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Abstract

In this paper, we determine the set of all stabilizing first-order

controllers that place the poles of the closed-loop system in a

desired stability region. The solution is based on a generalization

of the Hermite–Biehler theorem applicable to polynomials with

complex coefficients and the application of a modified stabilizing

gain algorithm to three subsidiary plants. The method given is also

applicable to PID controllers.
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1. Introduction

In many applications, stability of the closed-loop system
is not enough, and it is usually required that the poles
of the closed-loop system lie in more restrictive stability
regions. It is known that time domain specifications for a
closed-loop system can be translated into desired closed-
loop poles locations in the frequency domain. These are
specified in terms of the damping ratio and damped natural
frequency of the closed-loop poles [1]. A desired stability
region S in the complex plane is shown in Fig. 1, [2]. The
region S is the intersection of three regions S−λ, Sθ, and
S−θ where S−λ := {s : s ∈ C, Re[s] < −λ} is a shifted
Hurwitz stability region, Sθ := {s : s ∈ C, Re[se−jθ] < 0}
and S−θ := {s : s ∈ C, Re[sejθ] < 0} are rotated Hur-
witz stability regions. In [3], it is stated that if all the
poles of the closed-loop system lie in the region S, then
the step response of the compensated system exhibits a
settling time of no more than 4/λ and a maximum over-
shoot corresponding to the angle θ. In [4], the region S
is approximated by a circular region and a design proce-
dure that combines linear-quadratic optimal control with
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regional pole placement is given. See also [5–11] for differ-
ent methods of solving this problem. Recently, a method
for determining the set of all proportional controllers that
place the closed-loop poles in the region S was given in [2].

The quest for an analytic design method for first-order
controllers has been around for decades. Recently several
computational methods have been proposed to determine-
the set of all stabilizing first-order controllers. In [12,
13], stabilizing first-order controllers for continuous and
discrete-time systems were determined using boundary
crossing theorem to identify boundaries of stability region
of two parameters, by sweeping over the third parameter
the complete set can be determined. Using these results,
it has been shown that it is possible to obtain H∞ optimal
design with first-order controllers [14, 15]. Alternative
methods have been used to determine the total set of
controllers’ parameters that stabilize a given system. An
exact solution to stabilizing discrete-time systems by first-
order controllers was given in [16]. Using extensions of
the Hermite–Biehler theorem the set of all stabilizing first-
order controllers were determined in [17, 18]. In this paper,
we give a method to determine the set of all first-order
controllers that place the poles of the closed-loop system
in the region S. Once this set is determined, it is more
convenient to search, among such controllers, those that
satisfy other performance criteria imposed on the unit step
response.

The paper is organized as follows. In Section 2, a
generalization of the Hermite–Biehler theorem applicable
to polynomials with complex coefficients is stated. This
theorem is then used to convert the problem of determining
gains such that a plant have a certain number of real roots
to an equivalent problem of signature determination. In
Section 3, we give an algorithm that solves the problem of
determining all stabilizing first-order controllers that place
the poles of the closed-loop system in a desired stability
region. Section 4 contains some concluding remarks.

2. A Generalization of the Hermite–Biehler Theo-
rem

In this section, a generalization of the Hermite–Biehler
theorem to polynomials with complex coefficients [19] is
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Figure 1. Stability region S.

presented. Before proceeding any further, let us fix the
notation used in this paper. Let R denotes the set of
real numbers and C denotes the set of complex num-
bers and let C−, C0, C+ denote the points in the open
left half, jω-axis, and the open right half of the com-
plex plane, respectively. Given a set of polynomials
ψ1, . . . , ψk ∈ R[s] not all zero and k > 1, their greatest
common divisor (with highest coefficient 1) is unique and
it is denoted by gcd {ψ1, . . . , ψk}. If gcd {ψ1, . . . , ψk},=1,
then we say (ψ1, . . . , ψk) is coprime. The derivative of
ψ is denoted by ψ′. The set H of Hurwitz stable poly-
nomials are H= {ψ(s)∈C[s] : ψ(s)= 0⇒ s ∈ C−}. The
signature σ(ψ) of a polynomial ψ ∈C[s] is the differ-
ence between the number of its C− roots and C+ roots.
Given ψ ∈C[s], the real and imaginary parts (a, b) of
ψ(s) are the unique polynomials a, b∈R[ω] such that
ψ(jω)= a(ω)+ jb(ω). Finally, let us define the signum
function S : R→{−1, 0, 1} by

Sr =




−1 if r < 0

0 if r = 0

1 if r > 0

Theorem 1. [19] Let a non-zero polynomial ψ ∈C[s]
of degree n have the real-imaginary parts (a, b). Let
ω1<ω2< · · · <ωk be the real, distinct finite roots of b

with odd multiplicities. Also let ω0 =−∞, ωk+1 =∞, and
ξn be the leading coefficient of ψ(s). Then

σ(ψ) =




1
2

{Sa(ω0)(−1)k + 2
∑k

i=1 Sa(ωi)(−1)k−i

−Sa(ωk+1)
}Sb(∞)

if n is even and ξnis purely real,

or n is odd and ξnis purely imaginary.

1
2

{
2
∑k

i=1 Sa(ωi)(−1)k−i
}Sb(∞)

if n is even and ξnis not purely real,

or n is odd and ξnis not purely imaginary.

(1)

Proof: See [2, 19].

The following extension of Lemma 1 in [17] transforms
the problem of determining the number of real roots of a
real polynomial to an equivalent problem of finding the
signature of a complex polynomial.

Lemma 1. A non-zero polynomial ψ ∈R[u], has
r real roots without counting the multiplicities if
and only if the signature of the complex polynomial
ψ(jω)=ψ(w)+ jψ′(w) is −r.
Proof: We first assume that (ψ,ψ′) is coprime. If
deg ψ=n, then deg ψ′ =n− 1, deg ψ=n, and the highest
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coefficient ξn of ψ(s) depends only on the highest coef-
ficient ξn of ψ(ω). If n is even, then (jω)n is real. As
ξn =(jω)nξn is real, it follows that ξn is real. If n is odd,
then (jω)n is imaginary and using similar arguments it
follows that ξn is imaginary. In both cases, n even or odd,
we use the first equation of (1) in Theorem 1 to calculate
the signature of ψ(s). Let ψ(ω) have r real distinct roots
ω1<ω2< · · · <ωr. Since ψ′(w) is the derivative of ψ(w),
it follows that between any two consecutive real roots ωi

and ωi+1 of ψ(ω), there is an odd number of real roots
of ψ′(ω): vi1<vi2< · · · <vij , where j is an odd integer.
Since Sψ(vi1)=Sψ(vi2)= · · · =Sψ(vij), it follows that
2Sψ(vi1)− 2Sψ(vi2)+ · · · +(−1)j2Sψ(vij)= 2Sψ(vi1). In
the interval (−∞, ω1) or (ωr,∞), ψ′(ω) has an even num-
ber of real roots which do not affect the signature as the
sign of ψ is constant throughout the interval. Finally note
that Sψ(∞)Sψ′(∞)= 1, . . . ,Sψ(v01)Sψ′(∞)= (−1)r−1,
Sψ(−∞)Sψ′(∞)= (−1)r. Using these facts in (1) of
Theorem 1, we get σ(ψ)= 1

2

{Sψ(−∞)(−1)r−1 +2Sψ(v01)
(−1)r−2 + · · · −Sψ(∞)

}Sψ′(∞)=− r. Therefore, by

Theorem 1, the signature of ψ(s) is −r. Conversely, let
the signature of ψ(s) be −r. Using the first equation of (1)
in Theorem 1, it follows that ψ(ω) changes sign exactly r
times . Hence, ψ(ω) has r real roots. For non-coprime pair
(ψ,ψ′), repeating similar arguments it is easy to prove that
ψ(ω) has r real roots without counting the multiplicities if
and only if the signature of ψ(s) is −r. �

We now briefly describe a method to determine con-
stant stabilizing gains for complex polynomials. This
method will be used in the next section. Given a proper
plant g(s)= p(s)/q(s), where p, q ∈C[s] are coprime, the
set Ar(p, q) := {α∈R : σ

[
φ(s, α)

]
=σ[q(s)+αp(s)] = r}

is the set of all real α such that φ(s, α) has signature
equal to r. Let (h, g) and (f, e) be the real-imaginary
parts of q and p, respectively, so that q(jω)=h(ω)+ jg(ω),
p(jω)= f(ω)+ je(ω). Let d := gcd {f, e} so that f = df,
e= de, for coprime polynomials f, e∈R[ω]. Then, the
polynomial p(s) such that p(jω) := f(ω)+ je(ω) is free of
C0 roots. Letm=deg p less than or equal to n=deg q and
let (H,G) be the real-imaginary parts of q(s)p∗(s) where
p∗(jω) := f(ω)− je(jω). Also let F (ω) := p(s)p∗(s). By a
simple computation, it follows that,

H(ω) = h(ω)f(ω) + g(ω)e(ω)

G(ω) = g(ω)f(ω)− h(ω)e(ω) (2)

F (ω) = f(ω)f(ω) + e(ω)e(ω)

If G �≡ 0 and if they exist, let the real roots with odd
multiplicities of G(ω) be {ω1, . . . , ωk} with the ordering
ω1<ω2< · · · <ωk, with ω0 :=−∞ and ωk+1 :=∞ for no-
tational convenience and let ξ be the leading coefficient
of [q(s)+αp(s)]p∗(s). The following algorithm determines
whether Ar(p, q) is empty or not and outputs its elements
when it is not empty:

Algorithm 1.

1. Calculate

αj =




−H
F (ωj), j = 1, . . . , k & F (ωj) �= 0,

if n+m is even and ξ is not purely real,

or n+m is odd and ξ is not

purely imaginary.

−H
F (ωj), j = 0, . . . , k + 1 & F (ωj) �= 0,

if n+m is even and ξ is purely real,

or n+m is odd and ξ is purely imaginary.

and sort the distinct αj’s in ascending order

α0 < α1 < · · · < αk+2 < αk+3

where α0 =−∞ and αk+3 =∞.
2. Identify all the sequences of signums

I =




{i1, . . . , ik} if n+m is even and ξ is

not purely real,

or n+m is odd and ξ is

not purely imaginary.

{i0, i1, . . . , ik+1} ifn+m is even and ξ is

purely real,

or n+m is odd and ξ is

purely imaginary.

where ij ∈{−1, 1} for j=0, 1, . . . , k+1, that corre-
spond to the intervals (αj , αj+1) for j=0, . . . , k+2.

3. For each signum sequence Ij from step 2, if

r + σ(p∗) =




{(−1)k−1i0 + · · ·+ ik−2 − ik−1 + ik}
SG(∞)

if n+m is even and ξ is not

purely real,

or n+m is odd and ξ is not

purely imaginary.

1
2{(−1)ki0 + · · · − 2ik−1 + 2ik − ik+1}
SG(∞)

if n+m is even and ξ is

purely real,

or n+m is odd and ξ is

purely imaginary.

holds, then (αj , αj+1) ∈ Ar(p, q)
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Remark 1. By step 3 of Algorithm 1, a necessary condi-
tion for the existence of an α∈Ar(p, q) is that the imagi-
nary part of [q(s)+αp(s)]p∗(s) has at least |r+σ(p∗)| real
roots with odd multiplicities if n+m is even and ξ is not
purely real, or n+m is odd and ξ is not purely imagi-
nary, and |r+σ(p∗)−1| real roots with odd multiplicities
if n+m is even and ξ is purely real, or n+m is odd and ξ
is purely imaginary.

3. First-Order Controllers

Given a plant g(s)= p(s)/q(s) and a first-order controller
c(s)=α2s+α3/s+α1, our objective is to find all values of
(α1, α2, α3) such that the closed-loop characteristic poly-
nomial φ(s, α1, α2, α3)= (s+α1)q(s)+ (α2s+α3)p(s) has
all its roots in the region S given in Fig. 1. This is
equivalent to solving three subproblems using the stability
regions S−λ, Sθ, and S−θ and finding the intersection of
the solution sets.

Let us first solve the problem for the stability region Sθ.
Let us replace s by ejθs, then φθ(s, α1, α2, α3)= (ejθs+α1)
q(ejθs)+ (α2e

jθs+α3)p(e
jθs). Since θ is constant, we have

ejθ =β+ jγ and p, q ∈C[s]. The new characteristic poly-
nomial is given by

φ0θ(s, α1, α2, α3) = [(β + jγ)s+ α1]q(s)

+ [α2(β + jγ)s+α3]p(s)

= q0(s) + α3p0(s)

where q0(s)= [(β+ jγ)s+α1]q(s)+ [α2(β+ jγ)s]p(s),
p0(s)= p(s). Roots of φ(s, α1, α2, α3) in stability region Sθ

is equivalent to roots of φ0θ(s, α1, α2, α3) in the open left
half complex plane. Using the generalized Hermite–Biehler
theorem applicable to complex polynomials and Lemma 1,
we describe in what follows a method to compute all values
of (α1, α2, α3) such that φ0θ(s, α1, α2, α3) is Hurwitz stable.
Recall that q(jω)=h(ω)+ jg(ω), p(jω)= f(ω)+ je(ω),
p(jω)= f(ω)+ je(ω), and q(jω)p∗(jω)=H(ω)+ jG(ω),
p(jω)p∗(jω)=F (ω), where H, G, and F are given by (2).
Multiplying φ0θ(jω, α1, α2, α3) by p

∗
0(jω) we obtain

ψ1
θ(jω, α1, α2, α3) = [−ω(γH(ω) + βG(ω)) + α1H(ω)

−α2ωγF (ω) + α3F (ω)]

+ j[ω(βH(ω)− γG(ω))

+α1G(ω) + α2ωβF (ω)]

Note that only two parameters (α1, α2) appear in the imag-
inary part of ψ1

θ(s). Suitable ranges of (α1, α2) can be
determined using Remark 1 and Lemma 1 as described
below. The reasoning behind the algorithm which de-
termines the set of parameters α1, α2, α3 of a stabi-
lizing first-order controller can be explained as follows:
suppose φ0θ(s) is Hurwitz stable for some α1, α2, α3 ∈
R. By Remark 1, it follows that the imaginary part
ω[βH(ω)− γG(ω)]+α1G(ω)+α2ωβF (ω) of ψ1

θ(s) has at
least r1 = |n+1+σ(p∗)| real roots with odd multiplicities.
Suppose the imaginary part of ψ1

θ(s) has r1 real roots with
odd multiplicities. By Lemma 1, σ[φ1θ(s)] =− r1, where

φ1θ(jω) = H1(jω) + α1G1(jω) + α2F1(jω)

= q1(jω) + α2p1(jω) (3)

and H0(ω)=ω[βH(ω)− γG(ω)], F0(ω)=ωβF (ω), G0(ω)=
G(ω), H1(jω)=H0(ω)+ jH ′

0(ω), F1(jω)=F0(ω) + jF ′
0(ω),

G1(jω)=G0(ω)+ jG
′
0(ω), q1(s)=H1(s)+α1G1 (s), and

p1(s)=F1(s). To find the suitable ranges of α1 and
α2, we modify φ1θ(s) as follows: let B := gcd{F0, F

′
0}

so that F0 =BF 0, F
′
0 =BF

′
0 for coprime polynomials

F 0, F
′
0 ∈R[w]. Also let p1(jω) :=F 0(ω)+ jF

′
0(ω). By a

simple computation, it follows that,

ψ2
θ(jω, α1, α2) = φ1θ(jω, α1, α2)p

∗
1(jω)

= H2r(ω) + α1G2r(ω) + α2F2r(ω)

+ j[H2i(ω) + α1G2i(ω)]

where

H2r(ω) = H0(ω)F 0(ω) +H
′
0(ω)F

′

0(ω),

F2r(ω) = F0(ω)F 0(ω) + F
′
0(ω)F

′

0(ω),

G2r(ω) = G0(ω)F 0(ω) +G
′
0(ω)F

′

0(ω),

H2i(ω) = H
′
0(ω)F (ω)−H0(ω)F

′

0(ω),

G2i(ω) = G
′
0(ω)F 0(ω)−G0(ω)F

′

0(ω).

Now only one parameter α1 appears in the imagi-
nary part of ψ2

θ(s). Once more by Remark 1, since
σ[φ1θ(s)p

∗
1(s)] =−r1 +σ[p∗1(s)] the imaginary part of

φ1θ(s)p
∗
1(s) should have at least r2 =|− r1 +σ(p∗1)| real

roots with odd multiplicities . Now the set of α1 ∈R
which achieves r2 real roots with odd multiplicities in
H2i(ω)+α1G2i(ω) can be determined by applying Al-
gorithm 1 to q2(jω)=H2(jω)=H2i(ω)+ jH ′

2i(ω) and
p2(jω)=G2(jω)=G2i(ω)+ jG′

2i(ω). In each step, we
eliminate one of the controller’s parameters and determine
conditions to find the remaining ones. The algorithm
below traces the above steps backwards by repetition of
the following steps (i)–(iii):
(i) Pick a value of α1 such that the number of real
roots with odd multiplicities of H2i(ω)+α1G2i(ω) is r2
or greater.
(ii) Determine using Algorithm 1 all α2 ∈R such that
σ[φ1θ(s)] =− r1. This is equivalent to determining values
of α2 such that H0(ω)+α1G0(ω)+α2F0(ω) has r1 real
roots with odd multiplicities.
(iii) For every α2 determined, find using Algorithm 1
again, all α3 such that φ0θ(s) is Hurwitz stable.

Algorithm 2.
1. Partition the real axis into intervals (or union of

intervals) such that the number of real roots with
odd multiplicities of H2i(ω)+α1G2i(ω) is constant
in each interval.

2. Fix r1 = |n+σ(p∗0)+ 1|.
(a) Find admissible ranges of α1 from the intervals

found in the first step.
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i. Fix an α1 in the admissible range.

ii. Apply Algorithm 1 to q1(s) and p1(s). (This
calculates admissible values of α2 such that
H0(ω)+α1G0(ω)+α2F0(ω) has r1 real roots
with odd multiplicities.)

A. Fix an α2 from the range determined in
2.a.ii.

B. Apply Algorithm 1 to q0(s) and p0(s).
(This calculates all admissible values of
α3 such that φ0θ is in H.)

C. Increment α2 and go to step 2.a.ii.B.

iii. Increment α1 and go to step 2.a.ii.

(b) Increment r1 and go to step 2.a.

For the stability region S−θ, it was shown in [2] for
the case of proportional controllers, that S−θ and Sθ have
exactly the same set of stabilizing controllers. This con-
clusion holds for first-order controllers. To see this, sup-
pose that for a given triplet (α1, α2, α3), s0 is a root of
φ(s, α1, α2, α3), then (ejθs0 +α1)q(e

jθs0)+ (α2e
jθs0 +α3)

p(ejθs0)= 0. As q(s) and p(s) are real polynomials,
it follows that (e−jθs∗0 +α1)q(e

−jθs∗0)+ (α2e
−jθs∗0 +α3)

p(e−jθs∗0)= 0 where s∗0 is the complex conjugate of s0.
Since s∗0 and s0 have the same real part, it follows that
(α1, α2, α3) is stabilizing triplet for the stability region
S−θ if and only if it is stabilizing triplet for the stability
region Sθ.

Now let us consider the problem of determining the
stabilizing values of (α1, α2, α3) for the shifted Hurwitz
stability region S−λ. Let us replace s by s−λ and
make the corresponding changes. We now solve the
usual stabilization problem for the new characteristic
polynomial φλ(s, α1, α2, α3). As we are using a dynamic
controller, the new characteristic polynomial is given by

Figure 2. Stabilizing values (α1, α2, α3).

φλ(s, α1, α2, α3)= (s+α1 −λ)q(s)+(α2s+α3 −α2λ)p(s).
Multiplying φλ(s, α1, α2, α3) by p(−s) we obtain

ψλ(s, α1, α2, α3) = s2G(s2)− λH(s2) + α1H(s2)

−α2λF (s
2) + α3F (s

2) + s[H(s2)

−λG(s2) + α1G(s
2) + α2F (s

2)]

We can use the method described above to find stabilizing
values of (α1, α2, α3). In [18], an alternative method that
take advantage of the fact that ψλ(s) is a real polynomial
was given.

Example 1. Consider a first-order controller to stabilize
the unstable plant g(s)= p(s)/q(s) where q(s)= s5 +3s4 +
29s3 +15s2 − 3s+60, p(s)= s3 − 6s2 +2s− 1, and the
stability region S is the intersection of two rotated stability
regions Sπ/18 and S−π/18. Let us replace s by ejπ/18s,
then q(s)= (0.6428+ j0.7660)s5 +(2.2981+ j1.9284)s4 +
(25.1147+ j14.5000)s3+(14.0954+ j5.1303)s2− (2.9544+
j0.5209)s+60, p(s)= (0.8660+ j0.5000)s3 − (5.6382+
j2.0521)s2 +(1.9696+ j0.3473)s− 1. Using Algorithm 2,
the stabilizing values of (α1, α2, α3) are obtained as shown
in Fig. 2. •

Remark 2. This method can be applied to PID con-
trollers. Let c(s)= (α1s

2 +α2s+α3)/s, then we obtain

ψλ(s, α1, α2, α3) =
[
s2G(s2)− λH(s2) + α1s

2F (s2)

+α1λ
2F (s2)− α2λF (s

2) + α3F (s
2)]

+ s[H(s2)− λG(s2)− α12λF (s
2)

+α2F (s
2)
]
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Figure 3. Stabilizing values (α1, α2).

Figure 4. Attainable roots with respect to region S for α1 =− 0.7599.
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and

ψθ(jω, α1, α2, α3) =
[−ω(γH0(ω) + βG0(ω))− α1ω

2

(β2 − γ2)F0(ω)− α2ωγF0(ω)

+α3F0(ω)
]
+ j

[
ω(βH0(ω)− γG0(ω))

−α1ω
22βγF0(ω) + α2ωβF0(ω)

]

As two parameters (α1, α2) appear in the odd part of
ψλ(s, α1, α2, α3), imaginary part of ψθ(s, α1, α2, α3), we
can directly apply the method developed for first-order
controllers.

Example 2. Consider a PI controller c(s)= (α1s+ α2)/s
to stabilize the plant g(s)= p(s)/q(s) given in [2], where
q(s)= s3 +3s2 +4s, p(s)= s2 +2s− 2. The stability re-
gion S is given in Fig. 1 and specified by the param-
eters γ=0.5 and θ=π/6. For the rotated Hurwitz
stability regions Sθ and S−θ, replacing s by sejπ/6,
we get q(s)= js3 +(1.5+2.5981j)s2 +(3.4641+2j)s,
p(s)= (0.5+0.866j)s2 +(1.7321+ j)s− 2. For the shifted
Hurwitz stability region S−γ , replacing s by s− 0.5 we
get q(s)= s3 +1.5s2 +1.75s− 1.375, p(s)= s2 + s− 2.75.
Using these new polynomials and the method described in
this section, we obtain the stabilizing values of (α1, α2) as
shown in Fig. 3. Let α1 =− 0.7599, then (−0.1489, − 0.13)
is the stabilizing interval for α2. To check the results
obtained, the root-locus for the values of α2 in this interval
is shown in Fig. 4 and clearly these roots belong to the
stability region S.

4. Conclusions

This paper gives a computational method to determine the
set of all first-order controllers that place the poles of the
closed-loop system in a sector of the left-half plane. The
computation is based on a generalization of the Hermite–
Biehler theorem applicable to complex polynomials. Since
this method is based on eliminating one of the controller’s
parameters, at each step, and determining conditions to
find the remaining ones, extension of this method to con-
trollers with more than three parameters is possible.
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forme en flèche à l’analyse des processus, RAIRO Automatique,
16(2), 1982, 133–146.

[8] P. Borne & M. Benrejeb, On the representation and the
stability study of large scale systems, International Journal of
Computers, Communications & Control, Supplementary Issue:
Proceedings of ICCCC2008, 3, 2008, 55–66.

[9] Y.J. Pan & J. Gu, Remote stabilization of a class of linear
systems and its robust stability analysis, Control and Intelligent
Systems, 35(1), 2007.

[10] L.S. Shieh, H.M. Dib, & S. Ganesan, Linear quadratic regu-
lators with eigenvalue placement in a specified region, Auto-
matica, 24, 1988, 819–823.

[11] B. Wittenmark, R.J. Evans, & Y.C. Soh, Constrained pole
placement using transformation and LQ-design, Automatica,
23, 1987, 767–769.

[12] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, Stabilization
of continuous time systems by first-order controllers, Proc.
10th Mediterranean Conference on Control and Automation,
Lisbon, Portugal, 2002.

[13] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, Stabiliza-
tion of discrete-time systems by first-order controllers, IEEE
Transactions on Automatic Control, 48(5), 2003, 858–860.

[14] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, H∞ design
with first-order controllers, Proc. 42nd IEEE Conference on
Decision and Control, Hawii, USA, 2003, 2276–2281.

[15] R.N. Tantaris, L.H. Keel, & S.P. Bhattacharyya, H∞ design
with first-order controllers, IEEE Transactions on Automatic
Control 51(8), 2006, 1343–1347.

[16] P. Yu & Z. Wu, An exact solution to the stabilization of discrete
systems using a first-order controller, IEEE Transactions on
Automatic Control 50(9), 2005, 1375–1379.
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[18] K. Saadaoui & A.B. Özgüler, A new method for the computa-
tion of all stabilizing controllers of a given order, International
Journal of Control, 78(1), 2005, 14–28.

[19] M.T. Ho, Synthesis of H∞ PID controllers: A parametric
approach, Automatica, 39, 2003, 1069–1075.

Biographies

Karim Saadaoui received his
PhD at the Electrical and Elec-
tronics Engineering Department
of the University of Bilkent,
Ankara in 2003. He is a researcher
at the Research unit LA.R.A.
Automatique of the Engineering
School of Tunis ENIT, Tunisia.
Dr. Saadaoui research interests
are in the areas of time delay
systems, stability robustness, and
applications of robust control

theory to process control problems.
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