isolated from the rest of the
modules ({ [Mplayer, Libmpcodecs, Libvo,Demuxer, Stream, Libao] [Gui] }) (3) local recovery with
three RUs, where the module Gui, Libao and the rest of the modules are isolated from each other
({ [Mplayer, Libmpcodecs, Libvo, Demuxer, Stream] [Libao] [Gui] }). The isolated modules were
selected to have observable functionality and to be more relevant with respect to user perception.
We could ‘see’ the restarting of Gui panel or ‘hear’ the lack of sound, while Libao is restarting.
To be able to measure the availability achieved with these three implementations, we have

modified each module so that they fail with a specified failure rate (assuming an exponential

¶An RU wrapper detects if an expected response to a message is not received within a configured timeout period.
‖The recovery manager is the parent process of all RUs and receives and handles a signal when a child process is dead.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 881

Figure 8. Application of FLORA for MPlayer.

distribution with mean MTTF). After a module is initialized, it creates a thread that is periodically
activated every second to inject errors. The operation of the thread is shown in Algorithm 1.
The error injection thread first records the initialization time (line 1). Then, each time it is

activated, the thread calculates the time elapsed since the initialization (line 3). The MTTF value
of the corresponding module and the elapsed time is used for calculating the probability of error
occurrence (line 4). In line 5, random() returns, from a uniform distribution, a sample value r ∈[0,1].
This value is compared with the calculated probability to decide whether or not to inject an error
(line 6). Possibly an error is injected by basically creating a fatal error with an illegal memory
operation. This error crashes the process on which the module is running (line 7).

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

882 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Algorithm 1 Periodically activated thread for error injection
1. time init←currentTime()
2. while TRUE do
3. time elapsed←currentTime()− time init
4. p←1−1/etime elapsed/MTTF

5. r←random()

6. if p�r then
7. injectError()
8. break
9. end if

10. end while

Table I. Measured system availability for different decomposition alternatives.

Availability
(MTTFLibao=60s,

Decomposition Availability MTTFGui=30s,
alternative (all MTTF=1800s) all other MTTF=1800s)
All modules in 1 RU 97.57 83.59
Gui, the rest 97.58 93.25
Gui, Libao, the rest 97.75 97.75

The Recovery Manager component of FLORA logs the initialization and failure times of RUs to
a file during the execution of the system. For each of the implemented alternatives, we have let the
system run for 5 h. Then, we have processed the log files to calculate the time Tavail when the RU
that contains the core system module, Mplayer, has been down. The whole system fails if and only
if this RU fails. Hence, Tavail corresponds, by definition, to the system availability as a whole. We
have calculated the steady-state availability of the system as the value Tavail/5.
The results of the measured system availability are shown in Table I. The first column lists the

different decomposition alternatives. The second column shows the measured availability for the
corresponding decomposition, where the MTTF value is specified as 1800 s for all the modules.
The third column shows the availability, where the MTTF values for the modules Libao and Gui
are specified as 60 and 30 s, respectively.
In Table I, we see that the more we decompose the architecture with FLORA, the more the

availability of the system increases. The difference is even more significant when we decrease the
MTTF values for the isolated modules. This is because, the isolation of relatively more unreliable
modules of the RU increases the reliability of that RU significantly. A more reliable RU fails less
often, which in turn increases the system availability. The availability measures at the last row of
Table I are the same because the RU that determines the system availability contains the same set
of modules (Libmpcodecs, Demuxer, Mplayer, Libvo, Stream) with the same MTTF values.
As such, the application of FLORA for introducing local recovery increases the availability of a

system that comprises erroneous modules.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 883

Table II. LOC for the selected RUs (as shown in Figure 2), LOC for the
corresponding wrappers and their ratio.

LOCRU LOCRU wrapper Ratio (%)

RU MPCORE 214K 463 0.22
RU GUI 20K 345 1.72
RU AUDIO 8K 209 2.61
TOTAL 242K 1017 0.42

7. APPLICABILITY OF FLORA

If all the function calls that pass the boundaries of RUs are defined, FLORA guarantees the correct
execution and recovery of these RUs. However, the specification of the RU boundaries with the RU
wrapper template requires an additional effort. Themain effort is spent due to the definition of the RU
wrappers. For the decomposition shown in Figure 2, we have measured this effort based on the LOC
written for RU wrappers and the actual size of the corresponding RUs∗∗. Table II shows the LOC
for each RU (LOCRU), LOC of its wrapper (LOCRU wrapper) and their ratio ((LOCRU wrapper/

LOCRU)×100).
As we can see from Table II, we had to write approximately 1K LOC to apply FLORA for the

presented case study. The LOC written for wrappers is negligible compared with the corresponding
system parts that are wrapped. The size of the wrapper becomes even less significant for bigger
system parts. In fact, the wrapper size is independent of the size and internal complexity of the system
part that is wrapped. This is because the wrapper captures only the interaction of an RU with the
rest of the system.
To be able to estimate the LOC to be written for wrappers, we have used the following equation:

LOCtotal=30×|RU|+15× ∑

r∈RU
calls(r→/r) (2)

Equation (2) estimates that the LOC needs to be written for wrappers based on the following
assumptions. There should be a wrapper for each RU with some default settings (Figure 6). There-
fore, the equation includes a fixed amount of LOC (30) times the number of RUs (|RU|). In addition,
all function calls between RUs must be defined in the corresponding wrappers. For each such
function call we add a fixed amount of LOC (15) taking into account the code for redirection of
the function, capturing and processing its arguments and return values. To calculate Equation (2),
we used the function dependency analysis for calculating the number of calls between the selected
RU boundaries. We have generated all the set of possible partitions for varying number of RUs.
We have calculated Equation (2) for each possible partition and we have determined the minimum
and maximum LOC estimations with respect to the number of RUs. The results can be seen in
Figure 9.
In Figure 9, we can see the range of LOC estimations with respect to the number of RUs. When

the number of RUs is equal to 1 or 7 (i.e. equal to the number of modules), there exists logically

∗∗We have excluded the source code for the various supported codecs, which are encapsulated mostly in Libmpcodecs.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

884 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

1017

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7

Number of RUs

L
in

es
 o

f
C

o
d

e

Figure 9. Estimated LOC to be written for wrappers with respect to the number of RUs.

only one possible partition. Therefore, the minimum and the maximum values are equal for these
cases. Figure 9 also marks the LOC written in the actual implemented case with 3 RUs as presented
in Table II. FLORA itself includes source code of size 1.5K LOC, which was reused as is. Thus,
we can provide an approximate prediction of the effort for utilizing the framework before the actual
implementation.
Depending on how homogeneous the coupling between system modules is, this analysis can

point out exceptional decompositions. For instance, in the analysis of the MPlayer case, we can
see that several decompositions with 6 RUs require less overhead compared with the maximum
overhead caused by a decomposition with 2 RUs. This means that there are certain modules
that are exceptionally highly coupled (e.g. Libvo and Libmpcodecs) compared with the other
modules.

8. DISCUSSION

8.1. Specifying MTTF and MTTR values

In our case study, we havemeasured theMTTR values from the actual implementation by calculating
the mean time it takes to restart a process and the corresponding modules over 100 runs. Initially,
we have used the same MTTF value for all the modules. In the second step of the evaluation,
we have decreased the MTTF values for the modules that are isolated in different RUs to amplify
the effect of local recovery on system availability and to better observe the difference with global
recovery.
In principle, there are three strategies that can be used for determining the MTTF values:

• Using fixed values: It can be assumed that all modules have the same MTTF. Accordingly,
MTTF values can be fixed to a certain value just to investigate the analysis results.
• What-if analysis: A range of values can be considered, where the values are varied and their
effect is observed.
• Estimation: The MTTF values can be estimated based on historical data.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 885

We do not commit to any of these strategies in our approach. The estimation of actual failure
rates is usually the most accurate way to define the MTTF values. However, the historical data (e.g.
a problem database) can be missing or not accessible. In that case, either fixed values and/or a
what-if analysis can be used.

8.2. Specifying requires/mutex relations

In our case study, we have defined requires and mutex relations manually. In fact, requires relations
can be set automatically based on the function and data dependencies between the modules, i.e.
if the dependencies between two modules exceed a threshold, they are kept together by defining
a requires relation. The specification of mutex relations depends more on the application domain.
In principle, the more mutex relations are defined, the better system availability can be achieved.
However, some mutex relations can be specified explicitly, for instance, to isolate a third-party
software or to protect a critical part of the system from the rest.

8.3. Refactoring the architecture

Depending on the required effort, it is possible to consider refactoring the architecture instead of
trying to define RUs with minimal dependencies. The effort needed to refactor the architecture
depends very much on the nature and semantics of the architecture. Restructuring for decoupling
shared variables can be considered in case the architecture is already being refactored to improve
certain qualities like reusability, maintainability or evolvability. In fact, this is a viable approach
if the architects/developers have very good insight in the system. Otherwise, it would be better to
treat modules as black boxes and wrap them with FLORA.

8.4. State preservation

State variables that are critical and need to be saved can be declared in RU wrappers. Declared state
variables are check-pointed and automatically restored after recovery by FLORA. For instance, in
the wrapper of RU GUI (see Figure 6), the memory location of variable guiInfStruct is declared
(line 5). This variable is a C structure (struct [23]), which stores various information like the name
of the media file, volume level and the current position in the stream. These values are restored after
the Gui module is restarted. However, particular states that are critical for modules are application
dependent. Such states must be known and explicitly declared in the corresponding wrappers by
developers.

8.5. Partial failures

We have calculated the availability of the system according to the proportion of time that the
core system module, Mplayer has been down. There are also partial failures, where RU GUI and
RU AUDIO are restarted. In these cases, GUI panel vanishes and audio stops playing until the
corresponding RUs are recovered. These are also failures from the user’s perspective but we have
neglected these failures to have a common basis for comparison with global recovery. Depending
on the application, functional importance of the failed module and the recovery time, the user
might get annoyed differently from partial failures. In addition, different users might have different

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

886 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

perceptions. Hence, to take into account different types of partial failures, experiments are needed
to be conducted to determine their actual effect on users [24]. In any case, the failure of the whole
system would be the most annoying of all.

8.6. Frequency of data access

For data dependency analysis, we have evaluated the size of shared data among modules. The
shared data size is important as such data should be synchronized back after each recovery. The
number of data access, on the other hand, is important due to redirection of the access through
IPC. This is mostly covered by he function dependency analysis, where data are accessed through
function calls. The correlation between function dependency overhead and data dependency size
(Figure 5) shows this. In fact, the integration with FLORA requires that all data access must be
performed through explicit function calls. For each direct data access without a function call, if
there are any, the corresponding parts of the system are refactored to fulfill this requirement. After
this refactoring, the function dependency analysis can be repeated to get more accurate results with
respect to the expected performance overhead.

8.7. Limitations of dynamic analysis

An important advantage of dynamic analysis approaches is their ability to capture detailed inter-
actions at run-time (e.g. pointer operations, late binding). This leads to more accurate information
about the analyzed program compared with what might be obtained with static analysis. On the
other hand, dynamic analysis also has limitations and drawbacks.
First, instrumentation or probing has an effect on the execution of the target program. As a

potential risk, this effect can influence the program behavior and analysis results. We have not
addressed this issue since we are performing comparative analysis and all the functions are affected
by instrumentation. If there is a feeling that there is a big variance in how different functions are
affected, modules can be analyzed separately and the difference introduced by the instrumentation
can be measured.
Second, collected data for analysis depends on the usage scenarios and program input. In our case

study, we have performed our measurements for the video-playing scenario, which is a common
usage scenario for a media player application. In principle, it is possible to take different types
of usage scenarios into account. The results obtained from several system runs are statistically
combined by the tools [18]. If there is a high variance among the execution of scenarios, where
statistically combining the results would be wrong, multiple scenarios can be repeated in a period of
time and the overhead can be calculated based on the profile information collected during this time
period. However, this would require selection and prioritization of a representative set of scenarios
with respect to their importance from the user point of view (user profile) [24]. The analysis process
will remain the same although the input profile data can be different.

9. RELATED WORK

We have implemented FLORA basically using macro-definitions in the C language. We could
also implement FLORA using aspect-oriented programming techniques [21] in which usually a

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 887

distinction is made between base code on which additional so-called crosscutting concerns are
woven. In particular the function redirection calls to IPC could be automatically woven using
aspects. We consider this as our future work.
A software architecture is usually represented using more than one architectural view [22]. An

architectural view is a representation of a set of system elements and relations associated with
them to support a particular concern. The fundamental reason for modeling different views of the
architecture is that current software systems are too complex to represent all the concerns in one
model. Having multiple views helps to separate the concerns and as such support the modeling,
understanding, communication and analysis of the software architecture for different stakeholders.
For utilizing FLORA actually we had to define a separate view that makes the recovery concern
explicit. We have defined a recovery style in [5] to define local recovery views.
In [25], a survey of approaches for application-level fault-tolerance is presented. According to the

categorization of this survey, FLORA falls into the category of single-version software fault-
tolerance libraries (SV libraries). SV libraries are said to be limited in terms of separation of
concerns, syntactical adequacy and adaptability [25]. On the other hand, they provide a good ratio of
cost over improvement of the dependability, where the designer can reuse existing, long-tested and
sophisticated pieces of software [25]. An example SV library is libft [26], which collects reusable
software components for recovery. However, like other SV libraries [25] it does not support local
recovery.
Candea et al. introduced themicroreboot [3] approach, where local recovery is applied to increase

the availability of Java-based Internet systems. Microreboot aims at recovering from errors by
restarting a minimal subset of components of the system. Progressively larger subsets of components
are restarted as long as the recovery is not successful. To employ microreboot, a system has to meet
a set of architectural requirements (i.e. crash-only design [9]), where components are isolated from
each other and their state information is kept in state repositories. Unfortunately, designs of many
existing systems do not have these properties. Such systems should be either redeveloped from
scratch or they should be modified to support the necessary requirements. It is usually too costly to
redesign and implement the whole system from the start. On the other hand, maintenance costs for
modifying a system can be also very high depending on its design. Moreover, dedicated solutions
for a particular application cannot be reused for other systems. FLORA provides the necessary set
of abstractions and mechanisms that can be reused to introduce local recovery without a need for
redesigning the whole system.
In [4], a micro-kernel architecture is introduced, where device drivers are executed on sepa-

rate processes at user space to increase the failure resilience of an operating system. In case of a
driver failure, the corresponding process can be restarted without affecting the kernel. The design
of the operating system must support isolation between the core operating system and its exten-
sions to enable such a recovery [4]. Mach kernel [27] also provides a micro-kernel architecture
and flexible multiprocessing support, which can be exploited for failure resilience and isolation.
Singularity [8] proposes multiprocessing support in particular to improve dependability and safety
by introducing the concept of sealed process architecture. This architecture limits the scopes of
processes and their capabilities with respect to memory alteration for better isolation. To be able to
exploit the multiprocessing support of the operating system for isolation, the application software
must be partitioned to be run on multiple processes. FLORA supports this process and reduces
the re-engineering effort, while making use of the multiprocessing support of the Linux operating
system.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

888 H. SÖZER, B. TEKINERDOĞAN AND M. AKŞIT

Erlang/OTP [28] is used by Ericsson to achieve highly available network switches by enabling
local recovery. Their framework is used for restructuring Erlang programs using Erlang/OTPDesign
Principles. FLORA has the same goal as Erlang/OTP but it is used for restructuring C programs.
Aurora Management Workbench (AMW) [29] uses model-centric development to integrate a

software system with an high availability middleware. AMW generates code based on the desired
fault-tolerance behavior that is specified with a domain specific language. By this way, it aims at
reducing the amount of hand-written code and as such reducing the developer effort to integrate
fault-tolerance mechanisms provided by the middleware with the system being developed. Devel-
opers should manually write code only for component-specific initialization, data maintenance and
invocations of check-pointing APIs similar to those specified within RU wrapper templates. AMW
allows software components (or servers) to be assigned to separate RUs (capsule in AMW termi-
nology) and be restarted independently. However, AMW currently does not support the restructuring
and partitioning of legacy software to introduce local recovery.

10. CONCLUSION

In this paper, we have discussed our experiences in introducing local recovery to a system. Local
recovery is an effective approach for increasing availability. However, it appears that the required
decomposition for local recovery is usually not aligned with the decomposition based on func-
tional concerns. Moreover, the realization of local recovery requires substantial development and
maintenance effort. We have presented the framework FLORA that provides reusable abstractions
to preserve the existing structure and support the realization of local recovery. We have illustrated
FLORA to define three recoverable units (RUs) in the open-source media player called MPlayer.
These three RUs were overlaid on the existing structure without adapting the individual modules. In
addition, the realization effort for applying the framework and introducing local recovery appears
to be relatively negligible. We have also seen that introducing local recovery by decomposing the
software architecture increases the availability of the system. The increase of availability is more
significant when there is more difference between the reliability of the system modules. An impor-
tant part of the approach is the dependency analysis for identifying RUs based on the performance
criteria. We have seen that the dynamic analysis approaches are more practical and scalable than
static analysis approaches with respect to function and data dependency analysis applied to large
code bases. The application of the framework, as such, provides a reusable and practical approach
to introduce local recovery to software architectures.

ACKNOWLEDGEMENTS

We acknowledge the feedback from the discussions with our TRADER project partners from NXP Research,
NXP Semiconductors, Philips TASS, Philips Consumer Electronics, Design Technology Institute, Embedded
Systems Institute, IMEC, Leiden University and Delft University of Technology.

This work has been carried out as a part of the TRADER project under the responsibility of the Embedded
Systems Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs under
the BSIK program.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

DECOMPOSING SOFTWARE ARCHITECTURE 889

REFERENCES

1. Parnas DL. On the criteria to be used in decomposing systems into modules. Communications of the ACM 1972;
15(12):1053–1058.

2. Trader project. ESI, 2009. http://www.esi.nl.
3. Candea G, Kawamoto S, Fujiki Y, Friedman G, Fox A. Microreboot: A technique for cheap recovery. OSDI, USENIX,

2004; 31–44.
4. Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS. Failure resilience for device drivers. DSN’07. IEEE Computer

Society: Silver Spring, MD, 2007; 41–50.
5. Sozer H, Tekinerdogan B. Introducing recovery style for modeling and analyzing system recovery. WICSA’08. IEEE

Computer Society: Silver Spring, MD, 2008; 167–176.
6. MPlayer official website. 2008. http://www.mplayerhq.hu/.
7. Avizienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy of dependable and secure computing.

IEEE Transactions on Dependable Secure Computing 2004; 1(1):11–33.
8. Hunt GC, Aiken M, Fähndrich M, Hawblitzel C, Hodson O, Larus J, Levi S, Steensgaard B, Tarditi D, Wobber T.

Sealing OS processes to improve dependability and safety. SIGOPS 2007; 41(3):341–354.
9. Candea G, Fox A. Crash-only software. Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS),

Hawaii, U.S.A., 2003; 67–72.
10. Harris JM, Hirst JL, Mossinghoff MJ. Combinatorics and Graph Theory. Springer: Berlin, 2000.
11. Czarnecki K, Eisenecker U. Generative Programming: Methods, Tools, and Applications. Addison-Wesley Professional:

2000.
12. Ruskey F. Simple combinatorial gray codes constructed by reversing sublists. Proceedings of the 4th International

Symposium on Algorithms and Computation (ISAAC 1993) (Lecture Notes in Computer Science, vol. 762). Springer:
Berlin, 1993; 201–208.

13. Candea G, Cutler J, Fox A, Doshi R, Garg P, Gowda R. Reducing recovery time in a small recursively restartable
system. Proceedings of the International Conference on Dependable Systems and Networks (DSN), Washington, DC,
U.S.A., 2002; 605–614.

14. Binkley D. Source code analysis: A road map. Future of Software Engineering (FOSE’07), Washington, DC, U.S.A.,
2007; 104–119.

15. Necula GC, McPeak S, Rahul SP, Weimer W. CIL: Intermediate language and tools for analysis and transformation of
c programs. Proceedings of the Conference on Compiler Construction, Grenoble, France, 2002; 213–228.

16. Teitelbaum T. Codesurfer. SIGSOFT Software Engineering Notes 2000; 25(1):99.
17. Hind M. Pointer analysis—Haven’t we solved this problem yet? Program Analysis for Software Tools and Engineering

(PASTE’01). ACM: New York, 2001; 54–61.
18. Fenlason J, Stallman R. GNU gprof: The GNU Profiler. Free Software Foundation, 2009. http://www.gnu.org/.
19. Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instrumentation. SIGPLAN Notices

2007; 42(6):89–100.
20. Dollimore J, Kindberg T, Coulouris G. Distributed Systems: Concepts and Design. Addison-Wesley: Reading, MA, 2005.
21. Elrad T, Fillman R, Bader A. Aspect-oriented programming. Communications of the ACM 2001; 44(10):29–32.
22. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J. Documenting Software Architectures:

Views and Beyond. Addison-Wesley: Reading, MA, 2002.
23. Kernighan B, Ritchie D. The C Programming Language. Prentice-Hall: Englewood Cliffs, NJ, 1988.
24. de Visser I. Analyzing user perceived failure severity in consumer electronics products. PhD Thesis, Technische Universiteit

Eindhoven, Eindhoven, The Netherlands, 2008.
25. De Florio V, Blondia C. A survey of linguistic structures for application-level fault tolerance. ACM Computing Surveys

2008; 40(2):1–37.
26. Huang Y, Kintala C. Software fault tolerance in the application layer. Software Fault Tolerance, Lyu MR (ed.), Chapter 10.

Wiley: New York, 1995; 231–248.
27. Rashid R, Julin D, Orr D, Sanzi R, Baron R, Forin A, Colub D, Jones M. Mach: A system software kernel. Proceedings

of the 34th Computer Society International Conference (COMPCON), San Francisco, CA, U.S.A., 1989; 176–178.
28. Erlang/OTP design principles, 2009. http://www.erlang.org/doc/.
29. Buskens R, Gonzalez OJ. Model-centric development of highly available software systems. Architecting Dependable

Systems IV (Lecture Notes in Computer Science), de Lemos R, Gacek C, Romanovsky A (eds.). Springer: Berlin, 2007;
409–433.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 39:869–889
DOI: 10.1002/spe

