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FEEDBACK CONTROL DESIGN FOR SUBSONIC CAVITY FLOWS*

X. YUAN 1, E. CARABALLO 2, J. LITTLE 2, M. DEBIASI 3,
A. SERRANI 4, H. ÖZBAY 5, J.H. MYATT 6, AND M. SAMIMY 2,§

Abstract. A benchmark problem in active aerodynamic flow control, suppression of strong
pressure oscillations induced by flow over a shallow cavity, is addressed in this paper. Proper
orthogonal decomposition and Galerkin projection techniques are used to obtain a reduced-
order model of the flow dynamics from experimental data. The model is made amenable to
control design by means of a control separation technique, which makes the control input ap-
pear explicitly in the equations. A prediction model based on quadratic stochastic estimation
correlates flow field data with surface pressure measurements, so that the latter can be used
to reconstruct the state of the model in real time. The focus of this paper is on the controller
design and implementation. A linear-quadratic optimal controller is designed on the basis of
the reduced-order model to suppress the cavity flow resonance. To account for the limitation
on the magnitude of the control signal imposed by the actuator, the control action is modified
by a scaling factor, which plays the role of a bifurcation parameter for the closed-loop system.
Experimental results, in qualitative agreement with the theoretical analysis, show that the con-
troller achieves a significant attenuation of the resonant tone with a redistribution of the energy
into other frequencies, and exhibits a certain degree of robustness when operating in off-design
conditions.

Keywords: Subsonic flows; cavity flow resonance; mathematical modeling; feedback control.

AMS Subject Classification: 76G25, 93A30, 93B52, 93C10, 93C20

1. Introduction

Active control of aerodynamic flows is a rapidly growing discipline, fueled by countless ap-
plications involved, which range from drag reduction and lift increase in airfoils, mixing en-
hancement in combustors, delay of laminar-to-turbulent transitions, and noise suppression (see
[1, 16, 17, 43] and references therein.) As an alternative to traditional passive control, ac-
complished by geometrical modifications, active flow control methods involve the addition of
mass, momentum, or energy to the flow, in the form of either a feed-forward or a feedback
control action. In the former case, actuation is performed in a predefined fashion, determined
heuristically on the basis of experimental observations. Feed-forward control, while useful and
effective in many applications, lacks the responsiveness and the flexibility needed for application
in dynamic environments, where the operating conditions vary. Feedback control, on the other
hand, offers a promising approach to managing dynamically changing flow conditions, due to the

*This work is supported in part by AFOSR and AFRL/VA through the Collaborative Center of Control Science
(Contract F33615-01-2-3154) and by the Dayton Area Graduate Studies Institute (DAGSI).
1 Dept. of Electrical & Computer Engineering, The Ohio State University, Columbus, OH 43210, USA,
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(a) (b)

Figure 1. (a)Wind tunnel with recessed cavity, (b)Geometry of the test sec-
tion; Experimental setup

robustness inherent in the feedback mechanism. Unfortunately, model-based feedback control
is rendered arduous by the nature of fluid flow systems, which display spatial continuity and
nonlinear behavior, and pose formidable modeling challenges due to the infinite dimensionality
of the governing equations. It has long been realized that, in order to design and successfully
implement a closed-loop control strategy, it is necessary to obtain agile dynamical models of the
system, which can capture the important dynamic characteristics of the flow and the effect of
the actuation, while remaining sufficiently simple to be used for model-based feedback control
design.

In this paper, the development and experimental implementation of a model-based feedback
controller for a subsonic cavity flow is considered. The suppression of pressure oscillations
induced by a flow over a shallow cavity – a configuration occurring in many practical applications,
from landing gear wells to weapons bay – is a recognized benchmark problem in active flow
control. Strong coupling between the dynamics of the flow and the flow-generated acoustic
field often produces a resonance by means of a natural feedback mechanism similar to that
occurring in other flows with self-sustained oscillations (e.g., impinging jet or screeching jet).
Shear layer structures impacting a discontinuity or an obstacle in the flow (like the cavity trailing
edge) scatter acoustic waves that propagate upstream and reach the shear layer receptivity
region, where they tune and enhance the development and growth of shear layer structures
[18, 28, 30, 36]. The resulting acoustic fluctuations can be very intense and are known to
cause, among other problems, store damage and airframe structural fatigue in weapons bay
applications.

Rossiter [29] first developed an empirical formula for predicting the cavity flow resonance
frequencies (commonly referred to as Rossiter frequencies or modes), which was later modified
and improved by Heller and Bliss [20]. In different flow conditions, either a strong single-mode
or multiple-mode resonance occurs [28, 45]. In the latter case, rapid switching between modes
has also been observed [8, 37, 22].

While feed-forward strategies have been attempted with various degrees of success [40, 12],
the most significant effort in recent years has been spent on feedback control (see [9, 33] for
a comprehensive review). In [47, 34, 35], a physically motivated linear model was proposed
and used. For the same model, tuned on the basis of experimental data, it has been shown
in [48] that H∞ controllers are capable of reducing the dominant resonance for which they are
designed, but introduce tones at other frequencies. This suggests that linear models may not
be the most adequate to describe the cavity flow dynamics, as the latter exhibit a significant
nonlinearity. To account for this nonlinear behavior, it seems appropriate to resort to nonlin-
ear finite-dimensional dynamical models obtained from Proper Orthogonal Decomposition and
Galerkin Projection [21]. The general idea is to decompose the flow field into a set of orthogonal
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bases that contains the most dominant characteristics of the flow. The dynamics of the flow
are obtained by projecting the Navier-Stokes equations onto the POD basis. This results in
a set of ordinary non-linear differential equations, in which the control input need to be ren-
dered explicit by means of control separation techniques. The use of POD/Galerkin methods
has become increasingly popular to handle flow control problems, including control of cylinder
wakes [11, 26, 42], flow separation [19], modeling and control of synthetic jets [27], controller
order reduction [3], and cavity flow [5, 6, 32, 46].

The cornerstone of the present work is the use of a state-of-the-art experimental facility for
reduced-order modeling, prototyping, and testing of the control system design. Experimental
data acquired by a Particle Image Velocimetry (PIV) system and an array of pressure transduc-
ers have been employed for identification of a POD/Galerkin reduced-order model. A control
separation technique allows the explicit dependence of the model on the control input, in this
case the commanded jet velocity at the exit slot of an acoustic synthetic jet-like actuator. A
linear state-feedback optimal controller is designed on the basis of the Jacobian linearization of
the reduced-order model, while the state of the Galerkin system is reconstructed from real-time
pressure measurements by means of a linear/quadratic stochastic estimation technique. The
effect of actuator saturation on the performance of the closed-loop system has been accounted
for by a suitable re-scaling of the control input. The presence of the scaling parameter, which
acts as a tunable bifurcation parameter for the reduced-order closed-loop system, trades asymp-
totic stability for the largest possible attenuation of the dominant resonance tone in the cavity
compatible with the input constraint. Experimental results, in qualitative agreement with the
analysis, show a significant attenuation of the resonant tone in closed-loop operation, with a
redistribution of the energy into lower frequency modes. The controller also exhibits a certain
degree of robustness when operating in off-design conditions.

The paper is organized as follows: In Section 2, the experimental facility used in this work is
described. Section 3 gives an account of the techniques adopted for deriving the reduced-order
model, and the prediction model used for real-time estimation of the state variables directly
from dynamic surface pressure measurements. This is followed in Section 4 by the design of
the controller and a mathematical analysis of its performance on the basis of the reduced-order
model. Experimental results are presented and discussed in Section 5, followed by concluding
remarks and an outlook on future directions in Section 6.

2. Experimental Setup

The experimental setup used in this study is an optically accessible small scale blow-down
wind tunnel, shown in Fig. 1, located at the Gas Dynamics and Turbulence Laboratory of
The Ohio State University. Details of the facility can be found in [37] and [23]. The tunnel
can operate continuously in the subsonic range between Mach 0.20 and Mach 0.70. Flow is
directed to the 50.8 mm (2 in) by 50.8 mm (2 in) test section through a converging nozzle before
exhausting to the atmosphere. A shallow cavity is recessed in the test section with a depth D
= 12.7 mm and length L = 50.8 mm for a length-to-depth aspect ratio L/D equal to 4. For
a typical subsonic operating condition of Mach 0.30 flow, the Reynolds number based on the
cavity depth is approximately 105. Optical quality windows surround the test section and allow
laser based flow diagnostics from 15 mm upstream to 25 mm downstream of the cavity.

A 2-dimensional LaVisionr Particle Image Velocimetry (PIV) system is used for measure-
ments of the flow velocity field required for modeling and system identification purposes. PIV
is a non-invasive measurement procedure involving the use of sub-micron particles which are
added to the flow and illuminated by a laser beam. A 2000 by 2000 pixel CCD camera, mounted
orthogonally to the light sheet, captures images of the flow (snapshots). Two successive images
and an algorithm based on statistical analysis are used to determine the speed and the direction
of the moving particles. The velocity of the flow can therefore be determined. In the current
work, a velocity field grid of 128 by 128 points over the approximate measurement domain is
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Figure 2. Location of the pressure sensors on the side wall of the cavity

employed. This translates into having each velocity vector in the spatial domain being separated
by approximately 0.4 mm, which is sufficient for spatial derivative computation. The snapshots
of the flow velocity are then used to extract dominant coherent structures of the flow by means
of Proper Orthogonal Decomposition (POD).

Real-time measurements of the pressure fluctuation at several locations in the test section
and at the actuator exit are acquired by high-bandwidth Kuliter pressure transducers. Fig. 2
shows the location of the sensors employed in this study. Signals from the pressure sensors are
band-pass filtered between 100 and 10,000 Hz to remove spurious frequency components. For
state estimation and system identification, pressure measurements are recorded simultaneously
with the PIV measurements. For each PIV snapshot, 128 samples from each of the transducers
1-6 in Fig. 2 are acquired at 50 kHz sampling rate. Data is acquired in such a way that the laser
pulse of the PIV system falls near the middle of a pressure data sequence. The simultaneous
sampling of the laser signal and the pressure signals allows, for each snapshot, the identification
of the section of pressure time traces corresponding to the instantaneous velocity field.

The cavity is actuated by means of a Selenium D3300Ti compression driver channeled to
the cavity leading edge from a high-aspect ratio converging nozzle, where it exits at an angle
θ = 30◦ with respect to the main flow through a 2-D slot of 1 mm height spanning the cavity
width. This arrangement provides zero net mass, non-zero net momentum flow for actuation,
similar to that of a synthetic jet. For closed-loop control of the flow, a dSPACEr 1103 DSP
board connected to a PC Workstation is used. This system utilizes four independent 16-bit A/D
converters each with 4 multiplexed input channels that allow simultaneous control processing
and acquisition of pressure signals. To investigate the characteristics of the actuator, white noise
signals band-limited up to 10,000 Hz have been applied to the compression drive as an input
voltage Va, while the magnitude of the jet velocity vj exiting across the slot has been acquired
by a hot-wire sensor. It has been verified that the response of the actuator exhibits a sufficiently
linear characteristic, even in nonzero free-stream conditions. This linear behavior motivated the
use of a simplified static linear relationship of the form

vj = KaVa

between the jet velocity and the input voltage in the implementation of the controller. Further
details on the actuator can be found in [12]. A more sophisticated mathematical model of the
actuator dynamics, represented by an acoustic enclosure driven by the loudspeaker, is currently
under development.

3. Reduced-Order Modeling

The first step in the design of a feedback control strategy is the derivation of a suitable
mathematical model of the plant capable of capturing the important dynamical characteristics
of the flow and the effect of the actuation, while remaining sufficiently simple to be used for
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model-based design. The approach we pursue in this study is somewhat classic, and is based
on obtaining a low-dimensional model of the flow by projecting the governing Navier-Stokes
equation into a finite-dimensional subspace, spanned by an orthonormal basis which optimally
approximates a collected set of snapshots of the flow field. The method employed for generat-
ing the optimal basis, usually referred to as Karhunen-Loéve expansion or Proper Orthogonal
Decomposition (POD), has been introduced to the fluid dynamics community by Lumley [24]
as a tool to extract large scale structures in turbulent flows. The use of POD approximation
and Galerkin projection is widespread in low-dimensional modeling for flow control, including -
among others - control of cylinder wakes [11, 26, 38, 42] as well as cavity flow [15, 32, 46]. The
POD basis can be generated from computational fluid dynamics simulations of the governing
equations or detailed experimental measurements. In the present paper, experimental flow data
are employed at each stage of the modeling and system identification process. The methodology
consists of the following four steps:

1. Sirovich’s method of snapshots [39] is applied to derive a Karhunen-Loéve decomposition
of the flow field using flow velocity obtained from PIV data.

2. The governing equations are projected onto the finite-dimensional subspace spanned
by the POD modes to obtain a set of nonlinear ODEs governing the evolution of the
coefficients of the expansion.

3. A control separation method incorporated in the Galerkin projection procedure renders
the external control input explicit in the ODEs.

4. Stochastic estimation is used to correlate the flow velocity field to surface pressure data
to provide real-time estimates of the state of the reduced-order model.

3.1. Governing Equations. The governing equations for the subsonic cavity flow under con-
sideration are the isentropic compressible Navier-Stokes equations derived in [10, 31]

Du

Dt
+∇h = ν∇2u

Dh

Dt
+ (γ − 1)hdiv u = 0 (1)

where u(x, t) = (u(x, t), v(x, t)) is the flow velocity in the stream-wise and vertical direction,
h(x, t) is the enthalpy, the operator D/Dt = ∂/∂t + u · ∇ stands for the material derivative,
and x = (x, y) ∈ R2 denotes Cartesian coordinates. The constants ν and γ denote respectively
kinematic viscosity and ratio of specific heats. Using the relation c2 = (γ − 1)h, the local speed
of sound c(x, t) can be used to replace the enthalpy in (1). The equations are then converted
into non-dimensional equations by scaling u by the freestream velocity U∞, the local speed of
sound by the ambient sound speed c∞ = (γRT∞)1/2, where T∞ is the ambient temperature, the
cartesian coordinates x by the cavity depth D, time by D/U∞, and pressure by ρ̄U2∞, where ρ̄
denotes mean density. The resulting non-dimensional equations read as

Du

Dt
+

1
M2

2
γ − 1

∇c =
1

Re
∇2u

Dc

Dt
+

γ − 1
2

cdiv u = 0 (2)

where Re = U∞D/ν and M = U∞/c∞ stand for the Reynolds number and the Mach number,
respectively. The values of the plant parameters for the baseline flow considered in this study
are given in Table 1.

The set of partial differential equations (2), even though accurately describes the dynamics
of the flow when endowed with the correct boundary conditions, can hardly serve as a model
for controller design, due to its complexity. To this end, it is essential to obtain a simple
reduced-order model with an explicit input-output relation.
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Table 1. Plant parameters

ν = 1.4× 10−5 m2 s−1 γ = 1.4 ρ̄ = 1.296 kgm−3

c∞ = 338.4 m s−1 T∞ = 285 K D = 12.7× 10−3 m

U∞ = 100 m s−1 Re = 9.07× 104 M = 0.3

3.2. POD and the Method of Snapshots. The Karhunen-Loéve expansion is a method to
determine a subspace of given dimension from an ensemble of vectors in a Hilbert space H, in
such a way that the mean-squared error between each element of the ensemble and its projection
onto the subspace is minimized. This yields an efficient and computationally sound procedure
for obtaining finite-dimensional approximations of infinite-dimensional vector spaces in terms
of an orthonormal basis. In the context of fluid dynamics, the POD method is employed to
determine from temporally or spatially correlated flow data a finite-dimensional subspace which
contains the dominant features of the flow in the sense of energy [4, 13, 21, 24]. Application of
the POD method to a specific data set requires selecting the Hilbert space H together with the
most appropriate inner product. In deriving reduced-order models for flow control, this choice
is dictated by the nature of the governing equations.

Following the lucid exposition of Rowley et al. [31], we let H = L2(Ω,R3), where Ω ⊂ R2 is
the spatial domain of the cavity. Elements of the ensemble are realizations of the flow of (2)

q(·, t) = (u(·, t), c(·, t))
at a finite number of time instants t ∈ {tj}m

j=1, whereas an appropriate inner product is defined
as

〈q(·, ti), q(·, tj)〉Ω =
∫

Ω

[
u(x, ti)u(x, tj)+

2
γ − 1

c(x, ti)c(x, tj)
]
dx .

This choice corresponds to adopting the integral of the stagnation enthalpy as the induced norm
‖ · ‖H = 〈·, ·〉1/2

Ω on H (see [31]). Among all subspaces S ⊂ H of a given dimension N < m, the
one that minimizes the averaged error

J(S) =
1
m

m∑

j=1

‖q(·, tj)− PS q(·, tj)‖2
H ,

where PS denotes projection onto S, is given by the subspace spanned by the orthonormal
eigenfunctions φi(·) corresponding to the N largest nonzero eigenvalues of the linear operator
R : H→ S given by the correlation tensor

R =
1
m

m∑

j=1

(q(·, tj)⊗ q(·, tj)∗) ,

where q(·, tj)∗ is the dual vector of q(·, tj) in H (see [21, 31]). The vectors φi(·), i = 1, . . . , N , are
called the POD modes of the ensemble. Obviously, a direct solution of the infinite-dimensional
eigenvalue problem Rφ = λφ is impractical, even if the spatial domain is discretized, as the
number of spatial points is usually very large . On the other hand, since by definition the POD
modes are linear combinations of the members of the ensemble, that is,

φi(·) =
m∑

j=1

αij q(·, tj) , i = 1, . . . , N

for some αij ∈ R, to compute the POD basis it suffices to solve the m-dimensional eigenvalue
problem

Cαi = λiαi
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Figure 3. Actuation sub-domain

where αi = (αi1, . . . , αim), and C ∈ Rm×m is the correlation matrix with entries Cij =
〈q(·, tj), q(·, ti)〉Ω. This method, known as method of snapshots [39], favors spatially-resolved
flow data sets, such as the ones obtained by PIV, over time-resolved data obtained by hot-wire
sensor measurements.

3.3. Empirical POD Expansion. To compute the POD basis, a discretization of the domain
Ω is employed. Measurements of the flow velocity field u(xi, tj) are acquired using PIV over a
grid of points xi ∈ Ω, i = 1, . . . , n at tj , j = 1, . . . ,m time instants. In this study, snapshot of
the baseline flow at Mach 0.3 was considered (see Table 1), with n = 16, 384 and m = 1000.
The corresponding values of the local speed of sound c(xi, tj) are computed from the local
temperature T (xi, tj) using the relation c = (γRT )1/2, whereas the local temperature is obtained
again from the flow velocity, noticing that for isentropic flows

cp T0 = cp T (x, t) +
‖u(x, t)‖2

2
where cp is the specific heat at constant pressure and T0 is the measured stagnation temperature.
The average q̄(xi) = 1

m

∑m
j=1 q(xi, tj) is removed from the data, and the POD modes {φk(x)}N

k=1

of the ensemble

q̃(xi, tj) = q(xi, tj)− q̄(xi) , i = 1, . . . , n, j = 1, . . . , m

are obtained using the method of snapshots, where numerical integration over the grid replaces
the inner product onH for the computation of the correlation matrix C. This yields the empirical
POD expansion of the flow variable q(·, ·) as

q̂N (x, t) = q̄(x) +
N∑

k=1

ak(t)φk(x) (3)

computed at the grid points xi, i = 1, . . . , n, where ak(t) = 〈q̃(·, t), φk(·)〉Ω.

3.4. Galerkin Projection and Control Separation. The second step in the process of de-
riving a reduced-order model is the projection of the governing equations onto the linear variety
V = q̄ + S, where S is the subspace spanned by the empirical POD modes. The result of this
procedure is a set of nonlinear ODEs describing the dynamics of the coefficients ak(t) in (3).
Writing the governing equations (2) as the functional differential equation (FDE)

q̇ = F (q) (4)

where F : H → TH is a vector field on H, the Galerkin projection onto V assigns to (4) the
dynamical system

˙̂qN = PVF (q̂N ) (5)
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evolving on V. Applying the projection theorem, one obtains

〈 ˙̂qN , φk〉Ω = 〈F (q̂N ), φk〉Ω , k = 1, . . . , N (6)

and thus, exploiting orthonormality of the POD modes, the FDE (5) can be expressed as the
set of ODEs

ȧk(t) = 〈F (q̂N (·, t)), φk(·)〉Ω , k = 1, . . . , N. (7)

At this stage, the effect of actuation is still buried in the boundary conditions of (2), and does
not appear explicitly in (7). The method for separating the effect of actuation from the boundary
condition adopted in this study is based on the spatial sub-domain separation idea of [14]. The
approach is to identify an actuation domain Ω1 around the exit slot of the actuator, where the
flow is directly affected by the jet velocity. Then, the domain is partitioned into the union of
Ω1 and Ω2 = Ω \ Ω1, and the inner product computed separately over the two domains as

< · , · >Ω =< · , · >Ω1 + < · , · >Ω2 . (8)

Denoting by Γ(t) the non-dimentionalized magnitude of the actuator jet velocity at the exit slot,
and by θ the fixed angle that the jet velocity forms with the longitudinal direction (see Fig. 3),
the method proceeds by assuming that

u(x, t) = (Γ(t) cos θ , Γ(t) sin θ) ∀x ∈ Ω1 .

Imposing the further condition that u(x, t) satisfies the POD expansion over Ω1 yields

ak(t)φk(x) =




Γ(t) cos θ
Γ(t) sin θ
c(x, t)


− q̄(x)−

N∑

i6=k

ai(t)φi(x) (9)

for all x ∈ Ω1. Using both (8) and (9) in (6) yields a new system of ODEs of the form

ȧk(t) = dk +
N∑

i=1

lkiai(t) +
N∑

i=1

N∑

j=1

qkijai(t)aj(t)

+ [ bk +
N∑

i=1

hkiai(t) ]Γ(t) , k = 1, . . . , N

which is quadratic in the state variables ak and affine in the control input Γ. Finally, shifting
the origin of the coordinate system to the point a0 ∈ RN solution of the algebraic equation

dk +
N∑

i=1

lkia
0
i +

N∑

i=1

N∑

j=1

qkija
0
i a

0
j = 0 ,

one obtains the reduced-order model

ȧ = f(a) + g(a)Γ (10)

with state vector a ∈ RN ; here, for the sake of simplicity, the same notation a = (a1, . . . , aN )
has been adopted for the shifted coordinates. Note that the drift and the control vector fields
of (10) can be written as

f(a) = Fa + ϕ(a) , ϕ(a) = O(‖a‖2)

g(a) = G + γ(a) , γ(a) = O(‖a‖) .

where F = [∂f/∂a](0) is the Jacobian matrix of f(·) at the origin, and G = g(0). Obviously,
(10) has an equilibrium at the origin when Γ = 0.
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3.5. Stochastic Estimation. The Galerkin system (10) provides a reduced-order state space
model of the cavity flow dynamics, suitable for controller design. However, direct measurements
of the state a(t) are not available. For experimental implementation of the controller, a state
estimate must be obtained from flow variables that can be measured in real-time. PIV data are
not suitable for this task, as they are acquired at a slow sampling rate. In any realistic setting,
real-time experimental data can only be obtained via surface measurements, e.g. surface pressure
or surface shear stress measurements. In the current work, a stochastic estimation method
was employed to estimate the state a(t) from measurements of the surface pressure fluctuation
p (x, t). Stochastic estimation was originally proposed by Adrian [2] as a technique to estimate
flow variables at any point of a spatial domain by using statistical information about the flow
at a limited number of locations.

Assuming that real-time pressure measurements are available at ` ≥ N distinct locations, a
quadratic prediction model can be constructed as

âk(t) =
∑̀

i=1

Ckip (xi, t) +
∑̀

i=1

Dkip
2(xi, t)

+
∑̀
i,j=1
i6=j

Dkijp (xi, t)p (xj , t) , k = 1, ..., N. (11)

The coefficients of (11) are computed off-line by minimizing the average mean square of the
prediction error between the values of ak(tj), available from the snapshots, and the estimated
ones âk(tj), i.e., by minimizing the functional

Je =
1
m

m∑

j=1

‖â(tj)− a(tj)‖2 .

Since the number of snapshots is usually much larger than the number of the parameters of
the prediction model, and the latter is linear in the parameters, the values of Cki and Dkij are
readily obtained by solving the over-determined linear systems

∂Je

∂Cki
= 0 ,

∂Je

∂Dki
= 0,

∂Je

∂Dkij
= 0, i, j = 1, ..., `

for each k = 1, . . . , N . Similarly, in case ` < N , stochastic estimation can be used to endow the
reduced-order model (10) with an output equation of the form

p = h(a)

where p =
(
p (x1, ·), . . . , p (x`, ·)

)
, and the read-out map is given by

hk(a) =
∑̀

i=1

C̄kiai +
∑̀

i=1

D̄kia
2
i +

∑̀
i,j=1
i6=j

D̄kijaiaj , k = 1, ..., `.

This representation is useful when the order of the model exceeds the number of independent
measured outputs, and thus a dynamic observer is required to obtain estimates of the state of
the Galerkin model.

4. Feedback Control Design

In this section, the design of a feedback controller based on the model derived in Section 3
is presented and discussed from a mathematical perspective. A single-resonance mode flow at
Mach number M = 0.3 (see Table 1) has been selected as a baseline case for the development of
the reduced-order model. The uncontrolled flow at Mach 0.3 exhibits a single strong resonant
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Table 2. Parameters of the Linearized Model

Controller gain

K =
(− 56 , 8.8 ,−417 ,−12.8

)

Open-loop eigenvalues, α = 0

λ1,2 = 1597± 7023i, λ3 = −3652, λ4 = −880

Closed-loop eigenvalues, α = 1

λ1,2 = −1597± 7023i, λ3 = −3652, λ4 = −880

Closed-loop eigenvalues, α = 0.265

λ1,2 = 750± 7163i, λ3 = −3652, λ4 = −880

tone at approximately 2900 Hz, which is very near the frequency of the third Rossiter mode.
It has been shown from open-loop experiments that the actuator has sufficient authority to
significantly alter the flow at this Mach number (see [12]). The voltage input to the actuator is
computed from the commanded non-dimensionalized jet velocity Γ, which is the control input
to the reduced-order model (10), by inverting the approximate linear relation Γ = K̄aVa, where
K̄a = Ka/U∞. It is important to point out that, to prevent damaging the actuator, the control
input signal must be limited to the range ±10V . The presence of the saturation plays an
important role in the design of the control law, as discussed in the sequel.

The order of the model (10) has been chosen as N = 4, to achieve a tradeoff between accuracy
and simplicity of the model for control design. Previous studies [23] have shown that the first
4 POD modes are sufficient to reconstruct the dominant coherent structures. The state vector is
estimated using the quadratic prediction model (11) from ` = 6 real-time pressure measurements
taken at the locations shown in Fig. 2. The value of the equilibrium point a0 of (10) has been
computed numerically using a Newton-like iterative method. Since the solution of the algebraic
equation is not unique, and the outcome of the steepest descent search depends on the initial
condition, Runge-Kutta simulations of the system (10) with Γ = 0 have been used to discard
unfeasible solutions.

The linear approximation of (10) at the origin is readily obtained as

ȧ = Fa + GΓ , (12)

where the pair (F, G) is controllable. The matrix F possesses two complex conjugate eigenvalues
in Re[λ] > 0 and two real eigenvalues in Re[λ] < 0, as shown in Table 2. The presence of two
complex conjugate eigenvalues implies, as expected, that the equilibrium a0 is an unstable
solution for the Galerkin model (10). Furthermore, numerical simulations of (10) reveal the
existence of a stable limit cycle, consistent with the existence of an unstable manifold at the
origin. The frequency of the quasi-steady oscillation for the model is comparable with the
dominant tone measured in the cavity in open-loop experiments, suggesting that the reduced-
order model is in some agreement with the behavior of the plant.

4.1. Scaled LQ Control. To suppress the oscillation in the cavity, a viable strategy to pursue
is the design of a controller that stabilizes the origin of (10), at least locally. Since the reduced-
order model is linearly controllable, a simple way of achieving this goal is to select a state-
feedback matrix K ∈ R1×4 such that F + GK is Hurwitz, and, by resorting to the principle of
certainty-equivalence, implementing the control law from the estimated state

Γ = Kâ .
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Figure 4. Block diagram of the closed-loop system

Unfortunately, this approach becomes ineffective whenever the limit cycle lies outside the local
domain of attraction achieved by the saturated control

Va = sat(K̄−1
a Kâ) (13)

which may be much smaller than the one attainable with the unconstrained control. As a matter
of fact, experimental results have shown that controllers of the form (13) implemented with a
stabilizing gain K result in constant saturation of the control signal, irrespective of the way K
is chosen. As it has also been remarked in [33], stabilizing control strategies tend to be unnec-
essarily aggressive, requiring large control efforts, and possibly driving the closed loop system
outside the limits of validity of the reduced-order model. To remedy this situation, asymptotic
stabilization of the origin (which amounts in suppressing the limit cycle) has been traded for the
less ambitious goal of attenuating as much as possible the amplitude of the oscillation in steady
state. As it will become clear in the sequel, this goal can be easily accomplished by modifying
the parameter of the Hopf bifurcation exhibited by the model (10). To this end, the commanded
jet velocity has been re-scaled by a factor 0 < α < 1 as follows

Γα = −αKâ , (14)

where the value of the scaling factor must be tuned experimentally to the largest value such that
Γα(t) remains within the actuator constraints. The diagram of the overall closed-loop system
resulting from the implementation of the scaled controller is given in Fig. 4.

Obviously, setting α = 1 results in asymptotic stabilization of the origin, while for α = 0 the
system evolves in open-loop; therefore, the closed-loop eigenvalues cross the imaginary axis at
a particular value α?. From the point of view of the design, and the subsequent analysis, it is
convenient to select K in such away that α? = 0.5. This can be accomplished by computing
K as the solution of a linear-quadratic regulator problem, with the relative weight between
the penalty on the control and the penalty on the state selected large enough such that the
eigenvalues of F + GK mirror those of the open-loop matrix F with respect to the imaginary
axis. Specifically, K is obtained by minimizing the cost function

Jc(Γ) =
∫ ∞

0

[
a(t)Waa(t) + WΓΓ(t)2

]
dt

subject to (12), where the positive definite weighting functions for the state vector and the
control signal are chosen respectively as

Wa = I4×4, WΓ = 1.



X.YUAN, E.CARABALLO, J.LITTLE, M.DEBIASI, A.SERRANI, H.ÖZBAY, J.H.MYATT, M.SAMIMY: 81

The resulting gain K and the corresponding eigenvalues of the closed-loop system are given in
Table 2. Figure 5 shows the location of the eigenvalues of F + αGK in the complex plane for
0 ≤ α ≤ 1. As α increases, the right-half plane eigenvalues migrate to the left half plane, with
crossing occurring at α? = 0.5, while the left-half plane open-loop eigenvalues are left unchanged.
Note also that the imaginary part of the complex conjugate eigenvalues is virtually unaffected
by the control.

Results of nonlinear simulations of the closed-loop system (10)-(14) show that the amplitude
of the limit cycle is attenuated when α increases from 0 to 0.5, whereas the trajectory a(t)
converges to the origin when α > 0.5. This indicates that, at least in principle, the scaled LQ
controller designed for the linear approximation succeeds in controlling the limit cycle of the
low-dimensional nonlinear Galerkin model (10). Experimental results, which will be discussed in
detail in Section 5, validate the outcome of the simulations on the finite-dimensional model, and
the subsequent analysis. In experiments, the value α = 0.265 was ultimately selected to obtain
a control signal within the saturation limits. This choice yields the closed-loop eigenvalues given
in Table 2 (see also Fig. 5).

Remark 4.1. It is worth noting that, since F has a pair of eigenvalues in Re[λ] > 0, the optimal
gain K is non-vanishing as the ratio between the penalty on the control and the magnitude of the
penalty on the state increases [41]. As a matter of fact, keeping Wa fixed and letting WΓ → +∞,
the optimal gain converges to a finite limit K∞ 6= 0. As the given selection of the weights is
such that K ≈ K∞, saturation of the control signal can not be avoided merely by increasing the
penalty on the control energy in the LQ cost function, and the use of the scaling factor α is
required.

4.2. Bifurcation Analysis. In what follows, a simple analysis carried out on the basis of the
nonlinear Galerkin model (10) is presented to illustrate the motivation behind the choice of the
scaled LQ feedback control. Let T ∈ R4×4 be a nonsingular transformation that converts F into
modal form, that is,

TF T−1 =
(

L1 0
0 L2

)

where

L1 =
(

σ −ω
ω σ

)
, L2 =

(−λ1 0
0 −λ2

)
,

with σ > 0, ω > 0, and λ1, λ2 > 0.
Partitioning the state vector a according to the above decomposition, and assuming that

â ≡ a, the closed-loop Galerkin system is written in the new coordinates as

η̇ = L1η + M1Γα + ϕ1(η, ζ) + γ1(η, ζ)Γα

ζ̇ = L2ζ + M2Γα + ϕ2(η, ζ) + γ2(η, ζ)Γα ,

where (
η
ζ

)
= Ta ,

(
M1

M2

)
= TG

and
ϕi(η, ζ) = O(‖η‖2, ‖ζ‖2) , γi(η, ζ) = O(‖η‖, ‖ζ‖) , i = 1, 2.

Note that the control law Γα = −αKa is expressed in the new coordinates as

Γα = −αK1η − αK2ζ ,

for some matrices K1 and K2. Since it has been verified that the feedback gain K does not affect
the location of the stable eigenvalues of the open-loop matrix F , necessarily K2 = 0. Therefore,
the closed-loop system can be written as

η̇ = (L1 − αM1K1)η + ϕ1(η, ζ)− αγ1(η, ζ)K1η
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Figure 5. Eigenvalues of the closed-loop matrix F + αGK.

ζ̇ = − αM2K2η + L2ζ + ϕ2(η, ζ)− αγ2(η, ζ)K1η .

An easy computation shows that the eigenvalues of the matrix L1 − αM1K1 are given by

λ(L1 − αM1K1) = (1− 2α)σ ± i
√

ω2 + 4ασ2(1− α) .

Letting µ = 1 − 2α and ω̄(µ) =
√

ω2 + (1− µ2)σ2, one obtains (modulo a unitary transforma-
tion)

L1 − αM1K1 =
(

µσ −ω̄(µ)
ω̄(µ) µσ

)
,

and thus the spectrum of the closed-loop matrix

L(µ) =

(
L1 + µ−1

2 M1K1 0
µ−1

2 M2K2 L2

)

at µ = 0 splits into a pair of purely imaginary eigenvalues and a pair of negative real eigenvalues.
This implies the existence of a center manifold for the trajectories of the Galerkin system.
Specifically, let

L(µ) =
(

L11(µ) 0
L21(µ) L2

)
,

Φi(η, ζ, µ) = ϕi(η, ζ)− αγi(η, ζ)K1η , i = 1, 2

and write the closed-loop Galerkin system as

µ̇ = 0

η̇ = L11(µ)η + Φ1(η, ζ, µ)

ζ̇ = L21(µ)η + L2ζ + Φ2(η, ζ, µ) , (15)

where
Φi(η, ζ, µ) = O(‖η‖2, ‖ζ‖2) for all µ , i = 1, 2
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Figure 6. (a)Sound pressure level measured at location #5,
(b) Sound pressure level measured at location #6;
Feedback control experiment at Mach 0.3 (design conditions). Thin line: baseline
flow. Thick line: controlled flow (closed-loop).

and a trivial dynamics for the bifurcation parameter µ has been added to the model. The Center
Manifold Theorem [7] establishes the existence of an exponentially attracting submanifold of
the state space, which is described by the graph of a smooth mapping ζ = π(η, µ) satisfying
π(0, µ) = 0, [∂π/∂η](0, µ) = 0, and

∂π

∂η
[L11(µ)η + Φ1(η, π(η, µ), µ)] = L21(µ)η

+L2π(η, µ) + Φ2(η, π(η, µ), µ)

for all (η, µ) in a neighborhood of (0, 0). This allows to reduce the analysis of system (15) to
the restriction of its dynamics onto the center manifold, which in the given set of coordinates
reads as (

η̇1

η̇2

)
=

(
µσ −ω̄(µ)

ω̄(µ) µσ

)(
η1

η2

)
+

(
Φ11(η, π(η, µ), µ)
Φ12(η, π(η, µ), µ)

)
.

A near-identity transformation into Poincarè normal form [44] yields1

Φ11(η, µ) =
(− a(µ)η1 − b(µ)η2

)(
η2
1 + η2

2

)
+ O(‖η‖5)

Φ12(η, µ) =
(
b(µ)η1 − a(µ)η2

)(
η2
1 + η2

2

)
+ O(‖η‖5)

where a(·) and b(·) are smooth functions. For the model under investigation, it turns out that
a(µ) > 0 and b(µ) > 0 for all −1 ≤ µ ≤ 1. Finally, using polar coordinates ρ = (η2

1 + η2
2)

1/2,
θ = tan−1(η2/η1), one obtains the system

ρ̇ = µσρ− a(µ)ρ3 + O(ρ5)

θ̇ = ω + b(µ)ρ2 + O(ρ4) . (16)

The structure of system (16) reveals that the original closed-loop Galerkin system has a
locally exponentially stable equilibrium at the origin for µ < 0, and undergoes a Hopf-Poincarè-
Andropov bifurcation at µ = 0, with a stable limit cycle for µ > 0. The amplitude and frequency
of the limit cycle are given respectively by

ρ?(µ) =
√

µσ

a(µ)
, ω?(µ) = ω̄(µ) + b(µ)

µσ

a(µ)

1A similar simplified expression for the reduction of the Galerkin system onto the center manifold can be
obtained by means of averaging techniques, see [25].
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from which, since a(µ) = O(1), it is readily seen that the amplitude of the oscillation decreases
as µ → 0+. Recalling the definition of µ, the result of the analysis can be summarized as follows:

(1) If it is required to set α < 0.5 to avoid saturating the actuator, the origin of the Galerkin
system can not be stabilized at all.

(2) If this is the case, the application of linear feedback can still lower the amplitude of the
limit cycle, but only up to a minimum value imposed by the actuator limits.

Notwithstanding the above result, it may still be possible to reduce the amplitude of the cavity
tone beyond the limit achievable using linear feedback, resorting to more elaborate control
strategies (nonlinear and/or time-varying feedback).

The experimental results discussed in the next section seem to support the analysis, as the
controller is capable to attenuate the resonance in the cavity to a certain extent, while complete
suppression seems to be unattainable within the limitations imposed by the actuator and the
fidelity of the reduced-order model.

5. Experimental Results

The performance of the scaled feedback control law has been tested experimentally in design
and off-design conditions, and compared with the results obtained using feed-forward control
(specifically the open-loop periodic forcing approach of [12].) The design conditions refer to the
Mach 0.3 baseline flow, whose parameters are given in Table 1, used for identification of the
reduced-order model. For the scaled LQ controller (14), the value of the scaling parameter was
determined experimentally by increasing α in the closed-loop system until the voltage input to
the actuator reached the maximum allowable range. The maximum value of α compatible with
the actuator limits was found to be equal to 0.256, and thus asymptotic stabilization of the origin
of the reduced-order Galerkin model can not be achieved. Nonetheless, the experimental results
shown in Fig. 6 indicate that an attenuation of about 15 dB of the sound pressure level at the
resonance frequency fr = 2900 Hz (as measured by the pressure sensors at the locations no. 5
and no. 6, Fig. 2) is attained in closed-loop operations. Although, as expected, the results for
the two sensors present some differences, in both cases it is noticeable that the controller induces
a redistribution of the energy into various modes at frequencies frequencies. This indicates that
the dynamics of the flow have been captured by the reduced-order model (and by the static
prediction model) to an extent which enables model-based control design.

The robustness of the closed-loop system to variations in the flow conditions has been tested
performing experiments with different values of the Mach number selected in the range M ∈
[0.27, 0.32], where the baseline flow still preserves a dominant single-tone characteristic. The
results of closed-loop experiments pertaining to the M = 0.27 and M = 0.32 are shown in Fig. 7
and Fig. 8, respectively. In these off-design flow conditions, while the performance deteriorate
to some degree, similar benefits and characteristics of the nominal closed-loop system are main-
tained. The dominant resonance peak is significantly attenuated, with flow energy being spread
into a larger range of frequencies, while noticeable peaks begin to appear at higher frequen-
cies for the Mach 0.27 case in Fig. 7 (a) and at lower frequencies for the Mach 0.32 case in
Fig. 8 (b), respectively. The closed-loop SPL spectra obtained with the scaled LQ controller re-
semble those previously obtained by this group using a proportional control with time delay [48].
Furthermore, the two controllers present similar robustness properties for off-design conditions
considered here. The similarities may suggest that, although through different processes, anal-
ogous physical mechanisms are activated at the receptivity region of the cavity shear layer in
closed-loop operations.

Finally, a comparison has been made with the feed-forward control approach of [12]. Here,
periodic open-loop forcing of the flow at frequency fc = 3920 Hz is applied, where the frequency
of the excitation has been chosen experimentally to yield the largest attenuation of the dominant
tone at Mach 0.3, which is regarded as the nominal design condition. While in [12] the selection



X.YUAN, E.CARABALLO, J.LITTLE, M.DEBIASI, A.SERRANI, H.ÖZBAY, J.H.MYATT, M.SAMIMY: 85
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Figure 7. (a)Sound pressure level measured at location #5,
(b)Sound pressure level measured at location #6;
Feedback control experiment at Mach 0.27 (off-design conditions). Thin line:
baseline flow. Thick line: controlled flow (closed-loop).
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Figure 8. (a)Sound pressure level measured at location #5, (b)Sound pressure
level measured at location #6;
Feedback control experiment at Mach 0.32 (off-design conditions). Thin line:
baseline flow. Thick line: controlled flow (closed-loop).

of the frequency of the excitation is updated on line by an extremum-seeking mechanism, in
this study the frequency has been kept constant, to allow a fair comparison between open-loop
and closed-loop strategies of fixed structure, especially as far as robustness is concerned. The
results achieved in design conditions, shown in Fig. 9, reveal that, while the feed-forward strategy
outperforms the LQ control as far as the mere attenuation of the resonance peak is concerned,
this is accompanied by the introduction of one or two new significant peaks, including (but not
limited to) at the forcing frequency itself. In addition, it must be expected that the performance
of feed-forward control degrades when operating in off-design conditions. This is confirmed by
the results obtained at Mach 0.32, which are shown in Fig. 10: In the worst case, as measured
at location no. 6, the periodic forcing induces a new resonance at about the second Rossiter
mode, which has even larger magnitude than the original baseline resonance tone. The poor
performance exhibited by feed-forward control strategies when operating in different regimes
than the nominal flow conditions makes indeed a compelling argument for the applications of
feedback control methodologies, as an effective means to account for model uncertainties.
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Figure 9. (a)Sound pressure level measured at location #5, (b)Sound pressure
level measured at location #6;
Feed-forward control experiment at Mach 0.3. Thin line: baseline flow. Thick
line: controlled flow (open-loop forcing at fc = 3920 Hz).

6. Conclusions

This paper presents the development and the experimental verification of a systematic model-
based approach for active flow control, which includes system identification and control design.
The benchmark problem tackled in this work is the suppression of a single-mode resonance
induced by a subsonic flow over a shallow cavity. Experimental results, in qualitative agreement
with the analysis on the reduced-order model, show that the controller achieves a significant
attenuation of the target resonance peak, exhibits good robustness for some off-design conditions,
and compares favorably with tuned open-loop strategies. Although the experimental setup is
the same as the one used in [12] and [48], the modeling, identification, and control design
techniques are different, as the reduced-order model considered here is nonlinear, as opposed to
the linear one considered in [48]. Furthermore, while the results presented here are similar to
those obtained in [48], the analysis performed on the nonlinear model has revealed a fundamental
limitation posed by the bounded control authority of the actuator.

Despite being quite encouraging, the results presented here are far from being fully satisfac-
tory, and point to much further work ahead. Several important issues remain to be resolved, as
the effect of feedback on the flow dynamics is not well understood yet. Further investigation is
needed to understand how to incorporate more effectively the presence of actuation in reduced-
order flow models. The method for control separation used in this work acts “a posteriori” with
respect to the generation of the POD basis, as the separation is performed solely at the level of
the Galerkin projection. A more direct approach is currently being investigated, which considers
a POD-like expansion of the flow field which includes certain “actuation modes”, determined
from experimental data, whose modal coefficients depend directly on the actuation variable.
Another important issue, which is too often overlooked, is the influence of the actuator dynam-
ics on the overall performance of the closed-loop system. An on-going research effort is being
devoted to modeling and identification of dynamics of the synthetic jet-like acoustic actuator
employed in the experimental apparatus, and to the design of servo-controller to achieve precise
tracking of the commanded jet velocity input. Finally, the use of dynamic observers (as pro-
posed in [32]) or dynamic auto-regressive prediction models may constitute a better alternative
to static stochastic estimation methods for real-time estimation of the state of the reduced-order
models. All these issues are currently being addressed.
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Figure 10. (a)Sound pressure level measured at location #5, (b) Sound pres-
sure level measured at location #6;
Feed-forward control experiment at Mach 0.32. Thin line: baseline flow. Thick
line: controlled flow (open-loop forcing at fc = 3920 Hz).
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