
Vibration absorption using non-dissipative complex attachments with impacts and
parametric stiffness
N. Roveri, A. Carcaterra, and A. Akay

Citation: The Journal of the Acoustical Society of America 126, 2306 (2009); doi: 10.1121/1.3212942
View online: http://dx.doi.org/10.1121/1.3212942
View Table of Contents: http://asa.scitation.org/toc/jas/126/5
Published by the Acoustical Society of America

http://asa.scitation.org/author/Roveri%2C+N
http://asa.scitation.org/author/Carcaterra%2C+A
http://asa.scitation.org/author/Akay%2C+A
/loi/jas
http://dx.doi.org/10.1121/1.3212942
http://asa.scitation.org/toc/jas/126/5
http://asa.scitation.org/publisher/


Vibration absorption using non-dissipative complex attachments
with impacts and parametric stiffness

N. Roveri
Department of Mechanics and Aeronautics, University of Rome, “La Sapienza,” Via Eudossiana, 18,
00184 Rome, Italy

A. Carcaterraa�

Department of Mechanics and Aeronautics, University of Rome, “La Sapienza,” Via Eudossiana, 18,
00184 Rome, Italy and Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213

A. Akay
Department of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey and Department of
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

�Received 31 October 2008; revised 30 July 2009; accepted 31 July 2009�

Studies on prototypical systems that consist of a set of complex attachments, coupled to a primary
structure characterized by a single degree of freedom system, have shown that vibratory energy can
be transported away from the primary through use of complex undamped resonators. Properties and
use of these subsystems as by energy absorbers have also been proposed, particularly using
attachments that consist of a large set of resonators. These ideas have been originally developed for
linear systems and they provided insight into energy sharing phenomenon in large structures like
ships, airplanes, and cars, where interior substructures interact with a master structure, e.g., the hull,
the fuselage, or the car body. This paper examines the effects of nonlinearities that develop in the
attachments, making them even more complex. Specifically, two different nonlinearities are
considered: �1� Those generated by impacts that develop among the attached resonators, and �2�
parametric effects produced by time-varying stiffness of the resonators. Both the impacts and the
parametric effects improve the results obtained using linear oscillators in terms of inhibiting
transported energy from returning to the primary structure. The results are indeed comparable with
those obtained using linear oscillators but with special frequency distributions, as in the findings of
some recent papers by the same authors. Numerically obtained results show how energy is confined
among the attached oscillators. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3212942�

PACS number�s�: 43.40.At, 43.40.Kd, 43.40.Jc, 43.40.Tm �ADP� Pages: 2306–2314

I. INTRODUCTION

An extensive literature exists on energy distribution in
prototypical systems that consist of a set of linear parallel
undamped resonators, called here as the attachment, all con-
nected to a common vibrating structure, and often referred to
as the primary or master structure. The pioneering work of
Pierce et al.1 investigated a plate with a complex attachment
demonstrating its unconventional damping property in the
frequency-domain, and in Refs. 2 and 3 the problem is re-
considered, looking at the properties of a prototype master
structure with attached set of weakly damped resonators. In
Ref. 4, the damping effect produced by this prototypical sys-
tem is analytically demonstrated, even independently of any
local energy dissipation, for an infinite number of resonators
and with a particular frequency distribution. The problem
was further analyzed, focusing on the temporary nature of
the energy storage for a finite number of attached resonators5

and on the energy redistribution process and equipartition in
large undamped resonators.6 In Ref. 7 the intrinsic properties

of attachments are identified, which control the speed of en-
ergy sharing between a master and the attachment and the
time the energy takes to be transferred back to the master.
Several studies examined the conditions that, even in the
absence of energy dissipation, prevent energy transport back
to the master, which lead to the so called near-irreversibility
condition8–10 also confirmed by experimental tests.11 Finally,
the problem of an efficient design of a multi-degrees of free-
dom tuned-mass-damper has been also considered in the
context of control theory.12

In all these studies, energy redistribution process is con-
sidered in the framework of �i� linear interaction between the
master and the attached resonators and �ii� in the absence of
any direct interaction among the resonators, except through
their reactions on the primary.

This paper addresses the effects of nonlinearities on en-
ergy transport by introducing nonlinear interaction—elastic
collisions—among the resonators and a parametric instanta-
neous variation in the stiffness of the attached oscillators.
The motivation for investigating these effects is summarized
briefly as follows.

�a� In Ref. 10 it is shown how a damping effect on the
a�Author to whom correspondence should be addressed. Electronic mail:

a.carcaterra@dma.ing.uniroma1.it
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master develops due to the attachment only when the
uncoupled natural frequency of the master belongs to the
interval B described by the natural frequencies of the
oscillators within the attachment. Conversely, if the mas-
ter frequency falls outside of this bandwidth B, the en-
ergy sharing process is inhibited, significantly decou-
pling the master and the attachment.

�b� Under the conditions of the first point in case �a�, most
of the energy is transferred form the master to a limited
number of resonators, i.e., to those oscillators having
their natural frequencies closer to that of the master, thus
concentrating the energy over a limited part of the
attachment.7

�c� Energy is continuously transferred and stored into the
attachment for a period of time, but after a characteristic
return time,7 it is transferred back to the master.

These observations naturally lead to investigating means
to produce permanent energy storage within the attachment
by modification of the linear system.

The behavior described in case �a� suggests that the mas-
ter and the attachment can be energy-coupled or decoupled
by just modifying the characteristic frequency distribution
within the attachment during the vibration process as fol-
lows. In a linear system initially with a frequency distribu-
tion tuned with the master frequency, the energy is trans-
ferred from the master to the attachment. Following this
transfer, when the condition of energy flow inversion from
the attachment to the master becomes imminent �and this
condition can be even theoretically predicted as in Ref. 7�,
the frequencies of the resonators of the attachment are sud-
denly modified, moving them far away from the master fre-
quency, creating an energy-decoupling condition, and “freez-
ing” the energy within the attachment. This strategy
described in Sec. III.

An alternative approach, which amounts to producing an
energy spreading effect, is to introduce direct interactions
among the resonators within the attachment, permitting to
them to have free and direct energy exchange. As described
in Sec. II, letting oscillators develop impacts among them
redistributes energy from those most energized to the others.

These nonlinear techniques also produce a near-
irreversible energy transfer between the master and the at-
tachment similar to that described in Ref. 10 for linear sys-
tems but using special frequency distribution within the
attachment.

II. IMPACTS WITHIN THE ATTACHMENT

The prototypical two degrees of freedom system that
produces impacts between adjacent oscillators, is schemati-
cally described in Fig. 1, with m, k1, k2, x1�t�, and x2�t�
representing mass, stiffness �k1 ,k2�, and displacement of
each resonator, respectively. It represents the characteristic
module for elastic collision interaction used in the more gen-
eral attachment investigated ahead, involving indeed mul-
tiple resonators, and its preliminary analysis helps in a better
understanding of the general case.

The nonlinear behavior emerges as the relative distance
�x1�t�−x2�t�� equals the gap g and an impact between the

resonators takes place through the impact frame F. An as-
sumption of perfect elastic collision is made. The equations
of energy and the momentum conservation imply

�ẋ1
2�t+� + ẋ2

2�t+��
m

2
= �ẋ1

2�t−� + ẋ2
2�t−��

m

2
,

m�ẋ1�t+� − ẋ1�t−�� = − m�ẋ2�t+� − ẋ2�t−�� , �1�

where t− and t+ are the time just preceding and subsequent to
the impact, respectively. It follows

ẋ1�t+� = ẋ2�t−� ,

ẋ2�t+� = ẋ1�t−� , �2�

meaning the resonators just exchange their velocities during
an impact. Equation �2� is used to study the impacts within
the complete attachment consisting of a plurality of resona-
tors.

Therefore, the complete system represented in Fig. 2, in
the absence of external forces, is described by the equations

FIG. 1. The two-resonator impact-coupling.

FIG. 2. Master-attachment prototype system.
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mẍj�t� + kj�xj�t� − xN�t�� = �
k

Ik
j,i��t − tk�,

j = 1,2, . . . ,N − 1,

MẍN�t� + kNxN�t� + �
j=1

N−1

kj�xN�t� − xj�t�� = 0, �3�

where the index N designates the master, 1 ,2 , . . . ,N−1 are
used for the oscillators of the attachment, m, kj, M, kN, xj�t�,
and t are the mass and the stiffness of each oscillator of the
attachment, the mass and the stiffness of the master, the dis-
placement of the jth oscillator, and time, respectively, Ik

j,i

represents the impulse exchanged between the jth and the ith
resonators at time tk, Ik

i,j =−Ik
j,i, and ��t− tk� is the Dirac delta

function. However, accordingly with the system depicted in
Fig. 2, the elastic collision interactions represented by Ik

j,i are
restricted to the resonators with the nearest neighbors.

Matrix form for Eq. �3� reads

Mẍ + Kx = f�x, ẋ� , �4�

where M and K are the mass and stiffness matrices, and
f�x , ẋ� represents the conservative, internal, and impact
forces.

Equation �4� is piecewise linear and an iterative analytic
solution at each iteration step can be expressed as

x�x0, ẋ0,t,t0� = �
r=1

N �ur
TMx0 cos��rt − �rt0�

+ ur
TMẋ0

1

�r
sin��rt − �rt0�� · ur, �5�

where �r and ur are the eigenfrequency and the correspond-
ing eigenvector, respectively, x0 and ẋ0 represent the initial
displacement and velocity at t0, respectively. Expression �5�
is used iteratively to build the solution sk�t�, which is a set of
continuous functions for each time interval �tk , tk+1�, within
which no impact takes place. For t� �0, t1� Eq. �5� yields

s0�t� = x�x0, ẋ0,t,t0� ∀ t � �0,t1� . �6�

With the initial conditions at t0=0,

x0 = 	0

]

0

; ẋ0 = 	 0

]

V0

 . �7�

For t� �t1 , t2� Eq. �5� becomes

s1�t� = x�x0, ẋ0,t,t0� ∀ t � �t1,t2� �8�

with initial condition on displacement as

x0 = s0�t1−� . �9�

The initial velocities are obtained using Eq. �2� for each im-
pacting pair of resonators j and i at t1

ẋ0j = ṡi
0�t1−1�

ẋ0i = ṡ j
0�t1−1� �10�

Finally, for each oscillator h that does not undergo an impact,

ẋ0h = ṡh
0�t1−� �11�

is the initial condition at t0= t1.
The computational process starts with Eqs. �6�–�11�, it-

eratively repeated up to the desired end time.
It would be emphasized how this procedure leads to a

piecewise continuous solution using linear analysis within
time spans between impacts in conjunction with velocity
rules, given by Eq. �2�, which impose velocity discontinuities
on the resonators.

The model represented by Eqs. �1�–�11� is used to
describe the energy sharing process between the master
and the attachment. In Sec. IV the energy time history of
the master EN�t�=1 /2M�ẋN

2 +�M
2 xN

2 � and its time average

limT→� 1 /T�0
TEN�t�dt, where �M =�kN /M, are considered to-

gether with the average energy of the satellite oscillators.

III. PARAMETRIC EFFECTS: TIME-VARYING
STIFFNESS

Several previous studies of the linear oscillators have
shown how initially imparted energy to a master migrates to
the attached oscillators.2,6,7 In particular, these studies have
also shown how special frequency distributions of the oscil-
lators enhance the transport of energy rapidly from the mas-
ter to the oscillators.7 Theoretical, numerical, as well as ex-
perimental evidences of this phenomenon have been offered
in Refs. 7–10. These results show that energy exchange be-
tween the master and its satellites takes place through a pref-
erential frequency bandwidth B, as pointed out in case �a� in
Sec. I, which must contain the master frequency, while the
energy sharing process is inhibited when the master fre-
quency falls outside this bandwidth.

Based on these considerations, the concept proposed
here employs parametrically variable stiffness, with instanta-
neous variations, for the satellite oscillators; after an initial
tuning period during which the master frequency falls within
B, the satellite frequencies are shifted in a way that the mas-
ter frequency is left outside B. Thus, the energy sharing pro-
cess is inhibited before the energy can return to the master,
confining the energy permanently within the attachment.
Such a system, analogous to the one considered in Sec. II,
still behaves linearly in each time interval.

The satellite oscillators all have equal mass m, while
their initial stiffness is selected within the set S
�kr ,r
=1, . . . ,N−1 �kr�ks for r�s�. The initial value of the time-
varying stiffness �i�t� of the ith oscillator falls within S.

Of the two approaches proposed here to parametrically
vary stiffness, the simpler one uses a time-dependent stiff-
ness �i�t� defined as

�i�t� = ki + �kiH�t − t��, and ki � S ,

�ki + �ki

m
��kmax

m
, ∀ i , �13�

where H is the Heaviside step function and kmax=max�ki�,
�ki�0.
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The initial uncoupled oscillator frequencies �r=�kr /m
all belong to the bandwidth B
�0, �kmax /m�, which in-
cludes the master frequency �M.

The stiffness �i takes values, after a period t�, within a
set T
�kr+�kr ,r=1, . . . ,N−1�, defined in Eq. �13�. Equa-
tion �13� implies that for t� t�, the all oscillator frequencies
moved away from the bandwidth B, thus inhibiting energy
sharing between the master and the satellite oscillators be-
yond time t�, freezing the energy within the attachment.

Note in this case how, without prescribed values for �ki,
except as described in Eq. �13�, the frequency distribution
�ki+�ki /m obtained t� t� differs from the initial one �ki /m,
and that the stiffness values �i for t� t� no longer belong to
S, i.e., S and T have an empty intersection.

The second strategy for the parametric stiffness control
uses the same frequency distribution at all times t, i.e., the
stiffness of the attachment always belongs to the same set S
at all times. This second procedure follows the steps de-
scribed below.

�1� The oscillators within the attachment are subdivided into
two groups: R�L� and R�H�. Those included in R�H� retain
most of the total energy �as shown in Sec. IV�, the re-
maining belong to R�L�. In general, the number NL of
resonators of R�L� exceeds the number NH of resonators
of R�H�.

�2� After time t�, the stiffnesses �r
�H��t� �r=1, . . . ,NH� of the

resonators in the group R�H�, are simply interchanged
with some of the stiffness �i

�L��t� �i=1, . . . ,NL� belonging
to group R�L�. The following expressions express this
process formally:

�r
�H��t� = kr + ��s

�L��t� − kr�H�t − t�� ,

r = 1,2, . . . ,NH, s � �1,2, . . . ,NL� , �14�

�s
�L��t� = ks + ��s

�H��t� − ks�H�t − t�� .

Because of this simple interchange, no new additional
frequencies are introduced to the attachment. This im-
plies that T
S, meaning the initial and the final fre-
quency distributions within the attachment are the same,
even though the stiffness of the individual resonators are
changed with time in accordance with Eq. �14�.

In the spirit of the present context, the system consid-
ered here remains conservative even under stiffness modifi-
cations. To achieve this goal, the stiffness variation for the
ith oscillator would be introduced when x�t�−xi�t�=0, such
that the perturbation of �i�t� does not modify the potential
energy stored in the spring, leaving the total energy of the
resonator unchanged. Use of this technique suggests the need
to introduce the stiffness modifications at different times for
each resonator of the set. In practice, however, it is more
convenient to modify the stiffness values simultaneously for
all the resonators at the same time t� without checking their
individual position. In order to make the process simpler, the
modified spring stiffness for each oscillator ki

new must have
the same energy as the original one �stiffness ki

old�,

1

2
ki

new�x�t�� − xi
new�t���2 =

1

2
ki

old�x�t�� − xi
old�t���2,

xi
new�t�� = x�t�� −� ki

old

ki
new�x�t�� − xi

old�t��� .

Thus, by modifying the stiffness, the corresponding elonga-
tions xi

new�t�� of the spring for each oscillator is also modified
with respect to its original values xi

old�t��, in accordance with
the energy conservation requirement expressed above. This
condition implies that the energy balance of each oscillator is
preserved, but with a different static equilibrium position af-
ter the stiffness change.

A final consideration concerns the selection of the time
t�. This is roughly the time it takes for the energy of the
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FIG. 3. Energy time history of the master for the linear system.
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master to completely migrate to the attachment. As shown in
Ref. 7, for a linear attachment, the return time tret indicates
the time after which the energy returns back to the master,
and in Ref. 7 it is also shown how it depends on the selected
frequency distribution within the attachment and on the total
number N−1 of resonators. The time periods of tret and t� are
similar; in fact, as the energy of the master is transferred to
the attachment, phase synchronization among the resonators
within the attachment takes place and the energy is suddenly
returned to the master.

Therefore, time t� must be long enough to allow the
most effective energy transfer from the master to the attach-
ment, but shorter than tret to avoid the energy reverse pro-
cess. A suitable choice for t� could be t��0.9tret �the one

used in the simulations� so that the return effect is prevented
and the energy absorbed from the master is nearly all con-
fined in the resonators of the attachment.

IV. NUMERICAL RESULTS

As a numerical implementation of the model defined in
Sec. II, based on elastic collisions, consider a case in which
a total of N=130 attached oscillators have equally spaced
frequencies within the bandwidth ��M /50,2�M�. The mass
ratio between the mass of the attachment and the mass of the
master is about 0.1, and m /M =1 / �10N�.

The choice of the characteristic gap g can be operated,
following many different criteria. For the present numerical

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

Nondimensional Time

M
as

te
r

E
ne

rg
y

FIG. 4. Energy time history of the master for the nonlinear system.
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FIG. 5. Time-averaged energy of each resonator for the linear system: dots represent the oscillators energies and the diamond represent the energy of the
master; y-axis is log-scale.
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simulations, the steps have been used as follows:

• the system response is simulated, without elastic collisions,
during the time interval �0,2Tmax�, where Tmax is the maxi-
mum natural period of the system;

• the distances di�t�= �xi+1�t�−xi�t��, where i=1,N−2, be-
tween neighbors resonators are monitored, and their
maxima Di within the time interval �0,2Tmax� are ex-
tracted; and

• if gmax=max�Di , i=1,N−2� then the gap g is chosen
�equal for all the resonator pairs� as a fraction of gmax,
namely, g=0.8gmax.

The idea behind this procedure is physically simple: the
process of collision is initially activated for those resonators
having an energy level close to their maximum. It is empiri-
cally found that this criterion produces good results, and a
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FIG. 6. Time-averaged energy of each resonator for the nonlinear system �symbols as in Fig. 5�.
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FIG. 7. Energy time history of the master �case a�.
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systematic analysis of the effect of g on the energy absorp-
tion capability of the attachment will be the subject of future
investigations.

The total initial energy imparted on the primary is Etot

=0.5. Energy time histories of the master are plotted in Figs.
3 and 4 for the linear and nonlinear systems, respectively.
Time axis is non-dimensional, taking Tmax as the reference

time. Presence of impacts enhances the energy absorption
capability of the attachment, significantly reducing the vibra-
tion amplitude of the master.

Figures 5 and 6 show the time-averaged energy stored in
each resonator for the cases of linear and nonlinear systems,
respectively. The time base over which the average is com-
puted is equal to 1 000� Tmax. For the linear case the energy
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FIG. 8. Energy time history of the master �case b�.
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FIG. 9. Time-averaged energy of each resonator �case a� �symbols as in Fig. 5�.
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is mainly shared among the master and a small group of
resonators tuned to the master’s frequency, in agreement
with the findings of Ref. 7. In fact, in the curve of Fig. 5, a
sharp peak appears around the master frequency. In the non-
linear case, energy in the attachment is almost equally shared
among resonators, mostly with a value around Etot /N
�0.0038, approaching energy equipartitioning.

Turning to the alternative mechanism of introducing
nonlinearity through stiffness modification, a system with the
same bandwidth and number of degrees of freedom as in the
previous case is considered. As shown in Sec. III, the two
cases investigated are as follows:

a. parametric control by hardening all the stiffness of the
satellite structure, by setting �ki=kN−1−k1, such that all
the frequencies of the satellites for t� t� fall outside the
bandwidth B; and

b. parametric control by using the same frequency
distribution.

Energy time histories of the master are shown in Figs. 7
and 8 for cases �a� and �b�, respectively.

Comparing these results with those in Fig. 3 demon-
strates how effective parametric control can be in making the
master time energy approach zero.

Figures 9 and 10 show the time-averaged energy stored
into each resonator, again for cases �a� and �b�, respectively.
In both cases the energy of the master is much lower than the
equipartition value Etot /N�0.0038, and the first frequency
shift starts when the master energy is very close to zero.
Comparing Figs. 9 and 10 with Fig. 6, a very limited spread-
ing of the energy among resonators is observed; the shape of
the energy spectra shown in Figs. 9 and 10 is much closer to
the one obtained for the linear case, as shown in Fig. 5, than
to the one with impacts �Fig. 6�.

Figures 4, 7, and 8 show that the master energies are
quite similar for both cases, as well as impacts and stiffness
modification among resonators of the satellite structure, al-
though they are based on different physical phenomena. As
shown in Figs. 6, 9, and 10, in the case of impacts, total
energy is equally spread among the resonators, thus the en-
ergy of the master is close to Etot /N, while in the case of
frequency shifts through stiffness modifications there is no
equidistribution; the energy is trapped in a group of satellite
resonators, and the master energy remains nearly constant
and equal to its value at the time of the first shift.

As a final point, energy equipartition within the attach-
ment can be produced by �i� a nonlinear mechanism, through
elastic impacts among the resonators and regardless of the
frequency distribution of the system, and �ii� a purely linear
mechanism from a proper selection of frequency distribution
of the oscillators, as recently shown in Ref. 13.

V. SUMMARY AND CONCLUSIONS

The present paper considers the problem of energy shar-
ing between a master and a plurality of parallel resonators
attached to it, introducing two elements of novelty with re-
spect to the previous investigations regarding the presence of
collisions among the resonators within the attachment and
parametric variation of their stiffness. Purpose of both of
these approaches is to make the energy transfer from the
primary to the attachment permanent. For both cases, nu-
merical results show very good energy absorption capability
of the attachments introduced in this paper. They may be
considered as alternatives to selecting special frequency dis-
tributions within the attachment10 to produce a near-
irreversible energy transfer from the master to an attached set
of linear oscillators. Of note, the results obtained with the
techniques described here are not significantly sensitive to
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FIG. 10. Time-averaged energy of each resonator �case b� �symbols as in Fig. 5�.
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the particular frequency distribution within the attachment.
Moreover, the nonlinear mechanisms introduced here pro-
duce an energy absorption capability of the attachment that is
very similar to that obtained using the previously reported
special frequency distribution in linear oscillators. A physical
reason that can qualitatively explain this equivalence relies
on the ability of the nonlinear mechanisms introduced here in
spreading the energy across the resonators of the attachment,
an ability that is shared with linear systems having the par-
ticular frequency distribution reported in Ref. 10.
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