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Given a set � of m points in n-dimensional space with corresponding positive weights, the weighted
Euclidean one-center problem, which is a generalization of the minimum enclosing ball problem, involves

the computation of a point c� ∈�n that minimizes the maximum weighted Euclidean distance from c� to each
point in �. In this paper, given � > 0, we propose and analyze an algorithm that computes a �1+��-approximate
solution to the weighted Euclidean one-center problem. Our algorithm explicitly constructs a small subset � ⊆�,
called an �-core set of �, for which the optimal solution of the corresponding weighted Euclidean one-center
problem is a close approximation to that of �. In addition, we establish that �� � depends only on � and on
the ratio of the smallest and largest weights, but is independent of the number of points m and the dimension
n. This result subsumes and generalizes the previously known core set results for the minimum enclosing ball
problem. Our algorithm computes a �1+ ��-approximate solution to the weighted Euclidean one-center prob-
lem for � in ��mn�� �� arithmetic operations. Our computational results indicate that the size of the �-core set
computed by the algorithm is, in general, significantly smaller than the theoretical worst-case estimate, which
contributes to the efficiency of the algorithm, especially for large-scale instances. We shed some light on the
possible reasons for this discrepancy between the theoretical estimate and the practical performance.
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1. Introduction
Given a finite set of points � �= 	a1� � � � � am
⊂�n with
corresponding positive weights � �= 	�1� � � � ��m
,
the weighted Euclidean one-center problem is con-
cerned with finding the point c� ∈�n that minimizes
the maximum weighted Euclidean distance from c� to
each point in �. Formally, it amounts to solving the
following optimization problem:

�� �=min
c∈�n

max
i=1�����m

�i�ai − c��

The weighted Euclidean one-center problem re-
duces to the minimum enclosing ball (or the Euclidean
one-center) problem when all the weights are identi-
cal. It follows that c� and �� are simply the center and
the radius of the minimum enclosing ball of �, respec-
tively, if all weights �i are equal to one. Henceforth,
we use ���� � to denote an instance of the weighted
Euclidean one-center problem.
The weights �i can be viewed as a measure of

importance of the input point ai. More precisely, input
points with larger weights have a higher tendency

to “attract” the optimal center towards themselves
in comparison with points with smaller weights. As
such, the weighted Euclidean one-center problem has
extensive applications in facility location (Drezner
and Gavish 1985). Typically, the objective is to min-
imize the maximum weighted response time as in
the examples of emergency services, health care, and
firefighting, or to minimize the maximum weighted
travel time as in the examples of post offices, ware-
houses, and schools.
For c ∈�n, let

��c� �= max
i=1�����m

�i�ai − c�� (1)

Given � > 0, we say that �c���c�� ∈�n ×� is a �1+ ��-
approximate solution to the weighted Euclidean one-
center problem for the instance ���� � if

�� ≤ ��c�≤ �1+ ����� (2)

A subset � ⊆� is said to be an �-core set (or a core
set) of � if

�� ≤ �� ≤ �1+ ����� (3)
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where �c���� � ∈ �n ×� denotes the optimal solution
of the weighted Euclidean one-center problem of the
instance ��� 	�j � aj ∈ �
�. Since c� lies in the convex
hull of � (see §2), it follows that there always exists a
0-core set of size at most n+ 1.
Small core sets provide a compact representation

of a given instance of an optimization problem. Fur-
thermore, the existence of small core sets paves the
way for the design of efficient algorithms, especially
for large-scale instances. Recently, several approxi-
mation algorithms have been developed for various
classes of geometric optimization problems based on
the existence of small core sets (Bădoiu et al. 2002,
Kumar et al. 2003, Bădoiu and Clarkson 2003, Tsang
et al. 2005, Kumar and Yıldırım 2005, Agarwal et al.
2005, Yıldırım 2008, Todd and Yıldırım 2007). Com-
putational experience indicates that such algorithms
are especially well suited for large-scale instances for
which a moderately small accuracy (e.g., � = 10−3)
suffices.
The weighted Euclidean one-center problem and its

variants have been the center of study of many papers
(Francis 1967; Hearn and Vijay 1982; Chandrasekaran
1982; Megiddo 1983, 1989; Hansen et al. 1985; Drezner
and Gavish 1985; Dyer 1986). In particular, the
problem can be solved in time proportional to the
number of points for fixed dimension (n = ��1�)
(Dyer 1986, Megiddo 1989). However, the depen-
dence on the dimension is exponential. For the
case when the dimension is not fixed, Drezner and
Gavish (1985) proposed a variant of the ellipsoid
method that computes a �1+ ��-approximate solution
in ��n3m log�1/��� arithmetic operations. Incidentally,
this asymptotic complexity bound matches with that
arising from the application of the ellipsoid method
to approximately solve the problem (Grötschel et al.
1988). Because the problem can be formulated as an
instance of second-order cone programming, interior-
point methods can be applied to compute a �1+ ��-
approximate solution in polynomial time. However,
the cost per iteration becomes prohibitively high as
the size of the problem instance increases. We refer
the reader to the computational results reported in
Zhou et al. (2005) for the special case of the minimum
enclosing ball problem.
In this paper, we focus on computing a �1 + ��-

approximate solution for large-scale instances of the
weighted Euclidean one-center problem. Our algo-
rithm explicitly constructs an �-core set � of � such
that �� � = � �1/�����, where � is the squared ratio of
the minimum weight to the maximum weight. The
asymptotic bound on the core set size reduces to
��1/�� for the special case of the minimum enclosing
ball problem, which matches the previously known
core set results (Bădoiu and Clarkson 2003, Kumar
et al. 2003, Yıldırım 2008). It has also been shown

that this bound is worst-case optimal (Bădoiu and
Clarkson 2008). We establish that our algorithm com-
putes a �1 + ��-approximate solution in ��mn�� ��
arithmetic operations. Our extensive computational
results indicate that the practical performance of our
algorithm is usually much better than that predicted
by the worst-case theoretical estimate. We provide
some insights into the reasons for this discrepancy
between the theoretical estimate and the practical
performance.
Our complexity bounds hold in the real number

model of computation (Blum et al. 1989). Therefore,
the overall complexity bound of our algorithm and
the asymptotic bound on the core set are polyno-
mial in the input size for fixed � and � . However,
both of these bounds can actually be expressed in
terms of another parameter �∗ (see Corollary 5.1)
that arises from our algorithm, which can a priori
be bounded below by � . Our computational results
indicate that �∗ behaves like a constant for randomly
generated instances even though � can be arbitrarily
small. Therefore, the running time of our algorithm
and the size of the resulting core set seem to have a
very weak dependence on � in practice at least for
randomly generated instances.
This paper is organized as follows. In the remain-

der of this section, we define our notation. In §2, we
discuss optimization formulations for the weighted
Euclidean one-center problem. Section 3 describes a
constant factor approximation for our problem. Sec-
tion 4 gives a simple proof that shows the existence
of a core set for our problem. Section 5 is devoted to
the presentation and the analysis of our algorithm. We
also compare our results to other related results in the
literature in this section. The computational results are
presented in §6. Finally, §7 concludes the paper.

1.1. Notation
Vectors are denoted by lowercase roman letters. For a
vector p, pi denotes its ith component. Inequalities on
vectors apply to each component. We reserve ej for
the jth unit vector, e for the vector of all ones, and I
for the identity matrix in the appropriate dimension,
which will always be clear from the context. Upper-
case roman letters are reserved for matrices and Mij

denotes the �i� j� component of the matrix M . We use
log�·� and log2�·� to denote the natural and the base-2
logarithm, respectively. Functions and operators are
denoted by uppercase Greek letters. Scalars except for
m and n are represented by lowercase Greek letters
unless they represent components of a vector or ele-
ments of a sequence of scalars, vectors, or matrices.
We reserve i� j� and k for such indexing purposes.
Uppercase script letters are used for all other objects
such as sets and balls.
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2. Optimization Formulations
The weighted Euclidean one-center problem for the
instance ���� � admits the following formulation as
an optimization problem:

��1� min
c��

�

subject to �i�ai − c� ≤ �� i = 1� � � � �m�

where c ∈�n and � ∈� are the decision variables. By
squaring the constraints and defining � �= �2, ��1� can
be converted into the following optimization problem
with smooth, convex quadratic constraints:

��2� min
c��

�

subject to �i��a
i�T ai − 2�ai�T c+ cT c�≤ ��

i = 1� � � � �m�

where
�i �=�2i � i = 1� � � � �m� (4)

The Lagrangian dual of ��2� is given by

��� max
u

��u� �=
m∑

i=1
ui�i�a

i�T ai

− 1∑m
i=1ui�i

( m∑
i=1

ui�ia
i

)T( m∑
i=1

ui�ia
i

)

subject to
m∑

i=1
ui=1� ui≥0� i=1�����m�

where u ∈ �m is the decision variable. It is easy to
verify that ��� reduces to the dual formulation of the
minimum enclosing ball problem if all the weights are
identical (Yıldırım 2008). In contrast with the mini-
mum enclosing ball problem, the objective function of
��� is no longer quadratic for the general weighted
problem. We discuss the implications of this observa-
tion in further detail in §5.2.
By the Karush-Kuhn-Tucker optimality conditions,

�c����� ∈�n ×� is an optimal solution of ��2� if and
only if there exists u∗ ∈�m such that

m∑
i=1

u∗
i = 1� (5a)

c� = 1∑m
i=1 u

∗
i �i

m∑
i=1

u∗
i �ia

i� (5b)

�i��a
i�T ai − 2�ai�T c� + �c��T c��≤ ���

i = 1� � � � �m� (5c)

u∗
i ��i��a

i�T ai − 2�ai�T c� + �c��T c��−�� = 0�
i = 1� � � � �m� (5d)

u∗ ≥ 0� (5e)

A simple manipulation of the optimality conditions
reveals that

�� =��u∗�� (6)

which implies that u∗ ∈ �m is an optimal solution
of ��� and that strong duality holds between ��2�
and ���. Note that the weighted center c� of � is given
by a convex combination of the points in � by (5b).
The existence of the weighted Euclidean one-center

of � directly follows from the maximization of a con-
tinuous function over a compact domain in the dual
formulation. It is also straightforward to establish
the uniqueness by the following simple contradiction
argument: If there were two such weighted centers,
one could improve the solution by considering an
appropriate convex combination of these two centers.
It follows from the optimality conditions that the

solution of the weighted Euclidean one-center prob-
lem can be obtained by solving the dual problem ���.
If u∗ ∈�m denotes an optimal solution of ���, the opti-
mal solution �c����� of ��1� is given by

c� = 1∑m
i=1 u

∗
i �i

m∑
i=1

u∗
i �ia

i�

�� = ����1/2 = ���u∗��1/2�

(7)

By lifting the decision variable to one higher dimen-
sion, Dyer (1986) proposes an alternative optimization
formulation of the weighted Euclidean one-center
problem with m linear constraints and one convex
quadratic constraint. However, the feasible region of
the resulting dual problem is different from that of
our dual problem ���, which is the unit simplex. Our
analysis relies heavily on this special structure of ���.
In particular, any linear function can be easily opti-
mized over the unit simplex which is required at each
iteration in our algorithm. Therefore, we adopt the
optimization formulation presented in this section.

3. Initial Approximation
In this section, we describe a procedure to compute an
initial feasible solution of ��� whose objective func-
tion value provides a good approximation of the opti-
mal value.
As observed in Megiddo (1983), the weighted

Euclidean one-center problem has the following geo-
metric interpretation: Given � > 0, consider the balls
defined by

�i���=
{
x ∈�n� �x− ai� ≤ �

�i

}
� i = 1� � � � �m�

Let �c����� denote the optimal solution of ��1�. Then,
�� is the smallest value of � such that the balls �i���
have a nonempty intersection and c� is the unique
point in the intersection of the balls �i����.
Motivated by this geometric interpretation, let aj ∈�

be the point with the largest corresponding weight �j .
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We now construct balls �i��� for increasing values
of � > 0. For each i = 1� � � � �m� i �= j , there exists
a unique value �i > 0 such that the balls �i��� and
�j ��� intersect for the first time when �= �i. Let �∗ �=
maxi=1�����m� i �=j �i > 0. It follows from the geometric
interpretation above that �∗ ≤ ��. It turns out that �∗
is a provably good approximation to ��.
We describe the procedure more formally in

Algorithm 3.1.

Algorithm 3.1
The algorithm that computes an initial feasible solu-
tion of ���:
Require: Input set of points �= 	a1� � � � � am
⊂�n�

� = 	�1� � � � ��m
.
1: j ← argmaxi=1�����m �i;
2: for all i such that 1≤ i ≤m� i �= j do
3: �i ←�ai − aj�/�1/�i + 1/�j�;
4: end for
5: �∗ ← maxi=1�����m� i �=j �

i" j∗ ← argmaxi=1�����m� i �=j �
i;

6: u0← 0" u0j ←�j∗/��j∗ +�j�" u0j∗ ←�j/��j∗ +�j�;
7: Output: u0, aj , aj∗ .

Lemma 3.1. Algorithm 3.1 computes a feasible solution
u0 ∈�m of ��� in O�mn� arithmetic operations such that

��u0�≤��u∗�= �� ≤ 9��u0�� (8)

Proof. Clearly, Algorithm 3.1 terminates in O�mn�
operations. Note that the first inequality in (8) simply
follows from the fact that u0 ∈�m is a feasible solution
of the maximization problem ���.
It is easy to verify that

��1−$�y +$z�2
= �1−$��y�2+$�z�2−$�1−$��y − z�2 (9)

for all y�z ∈�m, and $ ∈�.
Let us define $ = �u0j∗�j∗�/�u

0
j �j +u0j∗�j∗�. To prove the

second inequality in (8), we have

��u0� = u0j �j�aj�2+u0j∗�j∗�aj∗�2

−
(
u0j �ja

j +u0j∗�j∗a
j∗
)T (

u0j �ja
j +u0j∗�j∗a

j∗
)

u0j �j +u0j∗�j∗

= u0j �j�aj�2+u0j∗�j∗�aj∗�2

− (
u0j �j +u0j∗�j∗

)��1−$�aj +$aj∗�2

= u0j �j�aj�2+u0j∗�j∗�aj∗�2−u0j �j�aj�2−u0j∗�j∗�aj∗�2

+ u0j �ju
0
j∗�j∗

u0j �j +u0j∗�j∗
�aj − aj∗�2

= u0j �ju
0
j∗�j∗

u0j �j +u0j∗�j∗
�aj − aj∗�2

= �aj − aj∗�2
�1/�j + 1/�j∗�

2

= �2∗�

where we used (9) in the third line and (4) in the next-
to-last one.
For each i = 1� � � � �m� i �= j , �i is the optimal

value of the weighted Euclidean one-center prob-
lem for the instance �	ai� aj
� 	�i��j
�. Let c0 ∈ �n

denote the optimal weighted center of the instance
�	aj∗� aj
� 	�j∗��j
�. It is easy to verify that c0 = 'aj∗ +
�1 − '�aj , where ' �= �j∗/��j + �j∗�. For any i =
1� � � � �m, we have

�c0− ai� ≤ �c0− aj�+�aj − ai�
= �∗

�j

+�i

(
1
�j

+ 1
�i

)

≤ �∗

(
2
�j

+ 1
�i

)

≤ �∗

(
3
�i

)
�

where we used the inequalities �i ≤ �∗ and �i ≤�j in
the third line and the last line, respectively. It follows
then that

�i�c0− ai� ≤ 3�∗� i = 1� � � � �m�

This implies that �c��� �= �c0�3�∗� is a feasible solu-
tion of ��1� and the second inequality in (8) immedi-
ately follows. �

It follows from Lemma 3.1 that Algorithm 3.1 is a
simple 3-approximation algorithm for the weighted
Euclidean one-center problem. Drezner and Gavish
(1985, Theorem 1) propose a very similar algorithm
and establish that �aj� ��aj�� is a 2-approximate solu-
tion, where ��·� is defined as in (2) and j is the index
of the point in � with the maximum weight. In the
context of the dual problem ���, the feasible solution
produced by their algorithm is given by u0 = ej . Since
��u0� = 0, the objective function value of this initial
feasible solution cannot be used to obtain an upper
bound on the optimal value ��u∗� of ��� such as that
given by Lemma 3.1.

4. Existence of a Core Set
In this section, we establish the existence of a core
set of size ��1/����� for the weighted Euclidean one-
center problem, where � is the squared ratio of the
smallest weight to the largest weight. Our analy-
sis mimics and extends the analysis of Bădoiu and
Clarkson (2003), which demonstrates the existence of a
core set of size ��1/�� for the minimum enclosing ball
problem. The main ingredient in their analysis is the
so-called “halfspace lemma,” which states that every
closed halfspace passing through the optimal center
should contain at least one point on the boundary of
the minimum enclosing ball. We start by extending
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this result to the weighted case. In contrast to the pre-
vious proofs of the halfspace lemma, we establish the
following more general result as an immediate conse-
quence of the optimality conditions (5).

Lemma 4.1. Let �c����� denote the optimal solution
of a given instance ���� � of the weighted Euclidean
one-center problem. Every closed halfspace passing through
c� contains at least one point ai ∈ � such that
�i�ai − c�� = ��.

Proof. By (5b), c� lies in the convex hull of a sub-
set of the input points given by � �= 	aj ∈�� u∗

j > 0
,
where u∗ ∈ �m denotes any optimal solution of (�).
Hence, every closed halfspace passing through c�
must contain at least one point ai ∈ � . By (5d), each
point ai ∈� satisfies �i�ai−c�� = ��, which completes
the proof. �

We are now ready to prove the existence of a core
set for the weighted Euclidean one-center problem.

Lemma 4.2. Given an instance ���� � of the weighted
Euclidean one-center problem and � ∈ �0�1�, there exists
an �-core set � ⊆ � of size ��1/���2��, where � ∈ �0�1�
is the squared ratio of the smallest weight to the largest
weight.

Proof. We proceed in a similar manner as in
Bădoiu and Clarkson (2003). Initially, we set �0 �=
	aj� aj∗
⊂�, where aj and aj∗ are the two points com-
puted by Algorithm 3.1. At iteration k, let �ck��k�
denote the optimal solution for the reduced instance
��k��k� of the weighted Euclidean one-center prob-
lem, where �k �= 	�i� ai ∈�k
. If �j�aj −ck� ≤ �1+���k

for each aj ∈ �, then �k is an �-core set since �k ≤
�� ≤ �1+ ���k. Otherwise, let ak∗ ∈� denote the point
with the largest weighted Euclidean distance from ck.
Then, we set �k+1 =�k ∪ 	ak∗
, �k+1 =�k ∪ 	�k∗
, and
continue in a similar manner using the optimal solu-
tion �ck+1��k+1� of the new instance ��k+1��k+1�.
By Lemma 3.1, �0 ≥ ��/3. The proof is based on

establishing that the sequence 	�k
 is strictly increas-
ing and that the ratio �k+1/�k can be bounded away
from one. Suppose that the termination criterion is
not satisfied at iteration k. Let (k �= �ck+1 − ck�� k =
0�1� � � � � and let �max �=maxi=1�����m �i. There are two
cases:
Case 1. Suppose that

(k <
��k

2�max
�

In this case, we have, by the triangle inequality,

∥∥ak∗ − ck
∥∥≤ ∥∥ak∗ − ck+1∥∥+ (k <

∥∥ak∗ − ck+1∥∥+ ��k

2�max
�

which implies that

�k+1

�k∗
≥ ∥∥ak∗ − ck+1∥∥ >

∥∥ak∗ − ck
∥∥− ��k

2�max

>
�1+ ���k

�k∗
− ��k

2�max
≥ �1+ �/2��k

�k∗
�

where we used ak∗ ∈ �k+1 to derive the first inequal-
ity, the fact that the termination criterion is not satis-
fied at iteration k to obtain the third inequality, and
�k∗ ≤�max to arrive at the last one. It follows that

�k+1 >

(
1+ �

2

)
�k ≥

(
1+ ��2

9

)
�k� (10)

where we used the facts that � ∈ �0�1� and � ∈ �0�1 .
Case 2. Suppose now that

(k ≥ ��k

2�max
�

Let 	 denote the hyperplane passing through ck and
perpendicular to ck+1 − ck, and let 	− denote the
closed halfspace bounded by 	 and not containing
ck+1. By Lemma 4.1, 	− contains a point ai ∈�k such
that �i�ai − ck� = �k. Therefore, for this input point,

�ai − ck+1�2 ≥ �ai − ck�2+ �(k�2 ≥
(

�k

�i

)2
+
(

��k

2�max

)2
�

Since ai ∈�k+1, it follows that

�k+1

�i

≥ �ai − ck+1� ≥ �k

�i

√
1+

(
��i

2�max

)2
�

Hence, we obtain

�k+1 ≥ �k

√
1+ ��2

4
≥
(
1+ ��2

9

)
�k� (11)

where we used the definition of � and the facts that
� ∈ �0�1� and � ∈ �0�1 .
By (10), (11), and Lemma 3.1, we have

�� ≥ �k ≥
(
1+ ��2

9

)k

�0 ≥ 1
3

(
1+ ��2

9

)k

��� (12)

which implies that the total number of iterations in
this procedure is bounded above by

log 3
log�1+ ��2/9�

≤ �log 3�
(
1+ 9

��2

)
�

where we used the inequality log�1 + x� ≥ x/�x + 1�
for x > −1. The assertion follows from the facts that
��0� = 2 and that each iteration adds one point to the
working core set. �

Using a more careful bookkeeping argument as in
Kumar et al. (2003), we establish that an improved
bound on the core set size can be obtained with the
same procedure.
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Theorem 4.1. Given an instance ���� � of the
weighted Euclidean one-center problem and � ∈ �0�1�,
there exists an �-core set � ⊆� of size ��1/�����.

Proof. For the procedure outlined in the proof of
Lemma 4.2, let us define

*�i� �=min	k� �k is a �1/2i�-core set
� i = 1�2� � � � �

By Lemma 4.2, *�1�= ��1/��. For i ≥ 2, we derive an
upper bound on *�i�−*�i− 1�. Note that �*�i−1� is a
�1/2�i−1��-core set. It follows from (12) that

�� ≥ �*�i� ≥ �*�i−1�
(
1+ �

9�22i�

)�*�i�−*�i−1��

≥ ��

1+ 1/2�i−1�

(
1+ �

9�22i�

)�*�i�−*�i−1��
�

which implies that

*�i�−*�i− 1� ≤ log�1+ 1/2i−1�
log�1+ �/�9�22i+4���

≤
(
1
2i−1

)(
1+ 9�2

2i�

�

)
= ��2i/���

where we used the inequalities log�1 + x� ≤ x and
1/ log�1 + x� ≤ 1 + 1/x. Note that �k is an �-core
set after +��log2�1/���� iterations. Therefore, the total
number of iterations can be bounded above by

+��log2�1/���� = +�1�+
�log2�1/���∑

i=2
�+�i�−+�i− 1��

= ��1/��+
�log2�1/���∑

i=1
��2i/��

= �

(
2�log2�1/���

�

)
= ��1/������

Arguing similarly as in the proof of Lemma 4.2, we
obtain an �-core set of size ��1/�����. �

We remark that the procedure that yields the
improved core set result of Theorem 4.1 can be turned
into an efficient approximation algorithm under the
assumption that the smaller instances of the weighted
Euclidean one-center problem can be solved exactly
and efficiently. In the next section, we propose and
analyze an approximation algorithm that computes a
core set satisfying the same asymptotic bound of The-
orem 4.1 without the strong requirements of an exact
and efficient solver for smaller subproblems.
In addition to establishing the existence of a core

set of size ��1/��, Bădoiu and Clarkson (2003) also
propose the following simple, iterative algorithm for
the minimum enclosing ball problem. Their algo-
rithm starts with any input point as the initial cen-
ter c1 and updates the center using the formula
ck+1← �1 − 1/�k + 1��ck + �1/�k + 1��ak∗ , where ak∗

denotes the furthest point from ck. We do not pursue

the generalization of their algorithm to the weighted
Euclidean one-center problem in this paper for the
following reasons. First, they establish that this algo-
rithm computes a �1+ ��-approximate solution to the
minimum enclosing ball problem in 1/�2 iterations,
which results in an overall complexity of ��mn/�2�
operations (Bădoiu and Clarkson 2003). In contrast,
the specialization of our algorithm to the minimum
enclosing ball problem requires only ��mn/�� opera-
tions. Second, their algorithm exclusively works with
the primal problem ��1�. On the other hand, while
our algorithm primarily works with the dual prob-
lem ���, the termination criterion relies on the pri-
mal perspective. As such, the termination criterion
may be satisfied earlier in our algorithm, whereas
their algorithm requires exactly 1/�2 iterations in order
to guarantee a �1+ ��-approximate solution. Finally,
the analysis of their algorithm relies on the follow-
ing crucial property. At iteration k of their algo-
rithm, suppose that ck �= c∗, where c∗ is the optimal
center. Let 	 denote the halfspace passing through
c∗ and perpendicular to ck − c∗. Using the halfspace
lemma, Bădoiu and Clarkson (2003) show that the fur-
thest point ak∗ lies in the closed halfspace bounded
by 	 and not containing ck. Based on this observa-
tion, they can bound �ck+1 − c∗� using the bound
on �ck − c∗�. The straightforward extension of this
result to the weighted Euclidean one-center problem
would require that the input point with the largest
weighted distance from ck would similarly lie in the
closed halfspace bounded by 	 and not containing
ck. Despite the fact that the halfspace lemma can
be extended to the weighted case (see Lemma 4.1),
it turns out that this straightforward extension does
not hold true as illustrated by the following simple
instance. Let

� �= 	�1�0�T � �−1�0�T � �0�1253�0�2877�T 
�

� �= 	1�1�3�1868
�

It is easy to verify that c� = �0�0�T and �� = 1. Sup-
pose that c1 = �1�0�T . The weighted distance between
c1 and �0�1253�0�2877�T is about 2�9344 while the
weighted distance between c1 and �−1�0�T is 2.
Therefore, the input point with the largest weighted
distance from c1 does not have a nonpositive x1
component, which reveals that the extension of the
aforementioned result does not hold in general. This
simple example illustrates that the main ingredient
used in the analysis of their algorithm does not
necessarily extend to the weighted Euclidean one-
center problem. Therefore, even if the algorithm can
be extended, the analysis would require a different
approach, in which case, this would no longer be a
straightforward extension of their result.



Kumar and Yıldırım: An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem
620 INFORMS Journal on Computing 21(4), pp. 614–629, © 2009 INFORMS

5. The Algorithm
In this section, given an input set � �= 	a1� � � � � am
⊂�n

with corresponding positive weights� = 	�1� � � � ��m

and � > 0, we present an algorithm that com-
putes a �1+ ��-approximate solution to the weighted
Euclidean one-center problem by approximately solv-
ing the dual problem ��� (see Algorithm 5.1).

Algorithm 5.1
The algorithm that computes a �1 + ��-approximate
solution to the weighted Euclidean one-center of
���� �:
Require: Input set of points �= 	a1� � � � � am
⊂�n�
� = 	�1� � � � ��m
� � > 0.
1: Run Algorithm 3.1 to compute u0 ∈�m�aj� aj∗ .
2: �0← 	aj� aj∗
" �i ← ��i�

2� i = 1� � � � �m;
3: c0← �1/

∑m
i=1 u

0
i �i�

∑m
i=1 u

0
i �ia

i" k ← 0;
4: repeat
5: �k ←��uk�;
6: k∗ ← argmaxi=1�����m �i�ai − ck�2;

k∗ ← argmini� uk
i >0

�i�ai − ck�2;
7: ,+

k ← ��k∗�ak∗ − ck�2/�k�− 1�
,−

k ← 1− ��k∗�ak∗ − ck�2/�k�;
8: ,k ← max	,+

k � ,−
k 
;

9: if ,k ≤ �1+ ��2− 1 then break
10: if ,k > ,−

k then
11: �k ← �

∑m
i=1 u

k
i �i�/�k∗ ;

12: -k ←




�k

1−�k

(√
1+ �1−�k�,k

1+�k,k

−1
)

if �k <1�

,k/�2�1+,k� if �k=1�
�k

�k−1
(
1−

√
1− ��k−1�,k

1+�k,k

)
if �k >1"

13: uk+1← �1−-k�uk +-kek∗ ;
14: ck+1← �1/��1−-k��k +-k� 

· ��1−-k��kck +-kak∗�;
15: �k+1←�k ∪ 	ak∗
;
16: else
17: �k ← �

∑m
i=1 u

k
i �i�/�k∗ ;

18: -k ←




+� if ,k = 1�

�k

1−�k

(
1−

√
1− �1−�k�,k

1−�k,k

)
if �k < 1�

,k/�2�1− ,k� if �k = 1�

�k

�k − 1
(√
1+ ��k − 1�,k

1−�k,k

− 1
)

if �k > 1 and �k,k < 1�
+� if �k > 1 and �k,k ≥ 1"

19: -k ← min	-k�uk
k∗/�1−uk

k∗�
;

20: if -k = uk
k∗/�1−uk

k∗� then
21: �k+1←�k\	ak∗
;
22: else
23: �k+1←�k"
24: end if
25: uk+1← �1+-k�uk −-kek∗ ;
26: ck+1← �1/��1+-k��k −-k� 

· ��1+-k��kck −-kak∗�;
27: end if
28: k ← k+ 1;
29: until ,k−1 ≤ �1+ ��2− 1
30: Output ck��k�uk� ��1+ ,k��

k 1/2.

We now explain Algorithm 5.1 in more detail. The
algorithm is initialized by calling Algorithm 3.1 that
computes an initial feasible solution u0 ∈ �m of the
dual formulation ���. At each iteration, Algorithm 5.1
maintains a dual feasible solution uk ∈ �m and com-
putes a trial solution �ck� ��k�1/2� = �ck� ���uk��1/2�.
By (7), this solution coincides with the optimal solu-
tion �c����� if and only if uk is an optimal solution
of ���. Otherwise, by dual feasibility of uk, we have
��k�1/2 < ��.
At each iteration, Algorithm 5.1 computes two

parameters ,+
k and ,−

k . Note that ,+
k is the smallest

value of , such that �c��1/2� = �ck� ��1 + ,��k 1/2� is
a feasible solution of the primal formulation ��1�.
Similarly, ,−

k is the smallest value of , such that
�i�ai − ck� ≥ ��1− ,��k 1/2 for all ai ∈ �k. Since ,k �=
max	,+

k � ,−
k 
≥ ,+

k , it follows that

��k�1/2 ≤ �� ≤ �1+ ,k�
1/2��k�1/2� (13)

Following Todd and Yıldırım (2007), iteration k is
called a plus-iteration if ,k > ,−

k . It is called a minus-
iteration if ,k ≤ ,−

k and -k > uk∗/�1− uk∗�. Otherwise,
we call it a drop-iteration since �k+1 is then obtained
by removing ak∗ from �k.
At a plus-iteration, the next feasible solution

uk+1 ∈�m is given by an appropriate convex combi-
nation of uk and ek∗ . The weights used in the convex
combination are determined by

-k = argmax
-∈�0�1 

���1−-�uk +-ek∗�� (14)

Note that uk+1 = �1− -k�uk + -kek∗ is a feasible solu-
tion of ��� and the algorithm computes the new trial
solution �ck+1� ��k+1�1/2� as a function of uk+1. It turns
out that ck+1 is obtained by moving ck towards ak∗ ∈�
in this case.
At a minus- or drop-iteration, the next feasible solu-

tion uk+1 is obtained by moving uk away from ek∗ . In
this case, -k is given by

-k = argmax
-∈�0�uk

k∗ /�1−uk
k∗ � 

���1+-�uk −-ek∗�� (15)
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Note that the range of - is chosen to ensure the non-
negativity of uk+1. In contrast with a plus-iteration,
ck+1 is obtained by moving ck away from ak∗ ∈ � at a
minus- or drop-iteration.
Algorithm 5.1 is the adaptation of the Frank-

Wolfe algorithm (Frank and Wolfe 1956) using Wolfe’s
away steps (Wolfe 1970) to the weighted Euclidean
one-center problem using the initialization procedure
given by Algorithm 3.1. This algorithm is a sequential
linear programming algorithm for the dual problem
��� and generates a sequence of feasible solutions with
nondecreasing objective function values. At each itera-
tion, the nonlinear objective function��u� is linearized
at the current feasible solution uk. At a plus-iteration,
the new feasible solution uk+1 is obtained by mov-
ing towards the vertex of the unit simplex that maxi-
mizes this linear approximation. At a minus- or drop-
iteration, uk+1 is obtained by moving away from the
vertex that minimizes the linear approximation, where
the minimization is restricted to the smallest face of
the unit simplex that contains uk. In either case, the
parameter -k is chosen so as to ensure the maximum
improvement in the original objective function ��u�.
We remark that Algorithm 5.1 reduces to Algo-

rithm 4.1 of Yıldırım (2008) if all weights �i are iden-
tical. Furthermore, �k is always equal to one in this
case, which implies that the optimal solution -k of
each of the line search problems (14) and (15) has a
much simpler expression. In the presence of noniden-
tical weights, it turns out that the expression for -k

depends on the value of �k at each iteration.

5.1. Analysis of the Algorithm
We analyze Algorithm 5.1 in this section. Note
that the objective function values ��uk� of the iter-
ates generated by Algorithm 5.1 are monotonically
nondecreasing due to the choice of -k given by (14)
at a plus-iteration and by (15) at a minus- or drop-
iteration. First, we establish lower bounds on the
improvement at each plus- or minus-iteration.

Lemma 5.1. At each plus- or minus-iteration, we have

�k+1

�k
≥



1+ �k�,k�

2

4�1+ ,k�
� if �k < 1�

1+ �,k�
2

4�1+ ,k�
� otherwise�

(16)

Proof. By definition of ck,

�k =��uk�=
m∑

i=1
uk

i �i�ai�2−
m∑

i=1
uk

i �i�ck�2� (17)

Let us first consider a plus-iteration. In this case,
uk+1 = �1 − -k�uk + -kek∗ , where ak∗ ∈ � is the
point with the largest weighted distance from ck.

Furthermore, ck+1 = �1 − $�ck + $ak∗ , where $ =
-k/��1−-k��k +-k�. Therefore,

�k+1 = ���1−-k�uk +-kek∗�

= �1−-k�
m∑

i=1
uk

i �i�ai�2+-k�k∗�ak∗�2

−
[
�1−-k�

m∑
i=1

uk
i �i +-k�k∗

][
�1−$��ck�2

+$�ak∗�2−$�1−$��ak∗ − ck�2]
= �1−-k�

m∑
i=1

uk
i �i�ai�2− �1−$��k∗-

k

$
�ck�2

+ �k∗-
k�1−$��ak∗ − ck�2

= �1−-k�

[ m∑
i=1

uk
i �i�ai�2−

m∑
i=1

uk
i �i�ck�2

]

+-k�1−$��1+ ,k��
k

= �k�1−-k�

[
1+ -k�k�1+ ,k�

�1−-k��k +-k

]
�

where we used (9) for the computation of �ck+1�2 in
the second equality, the definitions of �k and $ in
the third one, and the definitions of �k and ,k in the
fourth one. It follows that

�k+1 = �k.+
k �-k��

where

.+
k �-� �= �1−-�

(
1+ -�1+ ,k�

1−-+-/�k

)
�

It is straightforward to verify that the first and second
derivatives of .+

k with respect to - are given by

�.+
k �′�-�

= �-2�1+�k,k���
k − 1�− 2-�k�1+�k,k�+ ��k�2,k�

/�-��k − 1�−�k�2�

�.+
k �′′�-�= �2�1+ ,k���

k�2�/�-��k − 1�−�k�3�

which together imply that .+
k �-� is a strictly concave

function on - ∈ �0�1 for each �k > 0 and that -k ∈
�0�1� is its unique maximizer.
The proof is based on establishing a lower bound

on .+
k �-k�. Suppose first that �k < 1. In this case, we

have

-k = �k

1−�k

(√
1+ �1−�k�,k

1+�k,k

− 1
)

= �k,k

2
√
1+/1�1+�k,k�

≥ -k
∗ �= �k,k

2�1+ ,k�
�
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where we used the mean value theorem on the func-
tion

√
1+ x to derive the second equality with /1 ∈

�0� ��1 − �k�,k /�1 + �k,k��, and we used the upper
bound on /1 and the fact that �k < 1 to arrive at the
last inequality.
Since -k is the maximizer of .+

k �-�, it follows that

.+
k �-k�

≥.+
k �-k

∗�=1+
�k�,k�

2

2�1+,k�

(
1− 1+,k

2�1+,k�+�1−�k�,k

)

≥ 1+ �k�,k�
2

4�1+ ,k�
�

where we used �k < 1 to derive the last inequality.
This establishes the first part of (16) at a plus-iteration.
Suppose now that �k = 1. Since -k = ,k/�2�1+ ,k� ,

we have

.+
k �-k�= 1+ �,k�

2

4�1+ ,k�
�

Finally, if �k > 1 at a plus-iteration, then we have

-k = �k

�k − 1
(
1−

√
1− ��k − 1�,k

1+�k,k

)

≥ ,k

2��1/�k�+ ,k�
≥ ,k

2�1+ ,k�
�

where we used the inequality
√
1− x ≤ 1− �1/2�x for

x ≤ 1 and the fact that �k > 1. The second part of the
inequality (16) follows from the previous case since
1− -k + �-k/�k� < 1, which completes the proof for a
plus-iteration.
Let us now consider a minus-iteration. In this case,

uk+1 = �1 + -k�uk − -kek∗ , where ak∗ ∈ �k is the point
with the smallest weighted distance from ck. Similarly
to a plus-iteration, we obtain

�k+1 =���1+-k�uk −-kek∗�= �k.−
k �-k��

where

.−
k �-� �= �1+-�

(
1− -�1− ,k�

1+-−-/�k

)
�

Note that ,k ∈ �0�1 at a minus-iteration. The first and
second derivatives of .−

k are given by

�.−
k �′�-�

= �-2��k − 1���k,k − 1�+ 2-�k��k,k − 1�+ ��k�2,k�

/��k + ��k − 1�-�2�

�.−
k �′′�-�= �2�,k − 1���k�2�/��k + ��k − 1�-�3�

If ,k = 1, then .−
k �-� →+� as - →+�. Similarly, if

,k < 1 and �k,k ≥ 1, then .−
k �-� is a strictly increas-

ing function on - ≥ 0. Therefore, Algorithm 5.1 sets

-k =+� in either one of these two cases, which sub-
sequently leads to a drop-iteration.
Suppose first that �k < 1. In this case, .−

k �-� is a
strictly concave function on - ∈ �0��k/�1−�k�� since
,k ∈ �0�1� at a minus-iteration. The unique maximizer
-k is given by

-k = �k

1−�k

(
1−

√
1− �1−�k�,k

1−�k,k

)
≥ -k

∗∗ �= �k,k

2�1−�k,k�
�

where we again used the inequality
√
1− x ≤ 1 −

�1/2�x for x ≤ 1. Therefore,

.−
k �-k�≥.−

k �-k
∗∗�=1+

�k�,k�
2

2�2−,k��
k+1�� ≥1+

�k�,k�
2

4�1+,k�
�

This establishes the first part of (16) at a minus-
iteration.
Suppose now that �k = 1. Since -k = ,k/�2�1− ,k� 

at a minus-iteration, we have

.−
k �-k�= 1+ �,k�

2

4�1− ,k�
≥ 1+ �,k�

2

4�1+ ,k�
�

Finally, if �k > 1 at a minus-iteration, note that we
should necessarily have �k,k < 1. In this case, .−

k �-�
is a strictly concave function on -≥ 0, and the unique
maximizer -k is given by

-k = �k

�k − 1
(√
1+ ��k − 1�,k

1−�k,k

− 1
)

= �k,k

2
√
1+/2�1−�k,k�

≥ ,k

2�1− ,k�
�

where we once again invoked the mean value theo-
rem with /2 ∈ �0� ���k − 1�,k /�1−�k,k � to derive the
second equality, and we used the upper bound on /2
and the fact that �k > 1 to obtain the inequality.
The second part of the inequality (16) follows from

the previous case since 1 + -k − �-k/�k� > 1, which
completes the proof. �

Note that Lemma 5.1 establishes lower bounds on
the improvement at each plus- or minus-iteration. On
the other hand, no such lower bound can be derived
for drop-iterations since -k can be arbitrarily small.
Therefore, we can only say that the dual objective
function value does not decrease at a drop-iteration.
We remark that the lower bounds on the improve-

ment at each plus- or minus-iteration depend on �k.
The following result is an immediate consequence of
Lemma 5.1.

Corollary 5.1. Let �∗ �= min	1� infk=0�1���� �k
 > 0.
Then, at each plus- or minus-iteration,

�k+1

�k
≥ 1+ �∗�,k�

2

4�1+ ,k�
� (18)



Kumar and Yıldırım: An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem
INFORMS Journal on Computing 21(4), pp. 614–629, © 2009 INFORMS 623

We next analyze the complexity of Algorithm 5.1.
For , > 0, let us define the following parameter:

0�,� �=min	k� ,k ≤ ,
� (19)

Also, we denote the number of drop-iterations in the
first 0�,� iterations of Algorithm 5.1 by 1�,�.

Lemma 5.2. 0�·� and 1�·� satisfy the following
relationships:

1�1�= 0� (20a)

0�1�= ��1/�∗�� (20b)

0�1/2i�− 0�1/2i−1�= ��2i/�∗�+ �1�1/2i�−1�1/2i−1���

i = 1�2� � � � � (20c)

Proof. Note that Algorithm 5.1 cannot have any
minus- or drop-iterations until ,k ≤ 1, which implies
that 1�1� = 0. Therefore, at each plus-iteration k with
,k > 1, it follows from Corollary 5.1 that

�k+1

�k
≥ 1+ �∗�,k�

2

4�1+ ,k�
≥ 1+ �∗

8
�

where we used the fact that x2/�1+x� is an increasing
function on x ≥ 0. Iterating the inequality above and
using the fact that 9�0 ≥ �� ≥ �0 (see Lemma 3.1), we
obtain

�� ≥ �k ≥ �1+ ��∗/8� k�0 ≥ �1+ ��∗/8� k���/9��

which implies that 0�1�= ��log 9/�log �1+ ��∗/8����=
��1/�∗�, where we used the inequality log�1 + x� ≥
x/�x+ 1� for all x >−1. This establishes (20b).
Let i be any positive integer and let k̃ �= 0�1/2i−1�.

At each plus- or minus-iteration with ,k > 1/2i, it fol-
lows from Corollary 5.1 that

�k+1 ≥ �k

(
1+ �∗�,k�

2

4�1+ ,k�

)
≥ �k

(
1+ �∗

2i+2�2i + 1�
)

�

At a drop-iteration, we only have �k+1 ≥ �k. There-
fore, let 1i �= 1�1/2i� − 1�1/2i−1� denote the number
of drop-iterations between iteration number 0�1/2i−1�
and iteration number 0�1/2i� of Algorithm 5.1. There-
fore, iterating the above inequality and using the
fact that �1+ �1/2i−1� �k̃ ≥ �� ≥ �k̃ (see (13)), we can
bound the number of plus- or minus-iterations 2
between iteration 0�1/2i� and iteration 0�1/2i−1� using

�� ≥ �k̃+2+1i ≥ �k̃

(
1+ �∗

2i+2�2i + 1�
)2

≥ ��

1+ �1/2i−1�

(
1+ �∗

22+i�2i + 1�
)2

�

which implies that

2 +1i ≤
log�1+ 1/2i−1�

log�1+�∗/�22+i�2i + 1��� +1i

≤
(
1
2i−1

)(
1+ 2

2+i�2i + 1�
�∗

)
+1i

= ��2i/�∗�+1i�

where we used the inequalities log�1 + x� ≤ x and
log�1 + x� ≥ x/�x + 1�. This implies that 0�1/2i� −
0�1/2i−1� = ��2i/�∗� + �1�1/2i� − 1�1/2i−1��, which
completes the proof. �

We are now in a position to establish the iteration
complexity of Algorithm 5.1.

Lemma 5.3. Let � ∈ �0�1�. Then, Algorithm 5.1 com-
putes a �1+ ��-approximate solution in 0���= ��1/��∗���
iterations.

Proof. Let i∗ be a positive integer such that 1/2i∗ ≤
� < 1/2i∗−1. Therefore, 0��� ≤ 0�1/2i∗�. By Proposi-
tion 5.2,

0�1/2i∗�

= 0�1�+
i∗∑

i=1
�0�1/2i�− 0�1/2i−1��

= ��1/�∗�+
i∗∑

i=1
���2i/�∗�+ �1�1/2i�−1�1/2i−1���

= ��1/��∗���+1�1/2i∗��

where we used the fact that 2i∗ < 2/�.
The proof will be complete if we can establish that

1�1/2i∗�= ��1/��∗���. Note that we cannot bound the
improvement from below at a drop-iteration. How-
ever, each such iteration can be coupled with the lat-
est previous plus-iteration in which the component
of u that just dropped to zero is increased from zero.
To account for the two initial positive components
of u0, we may have to increase the iteration count by
two. It follows that 1�1/2i∗�= ��1/��∗���. �

The following theorem establishes the overall com-
plexity of Algorithm 5.1.

Theorem 5.1. Given � �= 	a1� � � � � am
 ⊂�n with cor-
responding weights � = 	�1� � � � ��m
 and � ∈ �0�1�,
Algorithm 5.1 computes a �1+��-approximate solution for
the instance ���� � of the weighted Euclidean one-center
problem in ��mn/��∗��� arithmetic operations.

Proof. Let u3 denote the final iterate computed by
Algorithm 5.1 and let �3 =��u3�. By (13),

�3 ≤ �� ≤ �1+ ,3��
3�

Since ,3 ≤ �1 + ��2 − 1 by the termination crite-
rion, it follows that ��3�1/2 ≤ �� ≤ ��1 + ,3��

3 1/2 ≤
�1 + ����3�1/2, which implies that �c3���c3�� =
�c3� ��1+ ,3��

3 1/2� is a �1+ ��-approximate solution.



Kumar and Yıldırım: An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem
624 INFORMS Journal on Computing 21(4), pp. 614–629, © 2009 INFORMS

At each iteration, the dominating work is the com-
putation of the largest weighted distance from the
current center, which can be performed in ��mn�
operations. The initial constant factor approxima-
tion can also be computed in ��mn� operations.
Therefore, Algorithm 5.1 terminates in ��mn/��∗���
operations. �

Next, we establish that Algorithm 5.1 computes an
�-core set upon termination.

Theorem 5.2. Let � ∈ �0�1� and let u3 denote the final
iterate computed by Algorithm 5.1. Then, �3 ⊂ � is an
�-core set of �. Furthermore, ��3� = ��1/��∗���.

Proof. We first prove the second statement. Note
that �0 is initialized with two elements, and each
iteration adds at most one element to �k. Therefore,
��3� = ��1/��∗��� by Lemma 5.3.
Note that the restriction of u3 to its positive compo-

nents is a feasible solution of the dual formulation of
the instance ��3��3� with the same objective function
value �3, where �3 �= 	�j � aj ∈�3
. Therefore,

�3 ≤ ��3
≤ �� ≤ �1+ ,3��

3 ≤ �1+ ��2�3�

where ��3
denotes the optimal value of the dual for-

mulation corresponding to the instance ��3��3�. It
follows that

��3
≤ �� ≤ �1+ ����3

�

where ��3
= ���3

�1/2, which implies that �3 is an
�-core set of �. �

Note that each of the previous results depends
on the parameter �∗, which can be determined only
upon the termination of Algorithm 5.1. However, this
parameter can be a priori bounded below by

� = mini=1�����m �i

maxi=1�����m �i

� (21)

where �i is defined as in (4), since each �k is the ratio
of a convex combination of the �i to some �j . There-
fore, each of the results established in Theorems 5.1
and 5.2 holds true if �∗ is replaced by � . This implies
that Algorithm 5.1 terminates in ��mn/����� arith-
metic operations and computes an �-core set of size
��1/����� for � ∈ �0�1�, which asymptotically matches
the bound of Theorem 4.1 without the requirement to
solve smaller subproblems exactly. We remark that the
overall complexity of Algorithm 5.1 and the asymp-
totic core set size reduce to ��mn/�� and ��1/��,
respectively, for the special case of the minimum
enclosing ball problem since � = 1. These results
match the current best-known bounds for the mini-
mum enclosing ball problem (Yıldırım 2008, Bădoiu
and Clarkson 2008).

5.2. Relation to Other Core Set Results
Recently, Clarkson (2008) studied the properties of
several variants of the Frank-Wolfe algorithm for
general concave maximization problems over the
unit simplex, of which the dual formulation of the
weighted Euclidean one-center problem is a special
case. In particular, he proposed a general definition
of an additive core set based on an additive error on
the optimal value as opposed to the multiplicative
one (see (3)) adopted in our setting. He derived upper
bounds on the size of an additive core set for the gen-
eral problem. He established that his definition of an
additive core set almost coincides with the usual defi-
nition of a multiplicative core set in the special case of
the dual formulation of the minimum enclosing ball
problem. As such, his results imply the known bound
of ��1/�� on the size of an �-core set for this problem.
In this subsection, we discuss the relations between

his bound on the size of an additive core set and
our bound on the size of a multiplicative one. In
particular, we establish that Clarkson’s (2008) addi-
tive core set result can be transformed into a mul-
tiplicative core set result for the weighted Euclidean
one-center problem. However, it turns out that these
implied bounds are not asymptotically better than our
bounds.

5.2.1. The Nonlinearity Measure 
. Consider the
following optimization problem:

max
u

+�u�

subject to u ∈� �
(22)

where +� �m → � is a twice differentiable concave
function and � �= 	u ∈�m� eT u = 1� u ≥ 0
 is the unit
simplex. Clearly, this class of problems includes the
dual optimization problem ���.
Using the Frank-Wolfe algorithm (and some of its

variants), Clarkson (2008) established that, for any
,′ > 0, one can compute a feasible solution u′ ∈� such
that

+�u′�≥+�u∗�− ,′�

where u∗ ∈ � is an optimal solution of (22), in
at most ��
�+�/,′� iterations. Since his initial solu-
tion has only one nonzero component, u′ has at most
��
�+�/,′� positive components due to the nature
of add-iterations in the Frank-Wolfe algorithm. Here,

�+� is a measure of nonlinearity of the objective
function + and is defined as


�+� �= sup
u�z∈� �y=u+'�u−z�∈�

1
'2

�+�u�+ �y −u�T

·4+�u�−+�y��� (23)

Essentially, 
�+� is an upper bound on the (scaled)
difference between the function + and the lin-
ear approximation to + measured over all feasible
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solutions. For instance, 
�+� = 0 for a linear func-
tion + . Therefore, 
�+� can be viewed as a measure
of “flatness” of + (Clarkson 2008).
Clarkson’s (2008) upper bound on the size of the

additive core set is useful if 
�+� can be bounded
above for a given function + . For instance, Clarkson
showed that an upper bound on 
�+� can be easily
derived if + is a quadratic function, which is the case
for the objective function of the dual formulation of
the minimum enclosing ball problem. We now estab-
lish that 
��� can be similarly bounded above for the
objective function � of the problem ��� even though
� is not a quadratic function for the weighted prob-
lem. Recall that

��u� =
m∑

i=1
ui�i�a

i�T ai

− 1∑m
i=1 ui�i

( m∑
i=1

ui�ia
i

)T( m∑
i=1

ui�ia
i

)
�

It follows that

4��u�= d− 2
uT �

Mu+ uT Mu

�uT ��2
��

4 2��u�=− 2
�uT ��3

P�u�MP�u�T �

where d ∈ �m and is defined as di �= �i�ai�2� i =
1� � � � �m, � �= ��1� � � � � �m T ,

A �= [
a1� � � � � am

]
� M �=Diag���AT ADiag����

and
P�u� �= �uT − �uT ��I �

By the second mean value theorem,


���≤ sup
u�z∈�

−1
2
�z−u�T 4 2��ũ��z−u��

where ũ ∈ � is a point that lies on the line segment
from u to z. Therefore,


���≤ sup
u�z∈�

1
��uT ��3

�z−u�T P��u�MP��u�T �z−u��

where �u ∈� is any point that lies on the line passing
through x and z. The first term on the right-hand side
can be bounded above by 1/�mini �i�

3. Using the fact
that �u= u+8�z−u� for some 8 ∈�, it follows that

�P��u�T �z−u�� = ���T z�u− �uT ��z�
≤ ��T z��u�+ �uT ���z� ≤ 2

(
max

i
�i

)
�

since u and z are on the unit simplex and have
Euclidean norm at most one. Furthermore,

�M� ≤ �A�2�Diag����2 =
(
max

i
�i

)2�A�2�

where �·� denotes the operator norm of a matrix.
Therefore, we obtain


���≤ �maxi �i�
4

�mini �i�
3
4�A�2 = 4�maxi �i��A�2

�3
� (24)

where � is defined as in (21).
By (24), we immediately obtain an upper bound of

����maxi �i��A�2 /�3,′� on the size of a ,′-additive core
set for the weighted Euclidean one-center problem.

5.2.2. Additive vs. Multiplicative Error. In this
section, given a feasible solution of ��� that has a small
multiplicative (or relative) error with respect to the
optimal value ��u∗�, we establish a bound on the cor-
responding additive error. This will enable us to relate
our bounds to those arising from Clarkson’s (2008)
results.
Given � > 0, Algorithm 5.1 computes a feasible

solution uk ∈� such that

��uk�≤��u∗�≤ �1+ ,���uk��

where ,≤ �1+ ��2− 1= ����. Therefore,

��uk�≥��u∗�− ,��uk�� (25)

which implies that (25) is satisfied with an additive
error ,′ if

,′ ≤ ,��uk�� (26)

We now establish an upper bound on ,′ indepen-
dent of the function � to compute a lower bound on

���/,′.
Note that

��uk� ≥ ��u0�

= �aj − aj∗�2
�1/�j + 1/�j∗�

2

≥ �aj − al�2
�1/�j + 1/�l�

2

= �1/4�
(
min

i
�i

)
�aj − al�2�

where j and j∗ are defined as in Algorithm 3.1 and
al ∈� is the point with the largest Euclidean distance
from aj . It follows that (26) is satisfied if

,′ ≤ �1/4�,
(
min

i
�i

)
�aj − al�2� (27)

We remark that the inequality (27) that establishes
the relation between , and ,′ is asymptotically tight as
illustrated by the following example. Let�= 	−1�0�1

and � = 	1�1 + :�1
, where : > 0. It is easy to verify
that ��u0� = ��1 + :�/�2 + :� 2 and ��u∗� = 1. Clearly,
��u∗�≤ �1+ ,���u0�with ,= �1/�1+:� �2+ 1/�1+:��
and��u0�≥��u∗�−,′with,′ = �2:+3�/�2+:�2.There-
fore, both ,′ and the right-hand side of (27) tend to 3/4
as : goes to zero.
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Next, we establish a lower bound on 
���. Recall
that


��� �= sup
u�z∈� �y=�1−'�u+'z∈�

1
'2

���u�+ �y−u�T

·4��u�−��y���

which implies that any feasible choices of u�y�z ∈�
will yield a lower bound on 
���. Let

u= el� z= ej� y = z= ej �'= 1��
where the indices j and l are chosen such that aj ∈�
is the point with the largest weight �j and al ∈ � is
the point with the largest Euclidean distance from aj .
With these choices, we have ��u�=��y�= 0. Hence,

��� ≥ �ej − el�T �d− �2/�l�Mel + �Mll/��l�

2���

= �j�aj�2− �l�al�2− �2/�l�Mjl

+ �2/�l�Mll + �Mll�j �/��l�
2−Mll/�l

= �j�aj�2−�l�al�2−2�j�a
j �T �al�+�l�al�2+�j�al�2

= �j�aj − al�2�
where we used the fact that Mik = �i�k�a

i�T �ak�.
Therefore,


���≥ �j�aj − al�2� (28)

Combining (27) with (28), it follows that


���

,′ ≥ 4
�,

�

which implies that Clarkson’s (2008) result does not
improve our upper bound of ��1/���= ��1/�,� on the
size of an �-core set, even if a matching upper bound
for 
��� could be found.
We remark that Clarkson’s (2008) analysis is quite

general, and some of his results yield the tightest
possible bounds on the size of core sets as in the
case of the minimum enclosing ball problem. How-
ever, for specific problems such as the problem con-
sidered in this paper, our line of analysis may lead
to core set bounds that are at least as good as the
ones implied by his results. Furthermore, as pointed
out in Clarkson (2008), there are certain problems of
the form (22) with objective functions + for which

�+� is unbounded. For instance, the objective func-
tion of the dual formulation of the minimum enclos-
ing ellipsoid problem satisfies this property. For such
problems, bounds that depend on 
�+� are not use-
ful, whereas the line of analysis adopted in this
paper may still yield small core set results (Kumar
and Yıldırım 2005, Todd and Yıldırım 2007). These
observations seem to suggest that problem-specific
approaches, although narrower in scope, may lead
to sharper bounds than a general-purpose approach
with a much wider scope.

6. Computational Experiments
In this section, we present and discuss our computa-
tional results. We implemented Algorithm 5.1 in MAT-
LAB and conducted our computational experiments
on input sets generated randomly using various distri-
butions. Specifically, we considered the following two
classes of input sets:
1. Normal distribution: Each coordinate of each

input point was generated using the standard normal
distribution.
2. Uniform distribution: Each coordinate of each

input point was generated using the uniform distri-
bution on the interval �0�1�.
For each input point, the corresponding weight was

chosen uniformly from the interval �0�1�. Our experi-
ments were performed on a notebook computer with
an Intel Core 2 CPU T7400 2.17 GHz processor, 2 GB
of RAM, and a 120 GB, 5,400 rpm hard drive.
Our first experiment provides information about

the performance of Algorithm 5.1 on instances of
the weighted Euclidean one-center problem in small
dimensions (see Table 1). For each instance, the num-
ber of points m was set at 1,000. All points were uni-
formly generated from the n-dimensional unit cube.
We used � = 10−4 in our experiments. Table 1 reports,
for each dimension n, the core set sizes, CPU times,
number of iterations, value of � defined by (21), and
�∗ as defined in Corollary 5.1 averaged over 50 runs.
Table 1 reveals that Algorithm 5.1 is capable of

quickly computing a highly accurate solution in small
dimensions. In particular, the sizes of core sets com-
puted by the algorithm are significantly smaller than
the worst-case theoretical estimate. Furthermore, the
sizes of core sets are also considerably smaller than
the number of iterations, which suggests that drop-
iterations may be effective in maintaining small core
sets. Next, the values of � are much smaller than the
values of �∗, which implies that � can be a rather
loose lower bound on �∗. Therefore, the expression
of the complexity results in terms of � seems to
be a gross overestimate at least for the experimen-
tal setup used in Table 1. Finally, we remark that
Drezner and Gavish (1985) used essentially the same

Table 1 Computational Results with Uniform Distribution
for m= 1�000

n �� � Time (sec) Iterations � �∗

2 2.480 0.012 44.120 1.485× 10−9 0.906
3 3.360 0.012 53.880 0.159× 10−9 0.903
4 4.320 0.014 56.380 7.754× 10−9 0.897
5 4.820 0.017 69.720 2.387× 10−9 0.906
6 5.760 0.015 61.280 9.853× 10−9 0.907
7 6.140 0.016 61.800 1.423× 10−9 0.908
8 6.760 0.019 72.960 2.770× 10−9 0.895
9 7.240 0.018 67.240 0.029× 10−9 0.918
10 7.660 0.020 75.020 1.689× 10−9 0.915
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Figure 1 Various Experimental Results from the Implementation of Our Algorithm
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experimental settings in the implementation of their
ellipsoid algorithm. The number of iterations reported
in Table 1 are noticeably smaller than their counter-
parts in their implementation. We find it remarkable
that a simple first-order algorithm can outperform a
polynomial-time algorithm in terms of the total num-
ber of iterations.
Figure 1 presents several graphs in an attempt

to provide further insights into the performance of
Algorithm 5.1 for larger instances of the weighted
Euclidean one-center problem. In particular, we aim
to establish how the practical performance is affected
by input parameters such as the number of points m,
the dimension n, and the accuracy � using two classes
of input sets.
Figure 1 is organized such that the vertical axis

denotes the CPU time on each graph in the first col-
umn and it corresponds to the size of the core set on
each graph in the second column. In each row, exactly
two of the three parameters m�n, and � are fixed and
the third one is varied, which is denoted in the hor-
izontal axis. All of the data points in Figure 1 were
generated by averaging the CPU times and core set
sizes over 10 runs.
Figures 1(a) and 1(b) present the CPU times of

Algorithm 5.1 and the sizes of core sets returned by
the algorithm, respectively, for different values of the
dimension n using m = 104 and � = 0�01. Figures 1(c)
and 1(d) present the corresponding results with the
same experimental setup except for the choice of 0�001
for �. A study of these graphs reveals that the CPU
times tend to increase linearly with the dimension n
for both classes of input sets as predicted by the theo-
retical complexity results. The sizes of core sets seem
to exhibit a weaker dependence on n but are usually
much smaller than the corresponding worst-case esti-
mate of ��1/�����. Clearly, both the CPU times and
the sizes of core sets increase as � decreases.
The CPU times and the sizes of core sets with dif-

ferent numbers of input points m are presented in
Figures 1(e) and 1(f) using n= 50 and � = 0�001. Once
again, the CPU times seem to exhibit a linear depen-
dence on m for each class of input sets. On the other
hand, there seems to be no relation between the size
of the core set and the number of input points.
Finally, Figures 1(g) and 1(h) illustrate the relation-

ship between the performance of Algorithm 5.1 and
the accuracy � using n= 50 and m= 104. The accuracy
� is chosen as smaller powers of 2. Note that the hor-
izontal axis has a logarithmic scale. As predicted by
our theoretical analysis, both the CPU times and core
set sizes increase as � decreases for both classes of
input sets. It is worth noting that core set sizes tend to
increase linearly with respect to log�1/��, which con-
tributes to the efficiency of Algorithm 5.1 in practice.

In conclusion, Algorithm 5.1 seems to be able to
compute an approximate solution for larger instances
of the weighted Euclidean one-center problem in a
very reasonable amount of time. We remark that the
CPU times are remarkably small. In particular, an
instance of the problem with 106 input points in
50 dimensions can be solved in under 10 seconds.
Also notable is the fact that core set sizes tend to be
quite small, which is one of the main driving forces
behind the practical efficiency of Algorithm 5.1.

7. Concluding Remarks
In this paper, we developed and analyzed an algo-
rithm for the weighted Euclidean one-center prob-
lem. Our algorithm explicitly computes a core set
whose size is independent of the number of points
and the dimension. Our results subsume and extend
some of the previously known results for the mini-
mum enclosing ball problem to a larger class of prob-
lems. Computational experiments reveal the efficiency
of our algorithm in practice.
In the near future, we intend to work on differ-

ent variants of this problem such as the weighted
Euclidean one-center problem with outliers. Another
interesting research direction would be the investiga-
tion of the tightest bounds on the size of core sets.
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