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SEPARATING INVARIANTS FOR MODULAR P -GROUPS AND
GROUPS ACTING DIAGONALLY

MARA D. NEUSEL AND MÜFİT SEZER

Abstract. We study separating algebras for rings of invariants of finite groups.

We describe a separating subalgebra for invariants of p-groups in characteristic

p using only transfers and norms. Also we give an explicit construction of a
separating set for invariants of groups acting diagonally.

Let F be an algebraically closed field and let G be a finite group. Consider a
faithful representation

ρ : G ↪→ GL(n, F)

of degree n. It induces an action of the group G on the symmetric algebra on the
dual space V ∗, which we denote by F[V ]. The subring of G-invariants is denoted
by F[V ]G. We note that the vector space V decomposes into disjoint G-orbits. We
denote the orbit space by

V/G = {[v] = {gv|g ∈ G}|v ∈ V }.

Any invariant f ∈ F[V ]G is constant on the G-orbits [v]. Indeed, F[V ]G ⊆ F[V ] is
the largest subalgebra with this property. A finitely generated graded subalgebra
A ⊆ F[V ]G (or more generally a subset in F[V ]G) is called separating if for any two
distinct G-orbits [v] 6= [w] there exists a function f ∈ A separating the two, i.e.,

f(v) 6= f(w),

see Definition 2.3.8 in [1]. Denote by A the integral closure of the algebra A (in
its field of fractions) and by

√
A its p-root closure in F[V ], where p > 0 is the

characteristic of F. If F has characteristic zero set
√

A = A. For the case of positive
characteristic, a finitely generated separating graded subalgebra A is separating if
and only if

√
A = F[V ]G, see Theorem 2.3.12 in [1] and Remark 1.3 in [?]. If F has

characteristic zero, then A = F[V ]G provided that A is finitely generated separating
graded subalgebra, again by Theorem 2.3.12 ibid. The converse is not valid, see
Example 2.3.14 in [1].

Remark 1. We note that for fields that are not algebraically closed, the notion
“separating” does not give the desired results. For example, consider the finite
field F2 with two elements. The general linear group GL(2, F2) is a finite group
of order 6. Its ring of invariants F2[x, y]GL(2,F2) is a polynomial ring generated by
d2,0 = x2y + xy2 and d2,1 = x2 + xy + y2, see, e.g., Theorem 6.1.4 in [10]. The
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2 M. D. NEUSEL AND M. SEZER

vector space V = spanF2
{e1, e2} decomposes into the two orbits V \ 0 and {0}.

Note that the subalgebra

F2[d2,1] ⊆ F2[x, y]GL(2,F2)

is separating, but the extension is neither finite nor integral. Even worse, the

subgroup Z/3 generated by
[
0 1
1 1

]
has the same orbits on V . In other words,

the separating subalgebra F2[d2,1] does not characterize the ring of invariants of
GL(2, F2). However, we could consider the invariants over the algebraic closure of
F2. We obtain

F[x, y]GL(2,F2) = F⊗F2 F2[x, y]GL(2,F2).

Taking into account the orbits of the group action on V = spanF{e1, e2} we see
that the subalgebra generated by the degree two invariant is, as expected, no longer
separating: d2,1 vanishes on the orbit [(1, ω)] for a primitive 3rd root of unity ω.

Separating invariants have been studied by several people, see, e.g., [1], [2], [3],
[?], [7] and the references there. All of these studies show that separating invariants
are often better behaved than the ring of invariants itself, e.g., there are always
separating algebras that satisfy Noether’s bound, see Corollary 3.9.14 in [1], or,
separating invariants of vector invariants can be obtained by polarizations, see [3].
In this paper we continue the study of separating invariants.

In Section 1 we will describe a separating subalgebra for the ring of invariants of
a finite p-group P over a field of characteristic p. We note that generating invariants
of p-groups are usually difficult to describe. Indeed, apart from individual cases, the
only large families of modular representations of finite p-groups for which complete
(but maybe not minimal) generating sets for the invariants are known are the (all of
them) representations of cyclic groups of order p, see [5, 6], and the indecomposable
representations of cyclic groups of order p2, see [?]. In both cases, the rings of
invariants are generated by norms, transfers, and invariants up to a certain degree.
The reason for including all invariants up to some degree is that norms and transfers
can be employed to decompose invariants usually only after some degree and not
all invariants at small degrees are norms or (relative) transfers. We show that in
contrast norms and transfers suffice to separate orbits for all representations of any
p-group.

In Section 2 we turn to the other extreme: We consider groups that act by
diagonal matrices. For these groups we describe a separating set of size 2n − 1.
Moreover, if the group is cyclic of prime order we improve upon this by giving
a separating set of size n2+n

2 . We remark that there always exists a separating
set of size 2n + 2 for any group. This fact was forwarded to us with a sketch
of a proof by the anonymous referee and it also appears in [?]. However, the
proof is not constructive. Meanwhile, our description of separating sets for these
diagonal groups is constructive and use only combinatorial methods. Moreover the
separating sets we produce consist of monomials.

We close the introduction with an example.

Example. Let ρ : G ↪→ GL(n, F) be a representation of a finite group G. Denote by
FG the group algebra and let

V (G) = FG⊗ V
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be the induced module. The group G acts on V (G) by left multiplication on the
first component. We obtain a surjective G-equivariant map between the rings of
polynomial functions

ηG : F[V (G)] −→ F[V ].

By restriction to the induced ring of invariants, we obtain the classical Noether
map, see Section 4.2 in [10],

ηG
G : F[V (G)]G −→ F[V ]G.

We note that V (G) is the n-fold regular representation of G. Thus F[V (G)]G are
the n-fold vector invariants of the regular representation of G. In the classical
nonmodular case the map ηG

G is surjective, see Proposition 4.2.2 in [10]. This does
not remain true in the modular case. However, as shown in Proposition 2.2 of [9]
the p-root closure of the image of the Noether map is equal to F[V ]G. Thus, by
Remark 1.3 in [?], the image of the Noether map is separating.

1. Separating subalgebras for modular p-Groups

In this section we want to present a new construction for separating subalgebras
of rings of invariants of finite p-groups over an algebraically closed field F of char-
acteristic p. We start with a recollection of two methods to construct invariants.
For f ∈ F[V ], we define the norm of f , denoted N(f), by∏

g∈G

g(f) ∈ F[V ]G.

Furthermore, the transfer is defined by

TrG : F[V ] −→ F[V ]G, f 7→
∑
g∈G

g(f).

One obtains a relative version in the following way: Let H be a subgroup of G.
Then the relative transfer (from H to G) is given by

TrGH : F[V ]H → F[V ]G, TrGH(f) =
∑

ḡ∈G/H

ḡ(f),

where the sum runs over a set of coset representatives of H in G. We set

I =
∑

H<G, max

Im(TrGH) ⊆ F[V ]G,

i.e., I is the ideal in F[V ]G generated by the image of the relative transfers for all
maximal subgroups H < G.

As mentioned in the introduction, norms and transfers usually1 do not suffice to
generate the entire ring of invariants F[V ]G, but play a crucial role for invariants of
p-groups as they appear in every known list of generating invariants. We proceed
by showing that, in contrast, norms and transfers suffice to separate orbits for any
representation of a p-group.

For a subset X ∈ F[V ]G we define its zero set in V/G by

V(X) = {[v] ∈ V/G|f(v) = 0 ∀f ∈ X}.

1An exception would be vector invariants of the regular representation of the cyclic group of
order p. Indeed, a very special case. See [8]
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For v ∈ V , let Gv denote the stabilizer of v in G. The following is a part of
Theorem 12.4 in [4] generalizing Feshbach’s Transfer Theorem.

Lemma 2. The zero set of I in V/G is equal to the fixed point space of G. That is

V(I) = {[v] ∈ V/G | Gv = G} = V G.

Proof. Let v ∈ V such that Gv = G. Let H < G be a maximal subgroup and
f ∈ F[V ]H . Then

TrGH(f)(v) = (
∑

ḡ∈G/H

g(f))(v) =
∑

ḡ∈G/H

f(g−1v) = |G : H|f(v) = 0.

Conversely pick v ∈ V such that Gv 6= G. Since G is finite, there exists f ∈ F[V ]
such that f(v) 6= 0 and f(gv) = 0 for all g /∈ Gv. Let

N =
∏

h∈Gv

h(f) ∈ F[V ]Gv .

Note that N(v) 6= 0 and N(gv) = 0 for all g /∈ Gv. Moreover

TrGGv
(N)(v) =

∑
g∈G/Gv

gN(v) =
∑

g∈G/Gv

N(g−1v) = N(v) 6= 0.

Let H be a maximal subgroup of G containing Gv. Since Gv ⊆ H, we have
Im(TrGGv

) ⊆ Im(TrGH). It follows that v /∈ V(Im(TrGH)) and accordingly, v /∈ V(I) as
desired. �

Let e1, e2, . . . , ek be a basis for V G, and let x1, x2, . . . , xk denote the correspond-
ing basis elements in the dual space.

Theorem 3. Let ρ : P ↪→ GL(n, F) be a faithful representation of a finite p-group
P over a field F of characteristic p. Then the subalgebra in F[V ]P generated by I
and N(xi), i = 1, . . . , k is separating.

Proof. Assume that v,w ∈ V are in different P -orbits. Then there exists an in-
variant f ∈ F[V ]P such that f(v) 6= f(w).

If one of them, say v, lies outside of V(I), then there exists a maximal subgroup
Q in P and an invariant h ∈ F[V ]Q such that TrPQ(h)(v) 6= 0.

If TrPQ(h)(v) 6= TrPQ(h)(w) we are done. Otherwise, we find that

f · TrPQ(h) = TrPQ(f · h) ∈ Im(TrPQ)

separates v and w.
Thus, we may assume that both, v as well as w, lie in V(I). From the pre-

vious lemma we have v,w ∈ V P . Since the fixed point space V P is spanned by
{e1, . . . , ek} we can write v =

∑k
i=1 αiei and w =

∑k
i=1 βiei for suitable αi, βi ∈ F,

1 ≤ i ≤ k. Since v 6= w there is a i0 ∈ {1, . . . , k} such that αi0 6= βi0 . Thus

N(xi0)(v) = αpr

i0
and N(xi0)(w) = βpr

i0
.

Since F has characteristic p, it also follows that N(xi0)(v) 6= N(xi0)(w). Thus
N(xi0) separates v and w as desired. �

We finish this section by describing the radical
√

I of the ideal I, see Corollary
12.3 [4] for the special case of cyclic p-groups. We denote by J (V P ) ⊆ F[V ] the
vanishing ideal of the fixed point set of P .
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Proposition 4. Let ρ : P ↪→ GL(n, F) be a faithful representation of a finite p-group
P over a field F of characteristic p. Then

√
I = J (V P ) ∩ F[V ]P .

Proof. By Lemma 2, we have V(I) = V P . On the other hand, it is clear that
V

(
J (V P )

)
= V P . Since J (V P ) is generated by the linear forms xi such that

i 6∈ {1, . . . , k}, it is a prime ideal. The Nullstellensatz yields√
IF[V ] = J (V P ),

where IF[V ] ⊆ F[V ] denotes the extension of I in F[V ]. Thus we obtain
√

I ⊆
√

IF[V ] ∩ F[V ]P = J (V P ) ∩ F[V ]P .

Since finite p-groups are reductive we also have√
IF[V ] ∩ F[V ]P ⊆

√
I

by Lemma 3.4.2 in [11]. This completes the proof. �

2. Separating subsets for groups acting diagonally

In this section we consider an abelian group G that acts by a diagonal matrix
on F[V ] = F[x1, . . . , xn]. As it turns out, in this case we can describe a separating
subset (and thus separating subalgebra) that consists solely of monomials.

Let κ(G) denote the character group of G over F. For each 1 ≤ i ≤ n, let χi be
the element in κ(G) such that g(xi) = χi(g)xi.

The corresponding ring of invariants F[V ]G is generated by monomials, see, e.g.,
Lemma 7.3.5 in [10]. Furthermore, a monomial m = xe1

1 xe2
2 · · ·xen

n is invariant if
and only if e1χ1 + e2χ2 + · · ·+ enχn = 0 in κ(G).

To each subset S ⊆ {1, 2, . . . , n} we associate an invariant monomial in the
following way. Set

M(S) = {xe1
1 xe2

2 · · ·xen
n ∈ F[V ]G| ej = 0 for j /∈ S} ⊆ F[V ]G.

Denote by i = i(S) the smallest integer in S. Define A = A(S) ⊆ N to be the set
of positive integers a such that there exists a monomial xei

i · · ·xen
n in M(S) such

that ei = a.
We note that A is not empty since it contains oi, the order of χi in κ(G).
For a, b ∈ A with a > b, we have that a − b ∈ A as can be seen as follows. By

construction there are two invariants

xei
i · · ·xen

n and xfi

i · · ·xfn
n ∈ M(S)

and thus we obtain two equations

eiχi + · · ·+ enχn = 0 and fiχi + · · ·+ fnχn = 0

such that ei = a, fi = b, and ej = fj = 0 for j /∈ S. Taking the difference of these
equations yields

(ei − fi)χi + · · ·+ (en − fn)χn = 0,
with ei − fi = a − b. The coefficients of this equation are not necessarily non-
negative. However, since G is finite, we can choose for each 1 ≤ j ≤ n, a positive
integer (namely, the order of χj) oj such that ojχj = 0. Therefore by adding
enough positive multiples of ojχj for j ∈ S \ {i}, we get an equation

hiχi + · · ·+ hnχn = 0
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with hi = a− b, hj ≥ 0 for j ∈ S and hj = 0 for j /∈ S. It follows that A∪ {0} is a
lattice in N0 and hence generated by its smallest positive member, say amin. Let

mS = xei
i · · ·xen

n ∈ M(S)

be the smallest monomial in M(S) with respect to lexicographic order with x1 >
x2 > · · · > xn such that ei = amin. Note that our definition does not place a
monomial in a unique M(S) but mS is well defined. We show that the collection
of these monomials mS , for every ∅ 6= S ⊆ {1, . . . , n} is separating.

Proposition 5. The set T = {mS | ∅ 6= S ⊆ {1, 2, . . . , n}} is separating. Note
that the size of T is 2n − 1.

Proof. We assume to the contrary that the monomials in T do not separate the
distinct orbits [v], [w] ∈ V/G. We will show that this implies that m(v) = m(w)
for any invariant monomial m, and hence for any invariant, which is the desired
contradiction. Let

m = xe1
1 xe2

2 · · ·xen
n ∈ F[V ]G.

Denote by S the complement in {1, 2, . . . , n} of {j | ej = 0}. Thus m ∈ M(S).
We proceed by induction on the order of S.

If |S| = 1, say S = {j}, then m = x
t·oj

j for some positive integer t, since m is
invariant. Furthermore, mS = x

oj

j ∈ T . Since we are assuming the monomials in
T do not separate v = (v1, . . . , vn) and w = (w1, . . . , wn) we find that

m(v) = v
t·oj

j = w
t·oj

j = m(w).

Since this is true for any choice of j we are done.
Next, we assume that |S| > 1, and the result has been proven for sets of smaller

size.
Let i denote the smallest integer in S. By construction there exists a positive

integer r such that the monomial

mr
S = xfi

i · · ·xfn
n

satisfies ei = fi. Hence,

m
mr

S
=

x
ei+1
i+1 · · ·xen

n

x
fi+1
i+1 · · ·xfn

n

∈ F(V )G.

is a rational invariant.
Let J denote the set of indices j such that xj appears in the denominator of

m
mr
S
. Since x

oj

j is an invariant for all j ∈ J , it follows that for some suitably large
t ∈ N

m′ :=
m
mr

S

∏
j∈J

x
toj

j ∈ F[V ]G

is an invariant monomial. Moreover, since xi does not appear in m′ and all the
indices of the variables that appear in m′ come from S, we have m′ ∈ M(S ′) for
some S ′ ( S. Consider

m =
m′ ·mr

S∏
j∈J x

oj

j

.

Since mS ∈ T , the monomial mr
S does not separate v and w. Moreover, by our

induction hypothesis m′ ∈ M(S ′) and
∏

j∈T x
oj

j ∈ M(J ) do not separate v and w
either, because S ′, J ( S. But the value of m at a point is uniquely determined
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by m′, mS and
∏

j∈J x
oj

j if
∏

j∈J x
oj

j is non-zero at that point. Therefore m does
separate v and w if

∏
j∈J x

oj

j is non-zero at one (hence both) of v and w.
On the other hand if

∏
j∈J x

oj

j vanishes at a point, then m also vanishes at that
point because J ⊆ S, namely if a variable appears in

∏
j∈J x

oj

j , it also appears in
m.

Finally, the monomial m∅ corresponding to empty set is just 1, hence it is not
needed in a separating set. This completes the proof. �

We demonstrate in the following example that the set of separating monomials
of the previous proposition can not be refined always.

Example. Let G = Z3 be the cyclic group of order 3 acting diagonally on the poly-
nomial ring C[x1, x2] with complex coefficients by σ(xi) = λxi for 1 ≤ i ≤ 1, where
λ is a primitive 3rd root of unity and σ is a generator of G. The invariant ring is
minimally generated by {x3

1, x
2
1x2, x1x

2
2, x

3
2}. As the previous proposition predicts,

the set {x3
1, x1x

2
2, x

3
2} is separating. If there were a separating set consisting of two

elements, say f1, f2, then C[f1, f2] ⊆ C[x1, x2]G is a finite extension and moreover
C[x1, x2]G is the normalization of C[f1, f2], by Theorem 2.3.12 in [1]. But this is
impossible because C[f1, f2] is a regular ring and hence is integrally closed.

Meanwhile the separating set in Proposition 5 can be improved substantially for
cyclic groups of prime order as we show in the next proposition. However note that
the respective sizes of the separating sets of these propositions coincide for n = 2.

Proposition 6. Let G be a cyclic group of prime order. Furthermore assume that
n ≥ 2 and χj 6= 0 for 1 ≤ j ≤ n. Then

T = {mS | S ⊆ {1, 2, . . . , n} and |S| = 1, 2}

is separating. Note that the size of T is n2+n
2 .

Proof. Since we are assuming non-trivial characters exist, we have κ(G) ∼= G.
Let |S| = 1, say S = {j}, then mS = x

oj

j . Assume next that |S| = 2 with
S = {i, j} and i < j. Since κ(G) is cyclic of prime order and χi, χj 6= 0 there exists
a unique positive integer ai,j < oj such that

χi + ai,jχj = 0 ∈ κ(G).

Hence xix
ai,j

j is an invariant monomial. Since ai,j is the smallest among the positive
integers k such that xix

k
j is invariant it follows that mS = xix

ai,j

j . Thus we have
obtained

T = {xoj

j }1≤j≤n ∪ {xix
ai,j

j }1≤i<j≤n.

From this point on, the proof of the previous proposition carries over: We assume
that the monomials in T do not separate the vectors v,w ∈ V with distinct G-
orbits. Let m = xe1

1 xe2
2 · · ·xen

n be an arbitrary invariant monomial and let S denote
the complement in {1, 2, . . . , n} of {j | ej = 0}. Then m ∈ M(S). Let i be the
smallest integer in S. We proceed by induction on |S|.

If |S| = 1, then m = xt·oi
i for some positive integer oi. But, being in T , xoi

i does
not separate v and w. Therefore m = xt·oi

i does not either.
Assume next |S| ≥ 2. Pick j ∈ S with j > i. Then xi does not appear in

m
(xix

ai,j

j )ei
=

x
ei+1
i+1 · · ·xen

n

x
ai,jei

j

.
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It follows that for sufficiently large t ∈ N

m =
m′(xix

ai,j

j )ei

x
toj

j

,

for some m′ that lies in M(S ′) for some proper subset S ′ in S. The value of m
at a point is uniquely determined by m′, (xix

ai,j

j )ei and x
oj

j , if j-th coordinate of
that point is non-zero. In this case m does not separate v and w by induction
since m′ ∈ M(S ′) and x

oj

j , xix
ai,j

j ∈ T . On the other hand if x
oj

j (v) = 0 (hence
x

oj

j (w) = 0), then m(v) = m(w) = 0 as well since j ∈ S, i.e., xj appears in m. �
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