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As reported in several recent publications, an undamped simple oscillator with a complex
attachment that consists of a set of undamped parallel resonators can exhibit unusual energy sharing
properties. The conservative set of oscillators of the attachment can absorb nearly all the impulsive
energy applied to the primary oscillator to which it is connected. The key factor in the ability of the
attachment to absorb energy with near irreversibility correlates with the natural frequency
distribution of the resonators within it. The reported results also show that a family of optimal
frequency distributions can be determined on the basis of a variational approach, minimizing a
certain functional related to the system response. The present paper establishes a link between these
optimal frequency distributions and the energy equipartition principle: optimal frequency
distributions are those that spread the injected energy as uniformly as possible over the degrees of
freedom or over the modes of the system. Theoretical as well as numerical results presented support
this point of view. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3147502�

PACS number�s�: 43.40.At, 43.40.Kd, 43.40.Jc, 43.40.Tm �JJM� Pages: 122–128

I. INTRODUCTION

In the past decade the problem of energy sharing among
a principal, or master, structure attached to a large number of
resonators has been analyzed in some detail �viz., Refs. 1–3�.
Mechanism of energy sharing in a complex structure as de-
picted by the prototypical system described here brings out
important fundamental issues in such systems and also has
numerous engineering applications. Many engineering struc-
tures follow a similar paradigm where a population of reso-
nators is attached to a principal structure. For example, struc-
tures such as a car body, airplane fuselage, or hull of a ship
are coupled to a very large number of resonating interior
components. Moreover, the fundamental aspects of the con-
cept of complex attachments can be used for designing novel
vibration absorbers.4 The energy exchange that takes place in
the complex system described here is substantially indepen-
dent of any intrinsic damping in the system.1–8

Theoretical analyses that have been reported in a series
of recent papers9–13 describe how a complex attachment can
rapidly and permanently absorb energy from a master struc-
ture. One of the basic findings of these investigations was the
discovery of the significance of the distribution of the natural
frequencies of the attached resonators in this energy transfer

process. The reported analyses revealed the existence of a
family of special frequency distributions that can lead to
trapping of the energy within the attachment, leading to a
phenomenon called near-irreversibility.11 A common charac-
teristic of this family of frequencies is the presence of a
singularity or frequency concentration point in their
distribution.11–13

A rather intriguing aspect of the energy-exchange phe-
nomenon investigated here relates to the distribution of en-
ergy among the resonators and the frequencies of the oscil-
lators. For most frequency distributions, the energy
transferred to the attachment is largely confined to a limited
number of resonators.8,9 In these cases, after an interval, the
duration of which is theoretically predicted in Ref. 8, the
resonators become in-phase with one another and the energy
is suddenly returned to the master. However, this energy re-
turn effect is not observed for those special frequency distri-
butions introduced in Refs. 9 and 12, energy remains within
the set of oscillators and is spread over the resonators rather
uniformly.9

The link between the optimal frequency distributions de-
fined in Ref. 12 and flow of energy from the master to the
attached resonators is the subject of the present paper. Of
particular interest is the idea that the optimal frequency dis-
tributions are akin to a requirement of energy equipartition
among the degrees of freedom of the system, or over its
modes, which maximizes the trapped energy within the at-
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tachment. When established, such a link can clarify how en-
ergy equipartition allows the master to keep only a small
fraction of the total energy, thus having the attachment act as
an effective vibration absorber.

The notion of energy equipartition in dynamics has deep
roots and strong analogies in thermodynamics. For instance,
in molecular mechanics, it is well known that the condition
of thermalization, characterized by a uniform distribution of
the energy among the molecules, is a condition to which
physical systems approach as a consequence of the maxi-
mum entropy principle. Reaching thermalization implies that
the system has gained its equilibrium and its macro-scale
energy distribution has become stable. Based on this notion,
this paper hypothesizes that if the oscillations of the attached
resonators can reach a state of thermalization by a suitable
selection of their natural frequencies, it can then be expected
that the system will have a stable energy distribution. In
other words, thermalization of the attached oscillators will
avoid any periodic energy transfer between the master and
the attached oscillators, de facto leading to an irreversible
energy transfer as discussed in but following different crite-
ria than those reported in Ref. 9 and in Refs. 11–13.

In Sec. II, the question of energy equipartition is consid-
ered using modal energies; in Sec. III, the problem is re-
examined in terms of energy equipartition among the degrees
of freedom of the system. As shown in Appendix, for the
particular system investigated here, both forms of energy eq-
uipartition requirements are substantially the same.

II. FREQUENCY DISTRIBUTIONS THAT LEAD TO
MODAL ENERGY EQUIPARTITION

The equations of motion of the system represented in
Fig. 1 are

mẍj + kj�xj − xN� = 0, j = 1,2, . . . ,N − 1,

MẍN + kNxN + �
j=1

N−1

kj�xN − xj� = 0, �1�

where index N represents the master and 1,2 , . . . ,N−1 rep-
resent the oscillators of the attachment; m, and kj are the
mass and the stiffness of each oscillator of the attachment,
and M and kN represent the mass and the stiffness of the
master, respectively; xj is the displacement of the j-th oscil-
lator. Expressing Eq. �1� in matrix form:

Mẍ + Kx = 0 , �2�

where M ,K are the mass the stiffness matrices. The use of
modal coordinates � through the eigenvector matrix U pro-
duces

x = U� . �3�

Expressing the modal energies as

Ej = 1
2 ��̇ j

2 + � j
2� j

2� �4�

where � f
2 are the eigenvalues of the system, for an initial

impulse MV0 imparted to the master, Eq. �4� takes the fol-
lowing form:

Ej =
V0

2

2
�� jN�2, �5�

where �=U−1. Modal energies depend explicitly on the sys-
tem eigenvectors, and indirectly on the set of physical pa-
rameters m, kj, M, and kN of the system. M and kN are given,
as well as the total mass of the attachment m�N−1�, a small
fraction of the master mass M. Therefore, Ej varies with the
values of kj �j=1,2 , . . . ,N−1� or equivalently depends on
the set of the uncoupled natural frequencies � j =�kj /m of the
attached oscillators.

Modal energy equipartition where the total energy Etot

spreads uniformly over the modes of the system can be ex-
pressed as

Ej��1, . . . ,�N−1� = Ej��� =
Etot

N
, j = 1,2, . . . ,N . �6�

The frequencies � j that lead to modal equipartition can be
obtained by applying a least squares procedure to minimize
the error function �:

���� = �
j=1

N �Ej��� −
Etot

N
�2

. �7�

The algorithm starts with an initial guess �in for the fre-
quency distribution and stops when a specified convergence
criterion is satisfied.

For the three different initial guesses shown in Fig. 2,
the final distribution obtained through the minimization al-
gorithm is the same for each, as shown in Fig. 3. Apparently,
the results do not depend on the initial estimate for the fre-
quency distribution. The optimal distribution is characterized
by an inflection point in the neighborhood of the master fre-
quency where its slope is close to zero. As a consequence,
the modal density has a sharp peak around the master fre-
quency, same as for those obtained in Ref. 12, but in this
case using different optimization criteria.

In Fig. 4, the modal energy spectra corresponding to the
three initial guess distributions are plotted, while the flat line
represents the spectrum related to the optimal distribution
that produces equipartition of the modal energies, determined
through minimization of �.

In Figs. 5 and 6, energy-time histories of the master are
plotted for linear and optimal distributions, respectively
�time is normalized with respect to the uncoupled natural

FIG. 1. Schematic of the master and the complex attachment.
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frequency of the master�. These figures demonstrate how an
attachment with the optimal frequency distribution is able to
minimize the energy stored in the master: after an initial
transient, the secondary structure acts as an apparent damper
and absorbs, almost completely, the total energy in the sys-
tem.

III. ENERGY EQUIPARTITION AMONG THE
OSCILLATORS OF THE ATTACHMENT

The theoretical developments in this section attempt to
provide insight to the notion that frequency distributions
leading to energy equipartition have particular forms. As
shown in Sec. IV and further explained below, the main char-

acteristic of these frequency distributions is the presence of a
minimum slope around the master frequency that also corre-
sponds to a large peak in the associated modal density.

The following theoretical analysis considers the require-
ment for energy equipartition among the oscillators of the
attachment instead of among the modal energies of the sys-
tem, which was considered in Sec. II. The connection be-
tween these two approaches will be discussed later in this
section.

As shown in Ref. 12, Eq. �1� can be approximated by a
continuous distribution of oscillators attached to the master,
replacing the summation by an integral, and the index i by a
continuous variable �:
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FIG. 2. Initial guesses for frequency distributions of the secondary structure with 99 degrees of freedom: �, �, and � are for the linear, exponential, and
quadratic distributions, respectively.
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FIG. 3. Optimal frequency distribution in the attachment.
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Mẍ + kNx + 	
0

1

k����x − x����d� = f ,

m���ẍ��� − k����x − x���� = 0. �8�

A detailed discussion about the meaning and the limits of
this approximation is given in Refs. 8 and 12. Physically,
such an approximation implies that the finite set of resona-
tors is replaced by an infinite set, and thus as N approaches
infinity, the frequency gap between neighboring resonators
vanishes. Expressing x��� in terms of x in the second equa-
tion of Eq. �8�, and substituting it into the first equation in
Eq. �8�, leads to an explicit expression for x, producing an

approximate frequency domain counterpart of Eqs. �8�, see
Ref. 12:

− M�2X + kNX + j�Ceq���X = F ,

− 	0�2X��� + k����X��� − X� = 0, �9�

where F, X, and X��� are the Fourier transforms of f , x, and
x���, respectively, and a uniform mass distribution m���=	0

is assumed. The equivalent damping is represented as

Ceq��� = 	0



4
�2
 1

d�n���/d�



�n=�M

,
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FIG. 4. Modal energy spectra related to the selected frequency distributions; �, �, and � are for the linear, exponential, and quadratic distributions,
respectively.
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FIG. 5. Time history of the master energy plotted for linear distribution of the uncoupled frequencies of the satellite resonators, N=100; time is normalized
with respect to the highest modal period: T1. The non-dimensional energy of the complete system is 0.5.
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with �n��� =�k���
	0

as the natural frequency distribution within the attachment.
Solutions to Eq. �9� are

X =
F

− M�2 + kN + j�Ceq���
,

X��� =
�n

2���
�n

2��� − �2

F

− M�2 + kN + j�Ceq���
.

Expressing the impulsive force as F=MV0, with �M

=�kN /M and �=	0 /M, the total energy distribution E���
within the attachment is found by doubling the potential en-
ergy at any �:

E��� = k����X��� − X�2

=
1

�n
2 MV0

2�
�4�n

2�M
2

��M
2 − �2�2 + ��Ceq��M�

M
�2

1

��n
2 − �2�2

or in non-dimensional form:

e��� =
E���
1

�n
2mV0

2

=
�4�n

2�M
2

��M
2 − �2�2 + ��Ceq���

M
�2

1

��n
2 − �2�2 ,

�10�

where �n��� is replaced for simplicity by �n. Equation �10�
expresses the energy distribution in the attachment at any
frequency � and depends directly on the frequency distribu-
tion �n��� and on its derivative �d�n��� /d���n=� through the
expression for Ceq. The total energy over a frequency band-
width B then becomes

ē��� = 	
B

�4�n
2�M

2

��M
2 − �2�2 + ��Ceq���

M
�2

1

��n
2 − �2�2d� . �11�

Invoking Parseval’s theorem for the equivalence of
frequency- and time-averaging, energy expression in Eq. �11�
can also be interpreted as the time average energy of an
elemental oscillator located at �. Requiring ē��� to be inde-
pendent of �, with a constant value �ē0� across the attach-
ment, is equivalent to having the energy equally spread over
all degrees of freedom x���:

	
B

�4�n
2�M

2

��M
2 − �2�2 + ��Ceq���

M
�2

1

��n
2 − �2�2d� = ē0. �12�

The functional relationship in Eq. �12� can be solved for
�n��� numerically within the bandwidth B. However, a re-
duced form of Eq. �12� reveals special properties of the so-
lution �n��� around the master frequency. Considering a nar-
row bandwidth B about �M and retaining only the zero-order
term of the integrand yields

B�M
6 �n

2

��MCeq��M�
M

�2

1

��n
2 − �M

2 �2 � e0, �13�

which is valid for �n����B, i.e., for �n��� close to �M.
Local properties of the frequency distribution can be in-

vestigated in terms of the related natural frequency �or
modal� density n in the attachment. Considering the number
dN=Nd� of natural frequencies within the interval d�n, the
associated modal density becomes n��n�=dN /d�n

=Nd� /d�n, which appears explicitly in Eq. �13� through the
relationship �MCeq��M� /M =��
 /4��M

3 n��M� /N. The corre-
sponding expression for n��M� from Eq. �13� then follows
as:
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FIG. 6. Time history of the master energy plotted for optimal frequency distribution of the uncoupled frequencies of the satellite resonators, N=100.
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n��M� =
4BN�n


�ē0��n
2 − �M

2 �
. �14�

The modal density at the master frequency as given by
Eq. �14� is almost singular since �n�����M. This is exactly
the same property of those frequency distributions found in
Refs. 9–13 that makes the set of attached resonators a highly
effective vibration absorber. When a modal density has such
a singularity as that in Eq. �14�, expression �10� can be used
to show how the master energy vanishes, letting the energy
injected into the system almost completely migrate toward
the attachment.

Finally, it can be shown that the energy equipartition
requirement is the same as the requirement that the modal
energies and the time �or frequency� averages of the oscilla-
tor energies are equal. The energy of oscillator j, expressed
as twice that of its kinetic energy, � j =mẋj

2�t�, where the bar
represents the time average, is also equivalent to its average
value in the frequency domain, as shown in Eq. �11�. Noting
that the modal energy expression Ej in Eq. �4� or Eq. �5� is
also independent of time, a comparison of Ej and � j can be
made using the coordinate transformation in Eq. �3�. For the
special system under consideration here, where a large num-
ber of oscillators are attached to the master in a parallel
manner with a total mass small compared to that of the mas-
ter, modes are localized. For such systems the matrix U is
almost diagonal and the physical and the modal coordinates
lead to energies Ej and � j that are substantially similar. As
expected, numerical results also show a strong mode local-
ization with an almost diagonal form for the eigenvector ma-
trix U. A proof of the equivalence between Ej and � j for the
system described here is presented in Appendix.

IV. DISCUSSION AND CONCLUSIONS

Earlier studies had shown that vibration energy of a
structure can be absorbed nearly irreversibly by a complex
attachment that consists of a large number of simple oscilla-
tors with the requirement that the attached oscillators possess
a particular frequency distribution. These frequency distribu-
tions were shown to have a higher modal density around the
natural frequency of the master structure. Their distributions
were obtained through a variational approach that minimizes
the energy associated with the master structure.

The particular form of the frequency distribution de-
serves a comment on why the frequencies are densely dis-
tributed around the frequency to be suppressed and not col-
located with it. Selecting the uncoupled frequencies of all the
attached oscillators to be the same as that of the natural fre-
quency of the master amounts to constructing a classical
tuned absorber that has two degrees of freedom. Considering
that the proposed system is conservative, in such a case, an
impulse applied to the master would produce a response
characterized by two close natural frequencies resulting in a
modulation that represents a periodic energy exchange be-
tween the master and the satellites that move in unison.
However, satellites that are nearly-resonating with the master
allow a strong coupling and avoid the simple beat phenom-
enon described above. The out-of-phase responses are pro-

duced by the spread of the resonator frequencies in a small
band around the master frequency. The consequence is that
soon after they absorb the initial impulse, the oscillators rap-
idly develop an out-of phase-motion and their total reaction
on the master vanishes because of the incoherence of their
phases. In a sense, the optimality of the frequency distribu-
tion is driven by a compromise between a near-resonant con-
dition and an out-of-phase requirement, leading to the typical
frequency form described in this and previous papers.

This paper shows how the frequency distributions ob-
tained previously using a variational approach that mini-
mizes the master energy also result from or are equivalent to
an energy equipartition requirement within the system. Fi-
nally, an unexpected but significant result for systems as that
considered here is that the requirement of energy equiparti-
tion among the modal energies is the same as an equiparti-
tion among the physical degrees of freedom.

In conclusion, the energy equipartition requirement on
the prototypical system described here stores most of the
energy in the attachment, leaving 1 /N of the total energy in
the master, making the attachment an effective energy sink
that produces a high damping effect in the master motion.

APPENDIX: EQUIPARTITION AMONG THE MODES
AND AMONG THE OSCILLATORS

Displacement and velocity in expressions for modal en-
ergies Ej are

xi�t� = �
j=1

N
Uij

�2Ej

� j
sin�� jt� ,

ẋi�t� = �
j=1

N

Uij
�2Ej cos�� jt� . �A1�

The energy of the master is given as

EN�t� = 1
2 M�ẋN

2 �t� + �M
2 xN

2 �t�� .

The time-averaged EN becomes

�EN� = lim
t→

1

T
	

0

T

EN�t�dt =
1

2
M��ẋN

2 � + �M
2 �xN

2 �� ,

which through Eq. �A1� becomes

�EN� = Etot�
j=1

N
UNj

2 �� jN�2

2
1 +

�M
2

� j
2 � ,

where Etot=MV0
2 /2 is the total energy of the system.

The time-average of energy for each resonator of the
attachment can be expressed as twice its mean kinetic en-
ergy:

�Ei� = m�
j=1

N

Uij
2 Ej .

Orthonormality conditions permits expressing Ej in terms of
UNj:

UTMU = I → �U−1�T = MU → �U−1� jN = M�U�Nj ,

which when substituted into Eq. �5� yields
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Ej = MEtotUNj
2 .

Thus, the mean time energies can be expressed as

�EN� =
1

2�
j=1

N
Ej

2

Etot
1 +

�M
2

� j
2 � ,

�Ei� = n�
j=1

N

Uij
2 Ei. �A2�

If energy is equally distributed among all the modes such
that Ej =Etot /N, for the master-attachment system with an
optimal frequency distribution described in Sec. II, the first
equation of Eq. �A2� becomes

�EN� =
1

2

Etot

N2 N + �
j=1

N
�M

2

� j
2 � .

The natural frequencies, as shown in Secs. II and III, have
values close to the master frequency, thus allowing an ap-
proximation of the summation � j=1

N �M
2 /� j

2 by N, yielding

�EN� �
Etot

N
. �A3�

Analogously from the second equation of Eq. �A2�, one ob-
tains

�Ei� =
Etot

N
m�

j=1

N−1

Uij
2 +

�

N
�

Using the orthonormality conditions, m� j=1
N−1Uij

2 =1− �1 /N�:

�Ei� �
Etot

N
. �A4�

Equations �A3� and �A4� show that the optimal frequency
distribution produces energy equipartition over the modes as
well as over the resonators of the attachment.
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