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Abstract
Bi-presymplectic chains of 1-forms of co-rank 1 are considered. The conditions
under which such chains represent some Liouville integrable systems and the
conditions under which there exist related bi-Hamiltonian chains of vector fields
are derived. To present the construction of bi-presymplectic chains, the notion
of a dual Poisson-presymplectic pair is used, and the concept of d-compatibility
of Poisson bivectors and d-compatibility of presymplectic forms is introduced.
It is shown that bi-presymplectic representation of a related flow leads directly
to the construction of separation coordinates in a purely algorithmic way. As an
illustration, bi-presymplectic and bi-Hamiltonian chains in R

3 are considered
in detail.

PACS numbers: 02.30.Ik, 45.20.Jj

1. Introduction

Symplectic structures play an important role in the theory of Hamiltonian dynamical systems.
In the case of a non-degenerate Poisson tensor, the dual symplectic formulation of the dynamic
can always be introduced via the inverse of the Poisson tensor. On the other hand, many
dynamical systems admit Hamiltonian representation with a degenerate Poisson tensor. For
such tensors, the notion of dual presymplectic structures was developed [2, 3, 6, 11].

The presymplectic picture is especially interesting for Liouville integrable systems. There
is a well-developed bi-Hamiltonian theory of such systems, starting from the early work of
Gel’fand and Dorfman [7]. Particularly interesting are these systems whose construction is
based on Poisson pencils of the Kronecker type [8, 9], with a polynomial in pencil parameter
Casimir functions, together with related separability theory (see [4, 10] and references quoted
therein). The important question is whether it is possible to formulate an independent,
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alternative bi-presymplectic (bi-inverse Hamiltonian, in particular) theory of such systems
with related separability theory and what is the way to relate these two theories to each
other.

This paper develops the bi-presymplectic theory of Liouville integrable systems and
related separability theory in the case when the co-rank of presymplectic forms is 1. The
whole formalism is based on the notion of d-compatibility of presymplectic forms and d-
compatibility of Poisson bivectors.

Let us point out that although the case of co-rank 1 is very special, nevertheless it is of
particular importance. Actually, the majority of physically interesting Liouville integrable
systems from classical mechanics belong to that class of problems. In particular, it contains
all systems with first integrals, quadratic in momenta, whose configuration space is flat or of
constant curvature. So, it seems that the case of co-rank 1 is worth of separate investigation.
On the other hand, it is clear that in order to complete the new theory a generalization to
a higher co-rank is necessary. In fact the work is in progress, although it is a non-trivial
task as the systems with higher co-ranks show specific properties not shown in the case of
co-rank 1.

Another question the reader can ask is about the relevance of the formalism presented. As
we know that it is a well-established bi-Hamiltonian separability theory, the question is what
can we gain when applying its dual bi-presymplectic (bi-inverse- Hamiltonian, in particular)
counterpart. The answer is as follows. In the bi-Hamiltonian approach, the existence of the
bi-Hamiltonian representation of a given flow is a necessary condition of separability but not a
sufficient one. In order to construct separation coordinates, a Poisson projection of the second
Hamiltonian structure onto a symplectic leaf of the first one has to be done. Unfortunately,
it is far from a trivial non-algorithmic procedure that should be considered separately from
case to case. Moreover, there is no proof that it is always possible. In contrast, once we
find a bi-presymplectic representation of a flow considered, the construction of separation
coordinates is a fully algorithmic procedure (in a generic case obviously), as the restriction of
both presymplectic structures to any leaf of a given foliation is a simple task. For this reason,
we do hope that the new formalism presented in the paper will be relevant to the modern
separability theory and hence interesting for the readers.

The paper is organized as follows. In section 2, we give some basic information on
Poisson tensors, presymplectic 2-forms, Hamiltonian and inverse Hamiltonian vector fields
and dual Poisson-presymplectic pairs. In sections 3 and 4, the concepts of d-compatibility of
Poisson bivectors and d-compatibility of closed 2-forms are developed. Then, in section 5,
the main properties of bi-presymplectic chains of co-rank 1 are investigated. We present
the conditions under which the bi-presymplectic chain is related to some Liouville integrable
system and the conditions under which the chain is bi-inverse Hamiltonian. The conditions
under which Hamiltonian vector fields, constructed from a given bi-presymplectic chain,
constitute a related bi-Hamiltonian chain are also found. We also illustrate a construction of
separation coordinates once a bi-presymplectic chain is given. In sections 6–8, we investigate
in details, with many explicit calculations and examples, a special case of bi-presymplectic
and bi-Hamiltonian chains in R

3.
Finally, let us remark that our treatment in this work is local. Thus, even if it is not

explicitly mentioned, we always restrict our considerations to the domain � of manifold M
where appropriate functions, vector fields and 1-forms never vanish and respective Poisson
tensors and presymplectic forms are of a constant co-rank. In some examples, we perform
calculations in a particular local chart from �.
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2. Preliminaries

On a manifold M, a Poisson tensor is a bivector with a vanishing Schouten bracket. A function
c : M → R is called the Casimir function of the Poisson operator � if �dc = 0. A linear
combination �λ = �1 −λ�0 (λ ∈ R) of two Poisson operators �0 and �1 is called a Poisson
pencil if the operator �λ is Poisson for any value of the parameter λ. In this case, we say that
�0 and �1 are compatible. Having a Poisson tensor, we can define a Hamiltonian vector field
on M. A vector field XF related to a function F ∈ C∞(M) by the relation

XF = �dF (2.1)

is called the Hamiltonian vector field with respect to the Poisson operator �.
Further, a presymplectic operator � on M defines a 2-form that is closed, i.e. d� = 0,

degenerated in general. Moreover, the kernel of any presymplectic form is always an integrable
distribution. A vector field XF related to a function F ∈ C∞(M) by the relation

�XF = dF (2.2)

is called the inverse Hamiltonian vector field with respect to the presymplectic operator �.

Definition 1. A Poisson bivector � and a presymplectic form � are called compatible if ���

is a closed 2-form.

Any non-degenerate closed 2-form on M is called a symplectic form. The inverse of a
symplectic form is an implectic operator, i.e. invertible Poisson tensor on M and vice versa.

Definition 2. A pair (�,�) is called a dual implectic–symplectic pair on M if � is a
non-degenerate Poisson tensor, � is a non-degenerate closed 2-form and �� = �� = I .

So, in the non-degenerate case, the dual implectic–symplectic pair is a pair of mutually inverse
operators on M. Moreover, the Hamiltonian and the inverse Hamiltonian representations are
equivalent because for any implectic bivector � there is a unique dual symplectic form
� = �−1, and hence a vector field Hamiltonian with respect to � is an inverse Hamiltonian
with respect to �.

Let us extend these considerations onto a degenerate case. In order to do it, let us
generalize the concept of the dual pair from [3]. Consider a manifold M of an arbitrary
dimension m.

Definition 3. A pair of tensor fields (�,�) on M of co-rank r, where � is a Poisson tensor
and � is a closed 2-form, is called a dual pair (Poisson-presymplectic pair) if there exist r
1-forms αi and r linearly independent vector fields Zi , such that the following conditions are
satisfied.

(i) αi(Zi) = δij , i = 1, 2, . . . , r .
(ii) ker � = Sp{αi : i = 1, . . . , r}.

(iii) ker � = Sp{Zi : i = 1, . . . , r}.
(iv) The following partition of unity holds on T M , respectively on T ∗M,

I = �� +
r∑

i=1

Zi ⊗ αi, I = �� +
r∑

i=1

αi ⊗ Zi. (2.3)
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In contrast to the non-degenerated case, for a given Poisson tensor � the choice of its
dual is not unique. Also for a given presymplectic form �, the choice of the dual Poisson
tensor is not unique. The details are given in the following section. For the degenerate case,
the Hamiltonian and the inverse Hamiltonian vector fields are defined in the same way as for
the non-degenerate case. But for degenerate structures, the notions of the Hamiltonian and
inverse Hamiltonian vector fields do not coincide. For a degenerate dual pair, it is possible
to find a Hamiltonian vector field that is not inverse Hamiltonian and an inverse Hamiltonian
vector field that is not Hamiltonian. Actually, assume that (�,�) is a dual pair, XF = �dF

is a Hamiltonian vector field and dF = �XF is an inverse Hamiltonian 1-form, where XF is
an inverse Hamiltonian vector field. Having applied � to both sides of the Hamiltonian vector
field, � to both sides of the inverse Hamiltonian 1-form and using decomposition (2.3), we
get

dF = �(XF ) +
r∑

i=1

Zi(F )αi, XF = XF −
r∑

i=1

αi(X
F )Zi. (2.4)

It means that an inverse Hamiltonian vector field XF is simultaneously a Hamiltonian vector
field XF , i.e. XF = XF , if dF is annihilated by ker(�) and XF is annihilated by ker(�).

Finally, for a dual pair (�,�), the following important relations hold:

[Zi, Zj ] = 0, LXF
� = 0, LZi

� = 0, LXF � = 0, LZi
� = 0, (2.5)

where LX is the Lie-derivative operator in the direction of vector field X and [. , .] is a
commutator.

3. D-compatibility for a non-degenerate case

In this section we introduce a notion of d-compatibility when a dual pair is an implectic–
symplectic one, i.e. when it is of co-rank 0. Let M be a manifold of even dimension m = 2n.

Definition 4. We say that a closed 2-form �1 is d-compatible with a symplectic form �0 if
�0�1�0 is a Poisson tensor and �0 = �−1

0 is dual to �0.

Definition 5. We say that a Poisson tensor �1 is d-compatible with an implectic tensor �0 if
�0�1�0 is closed and �0 = �−1

0 is dual to �0.

Now, the following lemma relates d-compatible Poisson structures, of which one is
implectic, and d-compatible closed 2-forms, of which one is symplectic.

Lemma 6.

(i) Let an implectic tensor �0 and a symplectic form �0 be a dual pair. Let a Poisson tensor
�1 be d-compatible with �0. Then �0 and �1 = �0�1�0 are d-compatible closed
2-forms.

(ii) Let an implectic tensor �0 and a symplectic form �0 be a dual pair. Let a closed 2-form
�1 be d-compatible with �0. Then �0 and �1 = �0�1�0 are d-compatible Poisson
tensors.

Proof. We have �0�0 = �0�0 = I .

(i) The form �0�1�0 is closed since (�0,�1) are d-compatible. The forms (�0,�1) are
d-compatible as the tensor

�0�1�0 = �0�0�1�0�0 = �1

is a Poisson tensor.
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(ii) The tensor �1 is Poisson since (�0,�1) are d-compatible. The Poisson tensors (�0,�1)

are d-compatible as the form

�0�1�0 = �0�0�1�0�0 = �1

is closed. �

What is important in the case considered is that the notions of d-compatibility and
compatibility of Poisson tensors are equivalent. Actually, one can show (see for example [5])
that if �0�1�0 is closed (which means d-compatibility of �0 = �−1

0 and �1), then �0 and
�1 are compatible and vice versa; if �0 and �1 are compatible, then �0�1�0 is closed and
hence �0 and �1 are d-compatible [2].

4. D-compatibility for a degenerate case

Let us extend the notion of d-compatibility onto the degenerate case.

Definition 7. A closed 2-form �1 is d-compatible with a closed 2-form �0 if there exists
a Poisson tensor �0, dual to �0, such that �0�1�0 is Poisson. Then we say that �1 is
d-compatible with �0 with respect to �0.

Definition 8. A Poisson tensor �1 is d-compatible with a Poisson tensor �0 if there exists
a presymplectic form �0, dual to �0, such that �0�1�0 is closed. Then we say that �1 is
d-compatible with �0 with respect to �0.

In the rest of this paper we restrict our considerations to the simplest case, when the dual
pair considered is of co-rank 1 and our manifold M is of odd dimension dimM = m = 2n+1.

As was mentioned in the previous section, a presymplectic form dual to a given Poisson
tensor is not unique. The set of all presymplectic forms dual to � is parametrized by an
arbitrary differentiable function on M. Moreover, as � is a Poisson tensor then an arbitrary
element of its one-dimensional kernel has the form α = μdH , where μ is an arbitrary
differentiable function on M and H is a Casimir function of �.

Lemma 9. Let � be a fixed Poisson tensor and � be a dual presymplectic form. Assume that
α = μdH ∈ ker �,Z ∈ ker � and α(Z) = 1. A presymplectic form �′ is dual to � if and
only if

�′ = � + dH ∧ dF, (4.1)

where F is an arbitrary differentiable function on M.

Proof. First, observe that Z′ = Z + 1
μ
�dF is an element of ker �′ and that μZ′(H) =

μZ(H) = 1. Then,

��′ = �� − �dF ⊗ dH = I − μZ ⊗ dH − �dF ⊗ dH = I − μZ′ ⊗ dH,

so �′ is dual to �.
Let � and �′ be presymplectic forms dual to �. Let Z′ ∈ ker �′ and μZ(H) =

μZ′(H) = 1. We have

�� = I − μZ ⊗ dH.

��′ = I − μZ′ ⊗ dH.
(4.2)

Multiplying (4.2) by �, we get

���′ = � − μ�(Z′) ⊗ dH.

5
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Then, using the partition of unity, we find

(I − μdH ⊗ Z)�′ = � − μ�(Z′) ⊗ dH

and

�′ − � = −μdH ⊗ �′(Z) − μ�(Z′) ⊗ dH.

Since �′ − � is a closed form, we have

μ�(Z′) = −μ�′(Z) = dF − Z(F)α

and hence (4.1). �

We also have freedom in the choice of a Poisson tensor dual to a given 2-form. The set
of all Poisson tensors dual to � is parametrized by an arbitrary vector field K which is both
Hamiltonian and inverse Hamiltonian with respect to a dual pair.

Lemma 10. Let � be a fixed presymplectic form and � be a dual Poisson tensor. Assume that
Z ∈ ker �,α ∈ ker � and α(Z) = 1. Let K be a vector field such that

K = �dF, dF = �K ⇒ Z(F) = 0, K(α) = 0 (4.3)

for some function F. Then, a Poisson tensor �′ is dual to � if and only if it has a form

�′ = � + Z ∧ K. (4.4)

Proof. First, we show that �′ is Poisson. Indeed, consider a Schouten bracket

[�′,�′]S = −Z ∧ LK� + K ∧ LZ� − 2K ∧ [Z,K] ∧ Z.

Since LK� = 0, LZ� = 0 and [Z,K] = 0, we have [�′,�′]S = 0. Let α = μdH ; then
observe that α′ ∈ ker �′ takes the form α′ = μdH ′ = μdH + dF . Moreover, μZ(H) =
μZ(H ′) = 1 and

�′� = �� − Z ⊗ �K = I − μZ ⊗ dH − Z ⊗ dF = I − μZ ⊗ dH ′,

so �′ is dual to �.
Let � and �′ be Poisson tensors dual to �. Let μdH ∈ ker �,μdH ′ ∈ ker �′ and

μZ(H) = μZ(H ′) = 1. Using the partition of unity, we get

�� = I − μdH ⊗ Z

and

��′ = I − μdH ′ ⊗ Z. (4.5)

Multiplying equation (4.5) by �, we get

���′ = � − μ(�dH ′) ⊗ Z

and

(I − μZ ⊗ dH)�′ = � − μ(�dH ′) ⊗ Z.

Transforming the above equality, we find

�′ = � − μZ ⊗ �′ dH − μ(�dH ′) ⊗ Z.

As �′ is skew-symmetric, we can put −μ�′dH = μ�dH ′ = K , so K = �dF,�K = dF

and hence (4.4). �

Theorem 11. Let a Poisson tensor �0 and a closed 2-form �0 form a dual pair. Let
Y0 ∈ ker �0, μdH0 ∈ ker �0 and μY0(H0) = 1.

6
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(i) If �1 is a Poisson tensor d-compatible with �0 with respect to �0, then forms �0 and
�1 = �0�1�0 are d-compatible.

(ii) If �1 is a closed 2-form d-compatible with �0 with respect to �0, then Poisson tensors
�0 and �1 = �0�1�0 are d-compatible, provided that

μ�0�1Y0 = �0 dF (4.6)

for some function F.

Proof.

(i) �1 is closed as �1 is d-compatible with �0. Then, �0�1�0 = �0�0�1�0�0 is Poisson
(as was shown in [2]).

(ii) From the d-compatibility of �0 and �1, it follows that �1 is Poisson. Then,

�0�1�0 = �0�0�1�0�0 = (I − μdH0 ⊗ Y0)�1(I − μY0 ⊗ dH0)

= �1 + μdH0 ∧ �1(Y0).

From the assumption �0�1μY0 = �0 dF, it follows that either

�1(μY0) = dF if Y0(F ) = 0

or

�1(μY0) = dF − μY0(F ) dH0 if Y0(F ) 
= 0.

In both cases, �0�1�0 = �1 + dH0 ∧ dF is closed. �

Theorem 12. Let a Poisson tensor �0 and a closed 2-form �0 form a dual pair. Let Y0 ∈
ker �0, μdH0 ∈ ker �0 and μY0(H0) = 1.

(i) If �1 is a Poisson tensor d-compatible with �0 with respect to �0 and

X = �1 dH0 = �0 dH1 (4.7)

is a bi-Hamiltonian vector field, then �0 and �1 = �0�1�0 + dH1 ∧ dH0 are a d-
compatible pair of presymplectic forms.

(ii) If �1 is a presymplectic form d-compatible with �0 with respect to �0 and

β = μ�0Y1 = μ�1Y0 (4.8)

is a bi-presymplectic 1-form, then �0 and �1 = �0�1�0 + X ∧ μY0 are d-compatible
Poisson tensors if there exist some functions F and G such that

μ�0�0Y1 = �0 dF, μ�0�1Y1 = �0 dG, (4.9)

where X = �0β = �0 dF .

Proof. (i) �1 is closed as �1 is d-compatible with �0. Then, �0�1�0 = �0�0�1�0�0 is
Poisson (as was shown in [2]).

(ii) From (4.9), it follows that either Y0(F ) 
= 0, Y0(G) 
= 0 and

μ�0Y1 = dF − μY0(F ) dH0, μ�1Y1 = dG − μY0(G) dH0,

μY1 = X + μ2Y0(F )Y0,

or Y0(F ) = Y0(G) = 0 and

μY1 = X, μ�0Y1 = �0X = dF, μ�1Y1 = �1X = dG.

7
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By part (ii) of the previous theorem, the form �0�1�0 = �0�0�1�0�0 is closed. Let us
prove that �1 is a Poisson tensor. We show that the Schouten bracket of �1 is zero. First,
observe that

[�1,�1]S = 2[�0�1�0, X ∧ μY0]S + [X ∧ μY0, X ∧ μY0]S,

as by previous theorem [�0�1�0,�0�1�0]S = 0. Next,

[�0�1�0, X ∧ μY0]S = μY0 ∧ �0 d(�1X)�0 − X ∧ �0 d(�1μY0)�0

and

[X ∧ μY0, X ∧ μY0]S = 2X ∧ μY0 ∧ [μY0, X].

In the case when �0X = dF and �1X = dG, we have [μY0, X] = −X(μ)Y0 and the proof
is completed. In the second case,

[μY0, X] = [μY0,�0�1μY0] = LμY0(�0�1)μY0 = �0(LμY0�1)μY0 − (�0 dμ ∧ Y0)β

= �0 d(�1μY0)μY0 + β(�0 dμ)Y0 = �0(dβ)μY0 + β(�0 dμ)Y0

= −�0 d(μY0(F )) + β(�0 dμ)Y0.

Also,

μ�1Y1 = �1X + μY0(F )β;
hence

�1X = dG − μY0(F ) dF + [μY0(F )]2 dH0 − μY0(G) dH0.

So,

�0 d(�1X)�0 = −�0 d(μY0(F )) ∧ X.

Finally,

�0 d(�1μY0)�0 = �0 dβ�0 = 0

and the proof is completed. �

5. Bi-presymplectic chains

Now we are ready to present the main result of the paper.

Theorem 13. Assume that on M, we have a bi-presymplectic chain of 1-forms:

βi = μ�0Yi = μ�1Yi−1, i = 1, 2, . . . , n, (5.1)

with a d-compatible pair (�0,�1) with respect to some �0, which starts with a kernel vector
field Y0 of �0 and terminates with a kernel vector field Yn of �1, where μ is an arbitrary
function. Then,

(i)

�0(Yi, Yj ) = �1(Yi, Yj ) = 0, i = 1, 2, . . . , n. (5.2)

Moreover, let us assume that

�0βi = Xi = �0 dHi, i = 1, 2, . . . , n, (5.3)

which implies

βi = dHi − μY0(Hi) dH0, μYi = Xi + μ2Yi(H0)Y0, (5.4)

where �0 dH0 = 0. Then,

8



J. Phys. A: Math. Theor. 42 (2009) 285204 M Błaszak et al

(ii)

�0(dHi, dHj) = 0 [Xi,Xj ] = 0 (5.5)

and equation (5.1) defines a Liouville integrable system.
Additionally, if Yi(H0) = Y0(Hi), then

(iii) Hamiltonian vector fields Xi (5.3) form a bi-Hamiltonian chain:

Xi = �0 dHi = �1 dHi−1, i = 1, 2, . . . , n, (5.6)

where �1 = �0�1�0 + X1 ∧ μY0. The chain starts with H0, a Casimir of �0, and
terminates with Hn, a Casimir of �1.

Proof.

(i) From (5.1), we have

�0(Yi, Yj ) = �0(Yi−1, Yj+1)

�1(Yi, Yj ) = �0(Yi+1, Yj−1).

Then (5.2) follows from

�0(Yi, Y0) = 0 �1(Yi, Yn) = 0.

(ii) From the properties of the dual pair (�0,�0), if Xi = �0 dHi , then

�0(dHi, dHj) = �0(Xi,Xj ).

On the other hand, as Xi = μYi − αiY0 it follows that

�0(Xi,Xj ) = �0(Yi, Yj ).

(iii) We have

Xi = �0 dHi = μ�0�1Yi−1 = �0�1(Xi−1 + μ2Y0(Hi−1)Y0)

= �0�1�0 dHi−1 + μY0(Hi−1)X1

= (�0�1�0 + X1 ∧ μY0) dHi−1 = �1 dHi−1.

From theorem 12, we know that �1 is a Poisson tensor d-compatible with �0. We have

�1 dHn = (�0�1�0 + X1 ∧ μY0) dHn = �0�1Xn + μY0(Hn)X1

= μ�0�1(Yn − μY0(Hn)Y0) + μY0(Hn)X1 =−μY0(Hn)X1 + μY0(Hn)X1 = 0.
�

A simple example of a bi-presymplectic chain and its equivalent bi-Hamiltonian
representation was given in [2] where the extended Henon–Heiles system on R

5 was
considered. Actually, it is the system with Hamiltonians

H1 = 1
2p2

1 + 1
2p2

2 + q3
1 + 1

2q1q
2
2 − cq1,

H2 = 1
2q2p1p2 − 1

2q1p
2
2 + 1

16q4
2 + 1

4q2
1q2

2 − 1
4cq2

2 ,
(5.7)

where (q, p) are canonical coordinates and c is a Casimir coordinate. We will come back to
this example in the end of this section.

Note that theorem 13 holds in an important special case when (5.1) is bi-inverse
Hamiltonian, i.e. βi = dHi, Y0(Hi) = 0, i = 1, . . . , n. Obviously, it does not have a bi-
Hamiltonian counterpart until γi ≡ Yi(H0) 
= 0, but has equivalent quasi-bi-Hamiltonian
representation on 2n dimensional manifold M. Indeed, as βi = dHi ,

�0 dHi = �0�1μYi−1 = �0�1(Xi−1 + γiμ
2Y0) = �0�1�0 dHi−1 + γi�0 dH1.

9
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Note that both Poisson structures �0 and �0�1�0 share the same Casimir H0 and all
Hamiltonians Hi are independent of the Casimir coordinate H0 = c, so the quasi-bi-
Hamiltonian dynamics can be restricted immediately to any common leaf M of dimension
2n:

π0 dHi = π1 dHi−1 + γiπ0 dH1, i = 1, . . . , n, (5.8)

where

π0 = �0|M, π1 = (�0�1�0)|M
are restrictions of respective Poisson structures to M. Hence, we deal with a Stäckel system
whose separation coordinates are eigenvalues of the recursion operator N = π1π

−1
0 [12],

provided that N has n distinct and functionally independent eigenvalues at any point of M, i.e.
we are in a generic case.

The advantage of bi-inverse-Hamiltonian representation when compared to bi-
Hamiltonian ones is that the existence of the first guarantees that the related Liouville integrable
system is separable and the construction of separation coordinates is purely algorithmic (in
a generic case), while the bi-Hamiltonian representation does not guarantee the existence of
quasi-bi-Hamiltonian representation and hence separability of the related system. Moreover,
the projection of the second Poisson structure onto the symplectic foliation of the first one,
in order to construct a quasi-bi-Hamiltonian representation, is far from being a trivial non-
algorithmic procedure.

Let us illustrate the case on the example of the Henon–Heiles system on R
4 given by two

constants of motion:

H1 = 1
2p2

1 + 1
2p2

2 + q3
1 + 1

2q1q
2
2 , H2 = 1

2q2p1p2 − 1
2q1p

2
2 + 1

16q4
2 + 1

4q2
1q2

2 . (5.9)

On R
5, differentials dH1 and dH2 have bi-inverse-Hamiltonian representation of the form

�0Y0 = 0

�0Y1 = dH1 = �1Y0

�0Y2 = dH2 = �1Y1

0 = �1Y2,

where μ = 1, vector fields Yi are

Y0 = (0, 0, 0, 0, 1)T

Y1 = X1 + Y1(H0)Y0 = (
p1, p2,−3q2

1 − 1
2q2

2 ,−q1q2,−q1
)T

Y2 = X2 + Y2(H0)Y0 = (
1
2q2p2,

1
2q2p1 − q1p1,

1
2p2

2 − 1
2q1q

2
2 ,

− 1
2p1p2 − 1

4q3
2 − 1

2q2
1q2,− 1

4q2
2

)T

and presymplectic forms

�0 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2p2 −q1 − 1

2q2 3q2
1 + 1

2q2
2

1
2p2 0 − 1

2q2 0 q1q2

q1
1
2q2 0 0 p1

1
2q2 0 0 0 p2

−3q2
1 − 1

2q2
2 −q1q2 −p1 −p2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

10
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are d-compatible with respect to the canonical Poisson tensor dual to the �0 one. The chain
starts with a kernel vector field Y0 of �0 and terminates with a kernel vector field Y2 of �1.

On R
4, we have

ω0 = �0|R4 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , ω1 = �1|R4

⎛
⎜⎜⎜⎜⎝

0 − 1
2p2 −q1 − 1

2q2

1
2p2 0 − 1

2q2 0

q1
1
2q2 0 0

1
2q2 0 0 0

⎞
⎟⎟⎟⎟⎠

and the quasi-bi-Hamiltonian representation takes form (5.8), where

π0 = �0|R4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ = ω−1

0 ,

π1 = �0�1�0|R4 =

⎛
⎜⎜⎜⎜⎝

0 0 q1
1
2q2

0 0 1
2q2 0

−q1 − 1
2q2 0 1

2p2

− 1
2q2 0 − 1

2p2 0

⎞
⎟⎟⎟⎟⎠

= π0ω1π0,

γ1 = −q1 and γ2 = − 1
4q2

2 . Separation coordinates (λ1, λ2), which are eigenvalues of the
recursion operator N = π1π

−1
0 = ω−1

0 ω1, are related to (q1, q2) coordinates by the following
point transformation:

q1 = λ1 + λ2,
1
4q2

2 = −λ1λ2.

Obviously, Hamiltonians (5.9) do not form a related bi-Hamiltonian chain in contrast to
Hamiltonians (5.7).

6. Poisson and presymplectic structures in R
3

In this section, we consider the Poisson and presymplectic structures in R
3. In this case, we

have a convenient description of the Poisson tensors and presymplectic forms and can obtain
simple conditions for compatibility. In R

3, all Poisson tensors are described by the following
theorem [1].

Theorem 14. Any Poisson tensor � in R
3, except at some irregular points, has the form

�ij = μεijk∂kH. (6.1)

Here μ and H are some differentiable functions in R
3 and εijk is a Levi-Civita symbol.

Note that for the above Poisson tensor, we have �dH = 0, that is, the kernel of � is spanned
by the form dH . To have consistency, we chose the function μ in (6.1) the same as that used
in (5.1). The compatible Poisson tensors in R

3 are characterized by the following theorem [1].

Theorem 15. Let Poisson tensors �0 and �1 be given by (�0)
ij = μ0ε

ijk∂kH0 and
(�1)

ij = μ1ε
ijk∂kH1, respectively, where μ0, μ1 and H0,H1 are some differentiable functions.

Then �0 and �1 are compatible if and only if there exists a differentiable function �(H0,H1)

such that

μ1 = μ0
∂H1�

∂H0�
(6.2)

provided that ∂H1� = ∂�/∂H1 
= 0 and ∂H0� = ∂�/∂H0 
= 0.

11
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For example, from the above theorem it follows that a Poisson tensor �0, given by μ and
a function H0, and a Poisson tensor �1, given by −μ and a function H1, are compatible. One
should take � = H0 − H1. The presymplectic forms in R

3 are described by the following
lemma.

Lemma 16. Any closed 2-form � in R
3 has the form

�ij = εijkY
k, (6.3)

where Y = (Y 1, Y 2, Y 3)T is a divergence free vector:

∇ · Y = ∂iY
i = 0. (6.4)

Note that for the above presymplectic form, we have �Y = 0, that is, the kernel of � is
spanned by the vector Y. Next, let us consider a dual pair.

Lemma 17. Consider a Poisson tensor �, �ij = μεijk∂kH , and a presymplectic form �,
�ij = εijkY

k . Then (�,�) is a dual pair if and only if

μY(H) = μY i∂iH = 1. (6.5)

Proof. The form � is dual to the Poisson tensor � if the following partition of the unit operator
holds:

I = �� + μY ⊗ dH.

The above equality is equivalent to (6.5). �

We have a simple condition for compatibility of a Poisson tensor and a presymplectic
form.

Lemma 18. The Poisson tensors �, given by (�)ij = μεijk∂kH , and the presymplectic form
�, given by (�)ij = εijkY

k , are compatible if

Y (μ[Y (H)]) = Y i∂i(μY (H)) = 0. (6.6)

Proof. We have

��� = μY(H)�.

The above form is given in terms of a vector Y (H)Y . It is closed if

∇ · (μY (H)Y ) ≡ Y (μY(H)) = 0.

Since ∇ · Y = 0, the above equation is equivalent to (6.6). �

As a corollary of the previous lemma, we have the condition for the d-compatibility of
two Poisson tensors.

Lemma 19. Consider a dual pair (�0,�0) where the Poisson tensor �0 is given by (�0)
ij =

μεijk∂kH0 and the presymplectic form �0 is given by (�0)ij = εijkY
k
0 . Then the Poisson

tensor �1, (�1)
ij = −μεijk∂kH1, is d-compatible with the Poisson tensor �0 if

Y0(μY0(H1)) = 0. (6.7)

The condition for d-compatibility of two presymplectic forms in R
3 is given in the

following lemma.

12
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Lemma 20. Consider a dual pair (�0,�0) where the Poisson tensor �0 is given by
(�0)

ij = μεijk∂kH0 and the presymplectic form �0 is given by (�0)ij = εijkY
k
0 . Then

the presymplectic form �1, (�1)ij = εijkY
k
1 , is d-compatible with the presymplectic form �0

if

Y1(H0) 
= 0. (6.8)

Proof. We have

�0�1�0 = μY1(H0)�0.

Since �0 is a Poisson tensor, the above tensor is a Poisson tensor if Y1(H0) 
= 0. �

It turns out that in R
3, any two forms and any two Poisson tensors are d-compatible.

Lemma 21. Let �0,�1 be two presymplectic forms in R
3, given by (�0)ij = εijkY

k
0 and

(�1)ij = εijkY
k
1 . Then �0 and �1 are d-compatible presymplectic forms.

Proof. Take a function H0 such that Y0(H0) 
= 0 and Y1(H0) 
= 0. Define a Poisson tensor �0

by �
ij

0 = [Y0(H0)]−1εijk∂kH0. Then by lemma 17, �0 and �0 are dual and by lemma 20, the
forms �0 and �1 are d-compatible. �

Lemma 22. Let �0,�1 be two Poisson tensors in R
3, given by (�0)

ij = μεijk∂kH0 and
(�1)

ij = −μεijk∂kH1. Then �0 and �1 are d-compatible Poisson tensors.

Proof. By the Darboux theorem, we can find the coordinates (t1, t2, t3) such that �1 is given
by μ1 = 1 and H1 = t1. We can construct a closed form �0, (�0)ij = εijkY

k
0 , dual to �0 and

such that ∂1Y
1
0 = 0. Then

Y0(μ1Y0(H1)) = Y0
(
Y 1

0

) = 0,

so �0 and �1 are compatible. That is, �0 and �1 are d-compatible. Such a form �0 can be
constructed as follows. Consider the coordinate change

u1 = t1, u2 = t2, u3 = H0(t1, t2, t3).

In these coordinates, �0 is given by some μ̃0 and H̃0 = u3. Note that if a form is given
by vector Ỹ = (A,B,C)t in the (u1, u2, u3) coordinates, then it is given by a vector
Y = (A∂3H0, B∂3H0, C − A∂1H0 − B∂2H0) in the (t1, t2, t3) coordinates. We construct
�0 in the (u1, u2, u3) coordinates in terms of the vector Ỹ0 = (A,B,C)t . First, we choose
C = (μ̃)−1, so μ̃Y0(H̃0) = 1. Hence, �0 and �0 are dual. Then we choose A such that A∂3H0

does not depend on t1 in the (t1, t2, t3) coordinates, so �1 and �0 are compatible. Then we
choose B such that ∂1A + ∂2B + ∂3C = 0, so �0 is closed. �

7. Bi-presymplectic chains in R
3

Consider closed 2-forms �0 and �1 in some open domain of R
3, given in terms of vectors Y0

and Y1 by

�0,ij = εijkY
k
0 where ∂kY

k
0 = 0, i, j = 1, 2, 3,

and

�1,ij = εijkY
k
1 where ∂kY

k
1 = 0, i, j = 1, 2, 3.

By lemma 21, there exists a Poisson tensor �0 such that �0 and �0 are dual and �0 and
�1 are d-compatible with respect to �0. We can choose a function H0 such that μY0(H0) = 1

13
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and Y1(H0) 
= 0, so �
ij

0 = μεijk∂kH0. It is easy to see that in R
3, any two presymplectic

forms �0 and �1 give a bi-presymplectic chain:

�0Y0 = 0

μ�0Y1 = β = μ�1Y0

0 = �1Y1.

(7.1)

Then, we can consider a vector field X:

X = �0β. (7.2)

To construct bi-Hamiltonian representation of the above chain, we use theorem 13. Let
chain (7.1) be such that

�0β = X = �0 dH1 (7.3)

and hence

β = dH1 − μY0(H1) dH0. (7.4)

Then, by theorem 13 (ii), the vector field X defines a Liouville integrable system.
Let us obtain some relations that we will need later. Combining (7.1) and (7.4), we have

μεijkY
k
0 Y

j

1 = H1,i − μY0(H1)H0,i , i = 1, 2, 3,

that gives

Y0(H1) − μY0(H1)Y0(H0) = 0

and

Y1(H1) = μY0(H1)Y1(H0).

Using duality of �0 and �0, we have

μYn
1 = μ2Y1(H0)Y

n
0 + Xn, n = 1, 2, 3. (7.5)

Note that if Y0(H1) = 0, then β is closed and Y1(H1) = 0. So,

Y0(H1) = Y1(H1) = 0. (7.6)

Following [1], every Hamiltonian system in R
3 has a bi-Hamiltonian representation. Thus

the vector field X = �0 dH1 can also be written as X = �̄1 dH0, where (�̄1)
ij = −μεijk∂kH1

for i, j = 1, 2, 3.
Theorem 13 also gives the bi-Hamiltonian representation of the vector field X. Let us

show that these two representations coincide. Let Y0(H1) = Y1(H0); then by theorem 13 (iii),
we can define

�1 = �0�1�0 + μX ∧ Y0, (7.7)

that is,

�
ij

1 = −μ2Y1(H0)ε
ijk∂kH0 + μ

(
XiY

j

0 − XjY i
0

)
, i, j = 1, 2, 3.

Since Xi = εijk�k
0H1,k , we can put

XiY
j

0 − XjY i
0 = εijkWk, i, j = 1, 2, 3.

So,

�
ij

1 = −μ2Y1(H0)ε
ijk∂kH0 + μεijkWk = εijk(−μ2Y1(H0)∂kH0 + μWk),

14
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for all i, j = 1, 2, 3. Since �1 is a Poisson tensor and dH1 belongs to the kernel of �1 we
have

− μ2Y1(H0)∂kH0 + μWk = −μ∂kH1, (7.8)

where μ is an arbitrary function. For Wk , we have

Wk = εijkXiY k
0 = μεijkεimnH0,nH1,mY

j

0 = μ
(
δn
i δ

k
n − δk

mδn
j

)
H0,nH1,mY

j

0

= μY0(H1)H0,k − μY0(H0)H1,k, k = 1, 2, 3,

where H0,k = ∂kH0 and H1,k = ∂kH1. Using the above equality for Wk in (7.8), we get

−μ2Y1(H0)∂kH0 + μ2Y0(H1)H0,k − μH1,k = −μH1,k, k = 1, 2, 3,

which gives

Y1(H0) = Y0(H1). (7.9)

Equations (7.9) and (7.5) are the only constraints on Y0 and Y1 respectively. We conclude that
any presymplectic chain which fulfills condition (7.3) leads to a bi-Hamiltonian chain.

As the next example shows, there exist presymplectic chains that do not admit a dual
bi-Hamiltonian representation.

Example 23. Consider closed 2-forms �0 and �1 in R
3, given by

�0 =
⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ , �1 =

⎛
⎝

0 c −b

−c 0 a

b −a 0

⎞
⎠ ,

where a, b and c are the functions of x1, x2 and x3 respectively. Their kernels are spanned by
vectors Y0 = (0, 0, 1)t and Y1 = (a, b, c)t respectively. Since ∇ · Y1 = 0, we then have

∂1a + ∂2b + ∂3c = 0.

We take a Poisson tensor �0 in the form

�0 = μ

⎛
⎝

0 H0,3 −H0,2

−H0,3 0 H0,1

H0,2 −H0,1 0

⎞
⎠ ,

where μ and H0 are arbitrary functions of x1, x2 and x3. If μH0,3 = 1, then one can easily
show that �0 and �0 are dual and �0 and �1 are d-compatible with respect to �0. The forms
�0 and �1 make a presymplectic chain:

�0Y0 = 0

μ�0Y1 = β = μ�1Y0

0 = �1Y1,

(7.10)

where β = μ(b,−a, 0)t . Consider a vector field X:

X = �0β = μ(a, b, 0)t .

We find that an additional condition

X = �0 dH1

gives

a = H0,3H1,2 − H0,2H1,3, (7.11)

b = −H0,3H1,1 + H0,1H1,3, (7.12)

15
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μ(aH0,1 + bH0,2) = H0,1H1,2 − H0,2H1,1, (7.13)

and from constraint (7.9) we get

H1,3 = aH0,1 + bH0,2 + cH0,3. (7.14)

Using a and b from equations (7.11) and (7.12) respectively, we show that (7.13) is identically
satisfied. Using μH0,3 = 1 and identity (7.13) in (7.14), we get

c = μH1,3 − H0,1H1,2 + H0,2H1,1. (7.15)

As a summary, we are left with equations (7.11), (7.12), (7.15) for a, b and c and the duality
condition μH0,3 = 1. When we use a, b and c in (7.10), we obtain that

(μH1,3),3 = 0. (7.16)

This is nothing else but the d-compatibility condition (6.7), i.e. Y0(μY0(H1)) = 0, of the
Poisson tensors �0 and �1. Equation (7.16) means that

H1 = h1(x
1, x2)H0 + h2(x

1, x2), (7.17)

where h1 and h2 are arbitrary functions of x1 and x2 respectively. Using (7.17), we get

a = (h1,2H0 + h2,2)H0,3, (7.18)

b = −(h1,1H0 + h2,1)H0,3, (7.19)

c = h1 − (h1,2H0 + h2,2)H0,1 + (h1,1H0 + h2,1)H0,2. (7.20)

The above equations might be considered as differential equations to determine H0, h1 and h2

with no conditions on a, b and c. When we use (7.18) and (7.19), we find that

H0 = −ah2,1 + bh2,2

ah1,1 + bh1,2
, H0,3 = ah1,1 + bh1,2

h1,1h2,2 − h1,2h2,1
. (7.21)

These equations put a constraint on the x3 dependence on the given functions a, b and c.
Hence, we may have a presymplectic structure with conditions (7.21) that are not satisfied and
thus obtain a presymplectic chain with no dual bi-Hamiltonian chain.

8. Bi-Hamiltonian chains in R
3

Suppose we have two compatible Poisson structures �0 and �1 in R
3, given by (�0)ij =

μεijk∂kH0 and (�1)ij = −μεijk∂kH1 (i, j = 1, 2, 3). The Casimirs of �0 and �1 are dH0

and dH1 respectively. Then we can consider a bi-Hamiltonian chain

�0 dH0 = 0

�0 dH1 = X = �1 dH0

0 = �1 dH1.

(8.1)

Using theorem 11, we can construct a corresponding bi-presymplectic chain. To construct the
bi-presymplectic chain, we have to find a closed form �0 dual to the Poisson structure �0 and
compatible with the Poisson structure �1. By lemma 22, such a form always exists. Having
such a form �0, the construction of the bi-presymplectic chain is straightforward. We start
with (�0)ij = −εijkY

k
0 , i, j = 1, 2, 3, where

∇ · Y0 = 0, μY0(H0) = 1, (8.2)

Y0(μY0(H1)) = 0, (8.3)
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and �1 is found from Y1 = μY1(H0)Y0 + 1
μ
X. Equation (8.3) is obtained from the divergence

free condition of Y1 = μY1(H0)Y0 + 1
μ
X.

Example 24. Consider the Lorentz system [1]
d

dt
x1 = 1

2
x2

d

dt
x2 = −x1x3

d

dt
x3 = x1x2.

It admits a bi-Hamiltonian representation (8.1) with H0 = 1
4 (x3−x2

1), μ = 1 and H1 = x2
2 +x2

3 .
The form �0 dual to �0 and compatible with �1 is given by

�0 = −
⎛
⎝

0 γ −β

−γ 0 α

b −α 0

⎞
⎠ , �0 =

⎛
⎝

0 1/4 0
−1/4 0 −x1/2

0 x1/2 0

⎞
⎠ ,

where the vector Y0 = (α, β, γ )t . The conditions on α, β and γ are

∇ · Y0 = ∂1α + ∂2β + ∂3γ = 0, Y0(H0) = 1
4γ − 1

2x1α = 1.

One can find �1 having determined Y1 from (7.5):

Y1 = (
1
2x2 + 2αη,−x1x3 + 2βη, x1x2 + 2γ η

)
,

where η = 1
2Y0(H1) = βx2 + γ x3. We have an additional constraint on α, β and γ coming

from ∇ · Y1 = 0, which reads as

Y0(η) = α∂1η + β∂2η + γ ∂3η = 0.

A simple solution for the above presymplectic structures is given as α = −2/x1, β =
−2x2

/
x2

1 , γ = 0.
It is also possible to start with a dual pair and construct a second d-compatible Poisson

structure with given properties. The following example gives hints on how to solve equations
arising from d-compatible Poisson structures.

Example 25. We take a dual pair (�0,�0) and construct a Poisson tensor �1, compatible
with a given pair, such that �1 is nonlinear in x3.

Let �0 be given in canonical coordinates. We take the form �0 as follows:

�0 =
⎛
⎝

0 −1 f1

1 0 f2

−f1 −f2 0

⎞
⎠ , �0 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ ,

where f1 = ∂1f and f2 = ∂2f for some function f (x1, x2). Note that (�0)ij = −εijkY
i
0 ,

where Y0 = (−f2, f1, 1) and H0 = x3. It is seen that ∇ ·Y0 = 0, so by lemma 16 �0 is closed
and equality (6.5) holds; by lemma 17 it is dual to �0. We construct a Poisson tensor �1

compatible with �0. Let �1 be given by (�1)ij = εijk∂kχ . Note that �1 is compatible with
�0. By lemma 19, �0 and �1 are compatible if equality (6.7) holds. Consider

Y0∇χ = −f2∂1χ + f2∂2χ + ∂3χ.

Let us perform the coordinate transformation

ξ = α(x1, x2, x3)

η = β(x1, x2, x3)

ζ = γ (x1, x2, x3).
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Then

∂1χ = ∂ξχ∂1α + ∂ηχ∂1β + ∂ζχ∂1γ

∂2χ = ∂χ∂2α + ∂ηχ∂2β + ∂ζχ∂2γ

∂3χ = ∂ξχ∂3α + ∂ηχ∂3β + ∂ζχ∂3γ,

so

Y0 · ∇χ = (−f2∂1α + f1∂2α + ∂3α)∂ξχ + (−f2∂1β + f1∂2β + ∂3β)∂ηχ

+ (−f2∂1γ + f1∂2γ + ∂3γ )∂ζχ.

To simplify the above expression, we choose β, γ, α such that

−f2∂1β + f1∂2β + ∂3β = 0

−f2∂1γ + f1∂2γ + ∂3γ = 0

(−f2∂1α + f1∂2α + ∂3α) = 1;
hence,

Y0 · ∇χ = ∂ξχ.

Using the above technique, we can solve Y0(H0) = 1 and in particular Y0(Y0(H1)) = 0 very
easily. Equality (6.5) holds if H0 = ξ . Then, Y0(Y0(H1)) = H1,ξξ = 0 and

H1 = A1(ζ, η)ξ + A2(ζ, η),

where A1 and A2 are some arbitrary functions of ζ and η respectively. As an application, let

η = x1x2, ζ = x3 − ln x2, ξ = x3

and f = x1x2 = η. Then, H0 = x3 and

H1 = A1(x3 − ln x2, x1x2)x3 + A2(x3 − ln x2, x1x2),

where A and B are functions of (x3 − ln x2) and x1x2.
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