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DEPT. OF MATH. AND STATS. DEPARTMENT OF MATHEMATICS
TEXAS TECH UNIVERSITY BOĞAZICI ÜNIVERSITESI
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SUMMARY :SUMMARY :SUMMARY :SUMMARY :SUMMARY : Let ρ : G�GL(n, F) be a faithful representation of a finite
group G. In this paper we study the image of the associated Noether
map

�G
G : F[V (G)]G �� F[V ]G.

It turns out that the image of the Noether map characterizes the ring of
invariants in the sense that its integral closure Im(� G

G ) = F[V ]G . This
is true without any restrictions on the group, representation, or ground
field. Furthermore, we show that the Noether map is surjective, i.e., its
image integrally closed, if V = Fn is a projective FG-module. Moreover,
we show that the converse of this statement is true if G is a p-group and
F has characteristic p, or if ρ is a permutation representation. We apply
these results and obtain upper bounds on the Noether number and the
Cohen-Macaulay defect of F[V ]G . We illustrate our results with several
examples.



Let ρ : G�GL(n, F) be a faithful representation of a finite group G over
a field F. The representation ρ induces naturally an action of G on the
vector space V = Fn of dimension n and hence on the ring of polynomial
functions F[V ] = F[x1 , . . . , xn]. Our interest is focused on the subring of
invariants

F[V ]G = { f ∈ F[V ]G∋gf = f ∀ g ∈ G} ,
which is a graded connected Noetherian commutative algebra.

In the first section of this paper we introduce the Noether map and show
that its image characterizes the ring of invariants. In Section 2 we con-
sider projective FG-modules V , and show that the Noether map is sur-
jective in this case. The next section deals with the converse: In Section
3 we show that the Noether map is surjective if and only if V is FG-
projective in the cases of p-groups and of permutation representations.
In Section 4 we derive some results about degree bounds and the Cohen-
Macaulay defect of F[V ]G . Furthermore we present some examples.

§1. The Noether Map

Let ρ : G � GL(n, F) be a representation of a group G of order d. Let
F[V ] be the symmetric algebra on V ∗ . Denote by FG the group algebra.
Let

V (G) = HomF(FG, V ) ≅ FG ⊗ V
be the coinduced module coindG

1 (V ). The group G acts on V (G) by left
multiplication on the first component. We obtain a G-equivariant sur-
jection

(★ ) V (G) �� V, (g, v) �� gv.

Let us choose a basis e1 , . . . , en for V . Let x1 , . . . , xn be the standard
dual basis for V ∗ , and set G = { g1 , . . . , gd} . Then V (G) can be written
as

V (G) = spanF{ ei j  i = 1 , . . . , n, j = 1 , . . . , d} ,
and the map (★ ) translates into

V (G) �� V, eij �� gj ei.

Similarly, we have

V (G)∗ = spanF{ xij  i = 1 , . . . , n, j = 1 , . . . , d}

with
V (G)∗ �� V ∗ , xi j �� gj xi.

We obtain a surjective G-equivariant map between the rings of polyno-
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mial functions
�G : F[V (G)] �� F[V ].

The group G acts on F[V (G)] by permuting the basis elements xij. By
restriction to the induced ring of invariants, we obtain the classical
Noether map, cf. Section 4.2 in [11],

�G
G : F[V (G)]G �� F[V ]G .

We note that V (G) is the n-fold regular representation of G. Thus
F[V (G)]G are the n-fold vector invariants of the regular representation
of G.

In the classical nonmodular case, where p � d, the map �G
G is surjective,

see Proposition 4.2.2 in [11]. This does not remain true in the modular
case as we illustrate in the next example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let ρ : Z/2�GL(3, F2) be the 3-dimensional represen-
tation of Z/2 over the field with two elements afforded by the matrix

ρ(g) =

��0 1 0
1 0 0
0 0 1

�� .

Then
F[x1, x2, x3]Z/2 = F[x1 + x2, x1x2, x3]

and

F[x11, x12, x21, x22, x31, x32]Z/2

= F[xi1 + xi2, xi1xi2, xi1xi+1,2 + xi2xi+1,1, x11x21x31 + x12x22x32],

where i ∈ Z/3, cf. Example 2 in Section 2.3, [11] or Example 1 in Section
3.2, loc.cit. We obtain

Im(�Z/2
Z/2 ) = F[x1 + x2, x1x2, x2

3 , (x1 + x2)x3].

Thus the Noether map is no longer surjective, because the invariant x 3
is not in its image. However, note that the integral closure of the image
of the Noether map is the ring of invariants F[V ]G . This is always true
as we see in this section.

Recall the transfer map

TrG : F[V ] �� F[V ]G ; f ��
�
g∈G

gf ,

see, e.g., Section 2.2. in [11]. By construction the transfer is an F[V ]G-
module homomorphism. We denote by

F[Im(TrG)] � F[V ]G

2
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the subalgeba generated by the image of the transfer.

We observe that any element

f1

f2
∈ F(V )

can be written as the quotient of some polynomial by an invariant poly-
nomial in the following way

f1

f2
=

f1
N(f2)

f2

N(f2)
,

where N(f ) =
�

g∈G
gf denotes the Norm of f . This allows us to extend

the transfer to a map of F(V )G-modules between the respective fields of
fractions

TrG : F(V ) �� F(V )G ;
f1

f2
��

�
g∈G

gf1

f2
,

where we assume that f2 ∈ F[V ]G .

PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1PROPOSITION 1.1: We have that

F(TrG(F(V ))) = IFIF (F[Im(TrG)]) = F(V )G,

where IFIF ( ) denotes the field of fractions functor.

PROOFPROOFPROOFPROOFPROOF: Let TrG (f1)
TrG (f2)

∈ IFIF (F[Im(TrG)]). Then

TrG(f1)

TrG(f2)
= TrG

�
f1

TrG(f2)

�
∈ TrG(F(V )).

To prove the reverse inclusion take an element

TrG(
f1

f2
) ∈ TrG(F(V )),

where f2 ∈ F[V ]G . Choose a polynomial f ∈ F[V ] such that TrG(f ) 	= 0.
(Recall that the transfer map is never zero by Propositon 2.2.4 in [11].)
Then we have

TrG(
f1

f2
) =

TrG(f1)
f2

=
TrG(f1)TrG(f )

f2TrG(f )
=

TrG(f1)TrG(f )

TrG(f f2)
∈ IFIF (F[Im(TrG)]).

We come to the second equality. Since F[Im(TrG)]� F[V ]G we have that

IFIF (F[Im(TrG)]) � F(V )G.

To prove the reverse inclusion, let f1
f2
∈ F(V )G where without loss of gen-

3
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erality f1, f2 ∈ F[V ]G . Let TrG(f ) 	= 0 for some suitable f ∈ F[V ]. Thus

f1

f2
=

TrG(f )f1
TrG(f )f2

=
TrG(f f1)

TrG(f f2)
∈ IFIF (F[Im(TrG)])

as desired. 


PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2PROPOSITION 1.2: The integral closure of the image of the Noether
map is the ring of invariants

Im(�G
G ) = F[V ]G.

PROOFPROOFPROOFPROOFPROOF: By Proposition 1.1 and Lemma 4.2.1 in [11] we have the
following commutative diagram:

F[Im(TrG)] � Im(�G
G ) � F[V ]G � F[V ]

� � � �
IFIF (F[Im(TrG)]) = IFIF (Im(�G

G )) = F(V )G � F(V ).
Let x1 , . . . , xn ∈ V ∗ be a basis. Then the coefficients of the polynomials

Fi(X ) =
	
g∈G

(X − gxi),

are the orbit chern classes of xi counted with multiplicities

�1(xi) = TrG(xi), · · · ,�d(xi) = N(xi).

Thus they are in the image of �G
G . Denote by A the F-algebra gener-

ated by these coefficients. By construction A is finitely generated, thus
noetherian. Furthermore F[V ] is finitely generated as an A-module,
thus as an Im(�G

G )-module since A � Im(�G
G ). Therefore the extension

Im(�G
G ) � F[V ]

is finite, and

Im(�G
G ) = F[V ]G

as desired. 


We close this section with an immediate corollary of the preceding
result:

COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3COROLLARY 1.3: The Krull dimension of the image of the Noether
map coincides with the Krull dimension of the ring of invariants, which
in turn is equal to n = dimF V . 


ADDENDUM:ADDENDUM:ADDENDUM:ADDENDUM:ADDENDUM: Define a map E : F[V ] �� F[V (G)]G, xi ��
d�

j=1
xij . Then we obtain a

4
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commutative triangle as follows:

F[V (G)]G
�G

G�� F[V ]G���
E

� TrG

F[V ]

If p �∣d, then the preceding diagram proves that the Noether map is surjective, since the
transfer is surjective, see Lemma 4.2.1 in [11]. We want to add the following observation:

PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4PROPOSITION 1.4: The algebra generated by the image of the transfer map is equal
to the image of the Noether map if and only if V is a nonmodular FG-module.

PROOFPROOFPROOFPROOFPROOF: By Lemma 4.2.1 in [11] the image of the transfer is always contained in the
image of the Noether map. Thus if p �∣ G , then the transfer is surjective, and hence
the Noether map. If p G , then the transfer is no longer surjective. Indeed, the height
of the image of the transfer is at most n − 1, see Theorem 6.4.7 in [11]. Thus the Krull
dimension of F[Im(TrG)] is strictly less than n. On the other hand the Krull dimension
of the image of the Noether map is n by Proposition 1.2. Thus they cannot be equal.
�

§2. Projective Modules

In this section we want to study the question when the Noether map is
surjective.

We note that the FG module V is projective if and only if its dual vector
space V ∗ is injective which in turn is equivalent to projective because
G is a finite group. We will make frequently use of this fact in what
follows.

PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1PROPOSITION 2.1: If V is a projective FG-module, then the Noether
map is surjective.

PROOFPROOFPROOFPROOFPROOF: By construction we have a short exact sequence of FG-
modules as follows

0 �� W ∗ �� V (G)∗ �� V ∗ �� 0.

Since V ∗ is projective, this sequence splits and

V (G)∗
�

≅ V ∗ ⊕ W ∗ pr�� V ∗

as FG-modules. Taking invariants we obtain a commutative diagram

F[V (G)]G
�∗

�� F[V ⊕ W]G

��G
G



�pr∗

F[V ]G

Thus �G
G is surjective because � ∗ as well as pr∗ are. 


5
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REMARKREMARKREMARKREMARKREMARK: Since nonmodular FG-modules are always projective we
recover the classical result that � G

G is surjective for every nonmodular
representation of G.

COROLLARY 2.2COROLLARY 2.2COROLLARY 2.2COROLLARY 2.2COROLLARY 2.2: Let ρ : G � GL(p, F) be a permutation represen-
tation of the finite group G over a field F of characteristic p. Then � G

G
is surjective.

PROOFPROOFPROOFPROOFPROOF: Let � : Σp �GL(p, F) be the defining representation of the
symmetric group in p letters. Since ρ is a permutation representation
we have that

ρ(G) ≤ �(Σp) ≤ GL(p, F).

Since V = Fp is a projective Σp-module it is projective as a FG-module.
Thus by Proposition 2.1 the Noether map �G

G is surjective. 


EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: If � : Σn � GL(n, F) is the defining representation of
the symmetric group in n letter over a field of charactersitic p, where p <
n, then neither V is projective as a module over Σn nor is�Σn

Σn
surjective.

The latter is true because in degree one 1 we have

F[V (Σn)]Σn
(1) = spanF{

n!�
j=1

xij∋i = 1 , . . . , n}

and thus

�Σn
Σn

(
n!�

j=1

xij) = (n − 1)!
n�

i=1

xi ≡ 0 mod p.

Therefore the first elementary symmetric function e1 = x1 + · · · + xn ∈
F[V ]Σn is not hit. Therefore, V is not FΣn-projective. This is not a new
result: For the defining representation� : Σn � GL(n, F), V = Fn is a
projective FΣn-module if and only if p ≥ n. This follows from Corollary
7 on Page 33 of [1]. See Theorem 3.5 in Section 3 for a generalization of
this.

EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2EXAMPLE 2: Let � : An � GL(n, F) be the defining representation
of the alternating group in n letters over a field of characteristic p. By
Corollary 2.2 the Noether map �An

An
is surjective if n ≤ p. We want to

check what happens if n > p.

We start by considering the Noether map

�An
An

: F[V (An)]An �� F[V ]An

1 For a graded object A we denote the homogeneous degree i-part by A(i).

6
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in degree one. We have

F[V (An)]An  (1) = spanF{
 An �
j=1

xij∋i = 1 , . . . , n}

and

F[V ]An∋(1) = spanF{ e1 = x1 + · · · + xn} .

Thus we have

�An
An

(
 An �
j=1

xij) =  StabAn (xi) e1 =  An−1 e1 =
(n − 1)!

2
e1.

Thus the elementary symmetric function e1 is in the image of the
Noether map if and only if

(n − 1)!
2

∈ F×.

This in turn happens exactly when
(1) p is odd and p ≥ n,
(2) p = 2 and n ≤ 4.

We know already that the Noether map is surjective in the first case. If
p is even and n ≤ 3 we are in the nonmodular case, so the Noether map
is again surjective. Thus the only case that we have to check by hand is
the defining representation of A4 over a field of characteristic 2.

We note that the 2-Sylow subgroup of A4 is the Klein-Four-Group Z/2 ×
Z/2. When we restrict �∋Z/2×Z/2 we obtain the regular representation
of Z/2 × Z/2. Thus V is F(Z/2 × Z/2)-projective. Therefore, V is FA4-
projective. Hence the Noether map is surjective. Indeed, a short calcu-
lation shows that

�A4
A4

(o(x11)) = 3e1 = e1,

�A4
A4

(o(x11x12)) = e2,

�A4
A4

(o(x11x21x31)) = 3e3 = e3,

�A4
A4

(o(x11x12x13x14)) = 3e4 = e4,

�A4
A4

(o(x3
11x2

21x31)) = o(x3
1 x2

2 x3),

where o( ) denotes the orbit sum of , and g1 = (1), g2 = (12)(34), g3 =
(13)(24), and g4 = (14)(23).

7
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§3. P-Groups and Permutation Representations

For nonmodular representations the Noether map is always surjective
and V is always projective. Therefore, we restrict ourselves to modular
representations in what follows.

In this section we want to show that the converse Proposition 2.1 is true
in the case of p-groups P and in the case of permutation representations.
The next two results settle the case of P ≅ Z/p.

LEMMA 3.1LEMMA 3.1LEMMA 3.1LEMMA 3.1LEMMA 3.1: Let P be a cyclic p-group, and let F have characteristic
p. Then

Im(TrP)(1) � F[V ]P
(1)

unless V is the k-fold regular representation of P for some k ∈ N.

PROOFPROOFPROOFPROOFPROOF: Since the transfer is additive it suffices to consider indecom-
posable modules only.

Let the order of the group be p s . Then up to isomorphism there are
exactly ps indecomposable FP-modules V1 , . . . , Vps with dimF Vi = i.
The action of P on Vi is afforded by the matrix consisting of one Jordan
block with 1’s on the diagonal and superdiagonal. Note that V P

i = V1 for
all i.

Set ∆ = g − 1 where g ∈ P is a generator. Then

∆ (V ∗
i ) =



V ∗

i−1 for i = 2 , . . . , ps

0 for i = 1.

Since, TrP = ∆ ps−1, we obtain

TrP(V ∗
i ) = ∆ ps−1(V ∗

i ) =



0 for i = 1 , . . . , ps − 1
V ∗

1 for i = ps

as desired. 


In Theorem 3.2 [8] (and the following remark) a more precise version
of the preceding result is shown: the transfer is surjective in degrees
prime to the characteristic in the case of k-fold regular representations.
We obtain the following corollary that we note here for later reference.

COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2COROLLARY 3.2: Let ρ : G � GL(n, F) be a faithful representation
of a finite group. Let i ∈ F×. Then

Im(�G
G  (i)) = Im(TrG  (i)).

8
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PROOFPROOFPROOFPROOFPROOF: By construction we obtain a commutative diagram as fol-
lows

F[V (G)]G  (i)
�G

G  (i)�� F[V ]G  (i)�


TrG  (i)

�


TrG  (i)

F[V (G)] (i)
�G  (i)�� F[V ] (i).

By Theorem 3.2 [8] and the remark following it the transfer map on the
left

TrG  (i) : F[V (G)] (i) �� F[V (G)]G  (i)

is surjective. By construction the lower map �G  (i) is surjective. Thus
the result follows. 


Even though Proposition 3.4 contains the following result as a special
case, we want to leave the proof in, because it is so simple and uses just
some linear algebra, cf. Lemma 3.2 in [6].

PROPOSITION 3.3PROPOSITION 3.3PROPOSITION 3.3PROPOSITION 3.3PROPOSITION 3.3: Let G = P a cyclic p-group. Then the following
are equivalent

(1) The Noether map is surjective.
(2) The Noether map is surjective in degree one.
(3) V is a projective FP-module.

PROOFPROOFPROOFPROOFPROOF: The implication (1) ⇒ (2) is trivial. The implication (3) ⇒ (1)
was proven in Proposition 2.1. Thus we need to show that V is projective
if �P

P  (1) is surjective.

By Corollary 3.2 we have that Im(�G
G  (i)) = Im(TrG  (i)). Since the trans-

fer is surjective in degree one exactly when V is a k-fold regular repre-
sentation by Lemma 3.1, we have that V is the k-fold regular represen-
tation and hence projective. 


THEOREM 3.4THEOREM 3.4THEOREM 3.4THEOREM 3.4THEOREM 3.4: Letρ : P�GL(n, F) be a representation of a p-group
over a field F of characteristic p. Then the following are equivalent:

(1) The Noether map is surjective.
(2) The Noether map is surjective in degree one.
(3) V is a projective FP-module.

PROOFPROOFPROOFPROOFPROOF: The implication (1) ⇒ (2) is trivial. The implication (3) ⇒ (1)
was proven in Proposition 2.1. Thus we need to show that V is projective
if �P

P  (1) is surjective.

Consider the short exact sequence of FP-modules

(∗ ) 0 �� K ∗ �� V (P)∗
�P  (1)�� V ∗ �� 0.

9
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The module V (P) is free and therefore cohomologically trivial. Thus the
long exact cohomology sequence breaks up into

0 �� (K ∗ )P �� (V (P)∗ )P �P
P  (1)�� (V ∗ )P ��H1(P, K ∗ ) �� 0

and
Hi(P, V ∗ ) ≅ Hi+1(P, K ∗ ) ∀ i ≥ 1.

Since �P
P  (1) is surjective by assumption, we obtain

H1(P, K ∗ ) = 0.

Thus �H1(P, K ∗ ) = H1(P, K ∗ ) = 0,

where �H∗ ( , ) denotes the Tate cohomology. Thus K ∗ is a projective FP-
module by Theorem 8.5, Chapter VI in [2]. Since P is finite and K ∗

finitely generated, this implies that K ∗ is injective, see Corollary 2.7 in
[3]. Thus the sequence (∗ ) splits and V ∗ is projective as desired. 


We illustrate this result with an example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let F be the field with q elements of characteristic p.
Let P ≤ GL(n, F) be a p-Sylow subgroup of the general linear group.
With assume without loss of generality that P consists of upper trian-
gular matrices with 1’s on the diagonal. Then

F[V (P)]P
(1) = spanF{ o(xi1) =

 P�
j=1

xij∋i = 1 , . . . , n} .

Thus

�P
P (o(xi1)) =

 P�
j=1

gj xi

=
�

(ai+1 ,..., an)∈Fn−i

(xi + ai+1xi+1 + · · · + an xn)

= q
n(n−1)

2 −(n−i)�qn−i xi + qn−i−1


� �
ai+1∈F

ai+1xi+1 + · · · +
�
an∈F

an xn

���.
= q

n(n−1)
2 xi + q

n(n−1)
2 −1


� �
ai+1∈F

ai+1xi+1 + · · · +
�
an∈F

an xn

���.
The factor q

n(n−1)
2 is nonzero if and only if n = 0 or n = 1. Since we are

considering the modular case this cannot happen.

10
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The factor q
n(n−1)

2 −1 is nonzero if and only if n = 2.

Thus we proceed by having a closer look at the two-dimensional case:
We have by the above calculations

�P
P (o(x11)) =

 P�
j=1

gj x1 =
�
a2∈F

(x1 + a2x2) =
� �

a2∈F

a2
�
x2,

�P
P (o(x21)) =

 P�
j=1

gj x2 = 0

If p is odd then for every nonzero a2 ∈ F there exists a negative −a2 	= a2.
Therefore �

a2∈F

a2 = 0.

If p = 2 then � �
a2∈F

a2
�
x2 =



x2 if q = 2
0 if q > 2.

Thus we have that the Noether map is surjective if and only if n = 2 =
p = q. Explicitely we find

�P
P (o(x11)) = x2 and �P

P (o(x11x12)) = x2
1 + x1x2.

Note that in this case

Syl2(GL(2, F2)) ≅ Z/2

and our representation is projective.

THEOREM 3.5THEOREM 3.5THEOREM 3.5THEOREM 3.5THEOREM 3.5: Let ρ : G � GL(n, F) be a permutation representa-
tion of a finite group of order d. Then the Noether map � G

G is surjective
if and only if V = Fn is projective.

PROOFPROOFPROOFPROOFPROOF: By Proposition 2.1 we know that �G
G is surjective if V is

projective as FG-module.

We show that the converse is also true as follows:

Let �G
G be surjective, then its restriction to degree one, � G

G∋(1), is also
surjective:

�G
G∋(1) : (V (G)∗ )G �� (V ∗ )G.

We note that (V (G)∗ )G has an F-basis consisting of

o(xij) =
d�

j=1

xij for i = 1 , . . . , n.

11
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Therefore, the image under the Noether map is spanned by

�G
G


� d�
j=1

xij

�� = ki o(xi) for i = 1 , . . . , n,

where
ki =  StabG(xi)

is the order of the stabilizer of xi in G. Since ρ is a permutation repre-
sentation, (V ∗ )G is spanned by the orbit sums of x1 , . . . , xn. It follows
that ki ’s are not zero, since the Noether map is surjective. Hence

 StabG(xi) 	≡ 0 mod p.

In other words, no element in a p-Sylow subgroup P of G fixes xi , i =
1 , . . . , n. Therefore

(✠ ) oP(xi) = TrP(xi) = �P
P∋(1)(xi1),

where oP( ) denotes the orbit sum under the action of P, and g1 is the
identity element. Since (V ∗ )P is also spanned by the orbit sums of the
xi ’s, we found in (✠ ) that�P

P∋(1) is surjective. Therefore,�P
P is surjective

by Proposition 3.4. Hence V ∗ is a projective FP-module, by the same
Propositon 3.4. Since P is a p-Sylow subgroup of G, the module V ∗ is
projective as a FG-module, see Corollary 3 on Page 66 of [1]. 


§4. Applications and Examples

Let ρ : G � GL(n, F) be a faithful representation of a finite group of
order d. Set V = Fn. Recall that �(F[V ]G) is the maximal degree of an
F-algebra generator of F[V ]G in a minimal generating set, the so-called
Noether number.

PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1PROPOSITION 4.1: If V is a projective FG-module then

�(F[V ]G) ≤ max{ d, n
�

d
2

�
} .

PROOFPROOFPROOFPROOFPROOF: If V is FG-projective then the Noether map �G
G is surjec-

tive by Proposition 2.1. Thus, since �G
G is an F-algebra map, a set of

generators of F[V (G)]G is mapped onto a set of generators of F[V ]G .
Since V (G) is a permutation module with n transitive components each
of which has degree d,

it is generated by elements of degree at most max{ d, n
�d

2

�
} , by Corollary

3.10.9 in [5] and the result follows. 


12



THE NOETHER MAP

REMARKREMARKREMARKREMARKREMARK: Let ρ : G�GL(n, F) be a representation of a finite group
G of order d. Assume that the characteristic of F is zero or strictly larger
than d. (This is the strongly nonmodular case.) Then

�(F[V ]G) ≤ �(F[W]G)

where W is the regular FG-module, see Theorem 4.1.4 in [11]. Thus
our Proposition 4.1 is a characteristic-free generalization: for projective
FG-modules V of dimension n, the upper bound for �(F[V ]G) is given
by �(F[W]G) where W is ⊕ nFG.

The degree bound given above is sharp as we illustrate with the follow-
ing example.

EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1EXAMPLE 1: Let A3 be the alternating group in three letters. Let F
be a field containing a primitive 3rd root of unity � ∈ F. Then we obtain
a faithful representation

ρ : A3 � GL(1, F), (123) �� �.

We have

F[x]A3 = F[x3], and F[x11, x12, x13]A3 = F[e1, e2, e3, o(x2
11x12)],

where the ei ’s are the elementary symmetric functions in the x1j ’s. Thus

�(F[x]A3) = 3 = �(F[x11, x12, x13]A3) = max{ 3,
�

3
2

�
} .

Before we proceed we want to compare the degree bound given in Propo-
sition 4.1 with the known general bounds, see [9] for an overview of this
topic.

(1) In the nonmodular case, we have that �(F[V ]G) ≤  G by The-
orem 2.3.3 in [11]. This bound is better since

 G ≤ max{ n G , n
�

 G
2

�
} .

(2) The general degree bound given in Theorem 3.8.11 in [5] is

�(F[V ]G) ≤ n( G − 1) +  G n2n−1
n2n−1+1.

A short calculation shows that

max{ n G , n
�

 G
2

�
} ≤ n( G − 1) +  G n2n−1

n2n−1+1.

Thus the bound given in Proposition 4.1 is always better (where
it applies).

(3) If the ground field F is finite of order q, we have another general

13
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degree bound given by:

�(F[V ]G) ≤

�
qn−1
q−1

(nq − n − 1) if n ≥ 3,
2q2 − q − 2 if n = 2,

see Theorem 16.4 in [7]. This bound behaves worse than the one
of Proposition 4.1 if q >  G .

(4) Finally in [4] a bound of a completely different flavor is proven.
In particular it depends on a choice of a homogeneous system
of parameters. In our Example 1 we found that the bound of
Proposition 4.1 is sharp. If we apply Theorem 2.3 in [4] to this
example we obtain

�(F[x]A3) ≤ degree(f ),

where f ∈ F[x]A3 is a system of parameters. If we make the
unlucky choice of f = x9 the bound given in [4] is no longer sharp.

We denote by CMdefect( ) the Cohen-Macaulay defect. The following
result tells us that the Cohen-Macaulay defect of the ring of invariants
of n copies of the regular representation of a finite group G is an upper
bound for the Cohen-Macaulay defect of the ring of invariants F[V ] G in
the case where V is projective.

PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2PROPOSITION 4.2: If V is FG-projective then

CMdefect(F[V ]G) ≤ CMdefect(F[V (G)]G ).

PROOFPROOFPROOFPROOFPROOF: Since V is FG-projective, we have the FG-module decom-
position

V (G) = V ⊕ K.
Thus the result follows from [10]. 


REMARKREMARKREMARKREMARKREMARK: The inequality in the preceding result is sharp since the
Cohen-Macaulay defect of any nonmodular representation is zero.
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