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Abstract

In this work we study the necessary and sufficient conditions for a positive random variable whose expec-
tation under the Wiener measure is one, to be represented as the Radon–Nikodym derivative of the image
of the Wiener measure under an adapted perturbation of identity with the help of the associated innovation
process. We prove that the innovation conjecture holds if and only if the original process is almost surely
invertible. We also give variational characterizations of the invertibility of the perturbations of identity and
the representability of a positive random variable whose total mass is equal to unity. We prove in particular
that an adapted perturbation of identity U = IW + u satisfying the Girsanov theorem, is invertible if and
only if the kinetic energy of u is equal to the entropy of the measure induced with the action of U on the
Wiener measure μ, in other words U is invertible iff

1

2

∫
W

|u|2H dμ =
∫
W

dU μ

dμ
log

dU μ

dμ
dμ.

The relations with the Monge–Kantorovitch measure transportation are also studied. An application of these
results to a variational problem related to large deviations is also given.
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1. Introduction

This paper is devoted to the study of the following question: assume that (W,H,μ) is the
classical Wiener space, i.e., W = C0([0,1],R

d), H is the corresponding Cameron–Martin space
consisting of the absolutely continuous, R

d -valued functions on [0,1] with square integrable
derivatives. Assume that L is a strictly positive random variable whose expectation with respect
to μ is one. We suppose that there exits a map U : W → W of the form U = IW + u, with
u : W → H such that u̇ is adapted to the filtration of the Wiener space and that L is represented
by U , i.e.

dU μ

dμ
= L.

We suppose also that

E
[
ρ(−δu)

] = 1,

where

ρ(−δu) = exp

[
−

1∫
0

(u̇s , dWs) − 1

2

1∫
0

|u̇s |2 ds

]
.

Then Uμ is equivalent to μ and the corresponding Radon–Nikodym derivative L can be rep-
resented as an exponential martingale ρ(−δv) where v : W → H satisfies similar properties as
those satisfied by u. The question we address is: what are the relations satisfied by the couple
(u, v)? For instance, if U and V = IW + v are inverse to each other then the situation described
above happens. However, due to the celebrated example of Tsirelson (cf. [11]), we know that this
is not the only case. We concentrate ourselves particularly to this case with the help of associ-
ated innovation processes, in terms of which we give necessary and sufficient conditions for the
representability (cf. [6]) of a strictly positive density and for the invertibility of the associated
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perturbation of identity. The innovation approach leads to a nice result which characterizes the
invertibility of an adapted shift in terms of the relative entropy of the measure which it induces.
Namely, assume that U = IW + u as above, then it is invertible if and only if the relative entropy
H(Uμ | μ) is equal to the kinetic energy of u, i.e.,

H
(
Uμ | μ) = 1

2
E

1∫
0

|u̇s |2 ds.

In Physics the notion of entropy is an indication for the number of accessible states; here it is a
remarkable fact that the relative entropy behaves as the physical entropy in the sense that if the
system has just enough kinetic energy to fulfill the accessible states, i.e., if this energy is equal to
the relative entropy of the probability distribution that it creates then the mapping is invertible.
Besides, in general it is always larger or equal to the latter.

We apply this considerations to the innovation problem of the filtering. Namely it is a cele-
brated question whether the sigma algebra generated by the observation process is equal to that
of the innovation process. The case where the signal is independent of the noise has been solved
in [1], here we solve the innovation problem in full generality in terms of the entropy of the
observed system.

If we represent a density of the form L = ρ(−δv) by U = IW +u, then, modulo some integra-
bility hypothesis, the Girsanov theorem implies that (IW + v) ◦ U = V ◦ U is a Wiener process.
We study then the properties of U ◦ V using similar techniques. The relations with the Monge
transportation are also exhibited.

In the final part we use the variational methods to characterize the invertibility and repre-
sentability of densities. As an application we give some new results for a particular case studied
in [2]. Namely we give an explicit characterization of the solution of the minimization problem

inf

(
E

[
f ◦ U + 1

2
|u|2H

])
,

with the help of the entropic characterization of the invertibility explained above, where the inf
is taken in the space of adapted, H -valued Wiener functionals with finite energy and f is a
1-convex Wiener functional in the Sobolev space D2,1(H).

2. Preliminaries and notation

Let W be the classical Wiener space with the Wiener measure μ. The corresponding
Cameron–Martin space is denoted by H . Recall that the injection H ↪→ W is compact and its
adjoint is the natural injection W� ↪→ H� ⊂ L2(μ). A subspace F of H is called regular if the
corresponding orthogonal projection has a continuous extension to W , denoted again by the same
letter. It is well known that there exists an increasing sequence of regular subspaces (Fn, n � 1),
called total, such that

⋃
n Fn is dense in H and in W . Let σ(πFn)

1 be the σ -algebra generated by
πFn , then for any f ∈ Lp(μ), the martingale sequence (E[f | σ(πFn)], n � 1) converges to f

(strongly if p < ∞) in Lp(μ). Observe that the function fn = E[f | σ(πFn)] can be identified
with a function on the finite dimensional abstract Wiener space (Fn,μn,Fn), where μn = πnμ.

1 For the notational simplicity, in the sequel we shall denote it by πn.
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Since the translations of μ with the elements of H induce measures equivalent to μ, the
Gâteaux derivative in H direction of the random variables is a closable operator on Lp(μ)-
spaces and this closure will be denoted by ∇ cf., for example [3,12,13]. The corresponding
Sobolev spaces (the equivalence classes) of the real random variables will be denoted as Dp,k ,
where k ∈ N is the order of differentiability and p > 1 is the order of integrability. If the random
variables are with values in some separable Hilbert space, say Φ , then we shall define similarly
the corresponding Sobolev spaces and they are denoted as Dp,k(Φ), p > 1, k ∈ N. Since ∇ :
Dp,k → Dp,k−1(H) is a continuous and linear operator its adjoint is a well-defined operator
which we represent by δ. δ coincides with the Itô integral of the Lebesgue density of the adapted
elements of Dp,k(H) (cf. [12,13]).

For any t � 0 and measurable f : W → R+, we note by

Ptf (x) =
∫
W

f
(
e−t x +

√
1 − e−2t y

)
μ(dy),

it is well known that (Pt , t ∈ R+) is a hypercontractive semigroup on Lp(μ),p > 1, which is
called the Ornstein–Uhlenbeck semigroup (cf. [3,12,13]). Its infinitesimal generator is denoted
by −L and we call L the Ornstein–Uhlenbeck operator (sometimes called the number operator
by the physicists). The norms defined by

‖φ‖p,k = ∥∥(I + L)k/2φ
∥∥

Lp(μ)
(2.1)

are equivalent to the norms defined by the iterates of the Sobolev derivative ∇ . This observa-
tion permits us to identify the duals of the space Dp,k(Φ); p > 1, k ∈ N by Dq,−k(Φ

′), with
q−1 = 1 − p−1, where the latter space is defined by replacing k in (2.1) by −k, this gives us
the distribution spaces on the Wiener space W (in fact we can take as k any real number).
An easy calculation shows that, formally, δ ◦ ∇ = L, and this permits us to extend the diver-
gence and the derivative operators to the distributions as linear, continuous operators. In fact
δ : Dq,k(H ⊗Φ) → Dq,k−1(Φ) and ∇ : Dq,k(Φ) → Dq,k−1(H ⊗Φ) continuously, for any q > 1
and k ∈ R, where H ⊗Φ denotes the completed Hilbert–Schmidt tensor product (cf., for instance
[8,12,13]). Finally, in the case of classical Wiener space, we denote by D

a
p,k(H) the subspace de-

fined by

D
a
p,k(H) = {

ξ ∈ Dp,k(H): ξ̇ is adapted
}

for p � 1, k ∈ R.
Let us recall some facts from the convex analysis. Let K be a Hilbert space, a subset S of

K × K is called cyclically monotone if any finite subset {(x1, y1), . . . , (xN , yN)} of S satisfies
the following algebraic condition:

〈y1, x2 − x1〉 + 〈y2, x3 − x2〉 + · · · + 〈yN−1, xN − xN−1〉 + 〈yN,x1 − xN 〉 � 0,

where 〈·,·〉 denotes the inner product of K . It turns out that S is cyclically monotone if and only
if

N∑
(yi, xσ(i) − xi) � 0,
i=1
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for any permutation σ of {1, . . . ,N} and for any finite subset {(xi, yi): i = 1, . . . ,N} of S. Note
that S is cyclically monotone if and only if any translate of it is cyclically monotone. By a theo-
rem of Rockafellar, any cyclically monotone set is contained in the graph of the subdifferential of
a convex function in the sense of convex analysis [9] and even if the function may not be unique
its subdifferential is unique.

Let now (W,μ,H) be an abstract Wiener space; a measurable function f : W → R ∪ {∞} is
called 1-convex if the map

h → f (x + h) + 1

2
|h|2H = F(x,h)

is convex on the Cameron–Martin space H with values in L0(μ). Note that this notion is compat-
ible with the μ-equivalence classes of random variables thanks to the Cameron–Martin theorem.
It is proven in [4] that this definition is equivalent the following condition: Let (πn, n � 1) be
a sequence of regular, finite dimensional, orthogonal projections of H , increasing to the identity
map IH . Denote also by πn its continuous extension to W and define π⊥

n = IW −πn. For x ∈ W ,
let xn = πnx and x⊥

n = π⊥
n x. Then f is 1-convex if and only if

xn → 1

2
|xn|2H + f

(
xn + x⊥

n

)

is π⊥
n μ-almost surely convex.

2.1. Preliminaries about the Monge–Kantorovitch measure transportation problem

Definition 1. Let ξ and η be two probabilities on (W, B(W)). We say that a probability γ on
(W ×W, B(W ×W)) is a solution of the Monge–Kantorovitch problem associated to the couple
(ξ, η) if the first marginal of γ is ξ , the second one is η and if

J (γ ) =
∫

W×W

|x − y|2H dγ (x, y) = inf

{ ∫
W×W

|x − y|2H dβ(x, y): β ∈ Σ(ξ,η)

}
,

where Σ(ξ,η) denotes the set of all the probability measures on W × W whose first and second
marginals are respectively ξ and η. We shall denote the Wasserstein distance between ξ and η,
which is the positive square-root of this infimum, with dH (ξ, η).

Remark. By the weak compactness of probability measures on W × W and the lower semi-
continuity of the strictly convex cost function, the infimum in the definition is attained even if
the functional J is identically infinity. In this latter case we say that the solution is degenerate.

The next result, which is the extension of the finite dimensional version of an inequality due
to Talagrand [10], gives a sufficient condition for the finiteness of the Wasserstein distance in the
case one of the measures is the Wiener measure μ and the second one is absolutely continuous
with respect to it. We give a short proof for the sake of completeness:
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Theorem 1. Let L ∈ L logL(μ) be a positive random variable with E[L] = 12 and let ν be the
measure dν = Ldμ. We then have

d2
H (ν,μ) � 2E[L logL]. (2.2)

Proof. Let us remark first that we can take W as the classical Wiener space W = C0([0,1])
and, using the stopping techniques of the martingale theory, we may assume that L is upper and
lower bounded almost surely. Then a classical result of the Itô calculus implies that L can be
represented as an exponential martingale

Lt = exp

{
−

t∫
0

u̇τ dWτ − 1

2

t∫
0

|u̇τ |2 dτ

}
,

with L = L1, where (u̇t , t ∈ [0,1]) is a measurable process adapted to the filtration of the canon-
ical Wiener process (t, x) → Wt(x) = x(t). Let us define u : W → H as u(t, x) = ∫ t

0 u̇τ (x) dτ

and U : W → W as U(x) = x+u(x). The Girsanov theorem implies that x → U(x) is a Browian
motion under ν, hence the image of the measure ν under the map U ×IW : W → W ×W denoted
by β = (U × I )ν belongs to Σ(μ,ν). Let γ be any optimal measure, then

J (γ ) = d2
H (ν,μ) �

∫
W×W

|x − y|2H dβ(x, y)

= E
[|u|2H L

]
= 2E[L logL],

where the last equality follows also from the Girsanov theorem and the Itô stochastic calcu-
lus. �

The next two theorems, which explain the existence and several properties of the solutions of
Monge–Kantorovitch problem and the transport maps have been proven in [5].

Theorem 2 (General case). Suppose that ρ and ν are two probability measures on W such that

dH (ρ, ν) < ∞.

Let (πn, n � 1) be a total increasing sequence of regular projections (of H , converging to
the identity map of H ). Suppose that, for any n � 1, the regular conditional probabilities
ρ(·|π⊥

n = x⊥) vanish π⊥
n ρ-almost surely on the subsets of (π⊥

n )−1(W) with Hausdorff dimen-
sion n − 1. Then there exists a unique solution of the Monge–Kantorovitch problem, denoted
by γ ∈ Σ(ρ, ν) and γ is supported by the graph of a Borel map T which is the solution of the
Monge problem. T : W → W is of the form T = IW + ξ , where ξ ∈ H almost surely. Besides we
have

2 In the sequel we denote the expectation w.r. to the Wiener measure by E.
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d2
H (ρ, ν) =

∫
W×W

∣∣T (x) − x
∣∣2
H

dγ (x, y)

=
∫
W

∣∣T (x) − x
∣∣2
H

dρ(x),

and for π⊥
n ρ-almost almost all x⊥

n , the map u → ξ(u + x⊥
n ) is cyclically monotone on

(π⊥
n )−1{x⊥

n }, in the sense that

N∑
i=1

(
ξ
(
x⊥
n + ui

)
, ui+1 − ui

)
H

� 0

π⊥
n ρ-almost surely, for any cyclic sequence {u1, . . . , uN ,uN+1 = u1} from πn(W). Finally, if, for

any n � 1, π⊥
n ν-almost surely, ν(·|π⊥

n = y⊥) also vanishes on the n − 1-Hausdorff dimensional
subsets of (π⊥

n )−1(W), then T is invertible, i.e, there exists S : W → W of the form S = IW + η

such that η ∈ H satisfies a similar cyclic monotononicity property as ξ and that

1 = γ
{
(x, y) ∈ W × W : T ◦ S(y) = y

}
= γ

{
(x, y) ∈ W × W : S ◦ T (x) = x

}
.

In particular we have

d2
H (ρ, ν) =

∫
W×W

∣∣S(y) − y
∣∣2
H

dγ (x, y)

=
∫
W

∣∣S(y) − y
∣∣2
H

dν(y).

Remark 1. In particular, for all the measures ρ which are absolutely continuous with respect
to the Wiener measure μ, the second hypothesis is satisfied, i.e., the measure ρ(·|π⊥

n = x⊥
n )

vanishes on the sets of Hausdorff dimension n − 1.

The case where one of the measures is the Wiener measure and the other is absolutely contin-
uous with respect to μ is the most important one for the applications. Consequently we give the
related results separately in the following theorem where the tools of the Malliavin calculus give
more information about the maps ξ and η of Theorem 2:

Theorem 3 (Gaussian case). Let ν be the measure dν = Ldμ, where L is a positive random
variable, with E[L] = 1. Assume that dH (μ, ν) < ∞ ( for instance L ∈ L logL). Then there
exists a 1-convex function φ ∈ D2,1, unique up to a constant, such that the map T = IW + ∇φ is
the unique solution of the original problem of Monge. Moreover, its graph supports the unique
solution of the Monge–Kantorovitch problem γ . Consequently

(IW × T )μ = γ.
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In particular T maps μ to ν and T is almost surely invertible, i.e., there exists some T −1 such
that T −1ν = μ and that

1 = μ
{
x: T −1 ◦ T (x) = x

}
= ν

{
y ∈ W : T ◦ T −1(y) = y

}
.

Remark 2. Assume that the operator ∇ is closable with respect to ν, then we have η = ∇ψ . In
particular, if ν and μ are equivalent, then we have

T −1 = IW + ∇ψ,

where is ψ is a 1-convex function. ψ is called the dual potential of the MKP(μ, ν) and we have
the following relations:

φ(x) + ψ(y) + 1

2
|x − y|2H � 0,

for any x, y ∈ W , and

φ(x) + ψ(y) + 1

2
|x − y|2H = 0

γ -almost surely.

Remark 3. Let (en, n ∈ N) be a complete, orthonormal in H , denote by Vn the sigma algebra
generated by {δe1, . . . , δen} and let Ln = E[L|Vn]. If φn ∈ D2,1 is the function constructed in
Theorem 3, corresponding to Ln, then, using the inequality (2.2) we can prove that the sequence
(φn, n ∈ N) converges to φ in D2,1.

3. Characterization of the invertible shifts

Let us begin with some results of general interest. Let us first define:

Definition 2. A measurable map T : W → W is called (μ-) almost surely right invertible if there
exists a measurable map S : W → W such that Sμ � μ and T ◦ S = IW μ-a.s. Similarly, we say
that it is left invertible, if T μ � μ and if there exists a measurable map S : W → W such that
S ◦ T = IWμ-a.s.

The following proposition some parts of which are proven in [15], shows that, whenever an
adapted shift has a left inverse almost surely, then it is almost surely invertible and its inverse is
also an adapted perturbation of identity and it relates this concept to the existence and uniqueness
of strong solutions of stochastic differential equations.

Proposition 1. Assume A = IW + a, a ∈ L2(μ,H), ȧ is adapted, E[ρ(−δa)] = 1. Suppose that
there exists a map B : W → W such that B ◦A = IW a.s. Then the following assertions are true:

(i) Bμ is equivalent to μ and A ◦ B = IW a.s., i.e., B is also a right inverse.
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(ii) B = IW + b, b : W → H , ḃ is also adapted.
(iii) (t,w) → Bt(w) is the strong solution of

dBt = −ȧt ◦ B dt + dWt,

B0 = 0. (3.1)

(iv) We have

ȧt + ḃt ◦ A = 0, (3.2)

ḃt + ȧt ◦ B = 0, (3.3)

dt × dμ-a.s.
(v) In particular either the property Aμ ∼ μ and the relation (3.2) together or Bμ ∼ μ and the

relation (3.3) together imply that B ◦ A = A ◦ B = IW a.s.

Proof. For any f ∈ Cb(W), it follows from the Girsanov theorem

E[f ◦ B] = E
[
f ◦ B ◦ Aρ(−δa)

]
= E

[
fρ(−δa)

]
,

hence Bμ is equivalent to μ and the corresponding Radon–Nikodym density is ρ(−δa). Let

D = {
w ∈ W : B ◦ A(w) = w

}
.

Since D ⊂ A−1(A(D)) and by the hypothesis μ(D) = 1 we get

E[1A(D) ◦ A] = 1.

Since Aμ is equivalent to μ we have also μ(A(D)) = 1. If w ∈ A(D), then w = A(d), for
some d ∈ D, hence A ◦ B(w) = A ◦ B ◦ A(d) = A(d) = w, consequently A ◦ B = IW μ-almost
surely and B is the two-sided inverse of A. Evidently, together with the absolute continuity
of Bμ, this implies that B is of the form B = IW + b, with b : W → H . Moreover, ȧ = −ḃ ◦ A,
hence the right-hand side is adapted. We can assume that all these processes are uni-dimensional
(otherwise we proceed component wise). Let ḃn = max(−n,min(ḃ, n)). Then ḃn ◦ A is adapted.
Let H ∈ L2(dt × dμ) be an adapted process. Using the Girsanov theorem:

E

[
ρ(−δa)

1∫
0

ḃn
s ◦ AHs ◦ Ads

]
= E

[ 1∫
0

ḃn
s Hs ds

]

= E

[ 1∫
0

E
[
ḃn
s

∣∣ Fs

]
Hs ds

]

= E

[
ρ(−δa)

1∫
E

[
ḃn
s

∣∣ Fs

] ◦ AHs ◦ Ads

]
.

0
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Consequently

E
[
ḃn
s

∣∣ Fs

] ◦ A = ḃn
s ◦ A,

almost surely. Since Aμ is equivalent to μ, it follows that

E
[
ḃn
s

∣∣ Fs

] = ḃn
s

almost surely, hence ḃn and consequently ḃ are adapted. It is now clear that (B(t), t ∈ [0,1]) is
a strong solution of (3.1). The uniqueness follows from the fact that, any strong solution of (3.1)
would be a right inverse to A, since A is invertible, then this solution is equal to B .

The proof of (v) is quite similar to that of the first part: let D = {w ∈ W : A◦B(w) = w}, then
μ(B−1(B(D)) = 1, hence B ◦ A = IWμ-a.s. Moreover B can be written as B = IW + b, with
ȧ = −ḃ◦A, proceeding as above, we show that ḃ is adapted and the rest of the proof follows. �

The invertibility of A is characterized in terms of the corresponding Wick exponentials as
below:

Theorem 4. Let A = IW + a, a ∈ L0
a(μ,H). Assume that E[ρ(−δa)] = 13 and that

dAμ

dμ
◦ Aρ(−δa) = 1

almost surely. Then A is (almost surely) invertible.

Proof. Since E[ρ(−δa)] = 1, Aμ is equivalent to μ, hence the corresponding Radon–Nikodym
derivative can be expressed as an exponential martingale:

l = dAμ

dμ
= exp

(
−δb − 1

2
|b|2H

)
,

where b(t,w) = ∫ t

0 ḃs(w)ds, with ḃ adapted,
∫ 1

0 |ḃs |2 ds < ∞ almost surely and δb is defined in
L0(μ). The hypothesis implies that

δ(a + b ◦ A) + 1

2
|a + b ◦ A|2H = 0 (3.4)

almost surely. Define the local martingale (Mt) as

Mt = exp

(
−

t∫
0

(ȧs + ḃs ◦ A)dWs − 1

2

t∫
0

|ȧs + ḃs ◦ A|2 ds

)
.

3 Here we denote by δa the stochastic integral of the adapted process ȧ in L0(μ).
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The relation (3.4) implies in fact that (Mt) is a uniformly integrable martingale with its final
value (at t = 1) M1 = 1. Consequently Mt = 1 almost surely for any t ∈ [0,1] and this implies
that

ȧs + ḃs ◦ A = 0

ds × dμ-almost surely. Hence (IW + b) ◦A = IW almost surely and the proof is fully completed
thanks to Proposition 1. �
Proposition 2. Assume that (An,n � 1) is a sequence of mappings of the form An = IW + an,
with an : W → H , ȧn is adapted for any n and (an, n � 1) converges to some a in L0(μ,H)

such that E[ρ(−δa)] = 1. Suppose that, for any n � 1, E[ρ(−δan)] = 1 and An is invertible. If

lim
n→∞

dAnμ

dμ
= l

exists in the norm topology of L1(μ), then A = IW + a is also invertible.

Proof. Let us denote by ln the Radon–Nikodym derivative of Anμ with respect to μ. The hypoth-
esis implies that (ln, n � 1) is uniformly integrable. Since (an, n � 1) converges in probability,
the uniform integrability, combined with the Lusin theorem implies that (ln ◦ An, n � 1) con-
verges in probability to l ◦ A. Since (ρ(−δan), n � 1) converges to ρ(−δa) in probability and
since, by the invertibility of An, we have

ln ◦ Anρ(−δan) = 1

almost surely for any n � 1, we have also

l ◦ Aρ(−δa) = 1

almost surely. The conclusion follows then from Theorem 4. �
The following lemma gives an important information about the Radon–Nikodym density of

the measure Aμ with respect to μ:

Lemma 1. Assume that A = IW + a with a ∈ L0(μ,H) with ȧ adapted. Then

dAμ

dμ
◦ AE

[
ρ(−δa)

∣∣ A
]
� 1

almost surely. If we have also E[ρ(−δa)] = 1, then the above inequality becomes an equality:

dAμ

dμ
◦ AE

[
ρ(−δa)

∣∣ A
] = 1

almost surely.
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Proof. For any positive function f ∈ Cb(W), using the Girsanov theorem and the Fatou Lemma,
we have

E[f ◦ A] = E

[
f

dAμ

dμ

]

� E

[
f ◦ A

dAμ

dμ
◦ Aρ(−δa)

]

= E

[
f ◦ A

dAμ

dμ
◦ AE

[
ρ(−δa)

∣∣ A
]]

,

which proves the first part of the lemma. For the second part, due to the integrability hypothesis,
we can replace the inequality above by the equality and the proof follows. �
4. Properties of non-invertible adapted perturbation of identity

In this section we study the following concept:

Definition 3. A positive random variable whose expectation is equal to one with respect to
Wiener measure is said to be representable with a mapping U : W → W if

dU μ

dμ
= L.

We begin with the following

Proposition 3. Assume that L = ρ(−δv), where v ∈ L0
a(μ,H), i.e., v̇ is adapted and∫ 1

0 |v̇s |2 ds < ∞ a.s. Then there exists U = IW +u, with u : W → H adapted such that Uμ = Lμ

and E[ρ(−δu)] = 1 if and only if the following condition is satisfied:

1 = Lt ◦ UE
[
ρ
(−δut

) ∣∣ Ut

]
(4.1)

= Lt ◦ UE
[
ρ(−δu)

∣∣ Ut

]
(4.2)

almost surely for any t ∈ [0,1], where ut is defined as ut (τ ) = ∫ t∧τ

0 u̇s ds and Ut is the sigma
algebra generated by (w(τ) + u(τ), τ � t).

Proof. Let Ut be defined as IW + ut , then for any f ∈ Cb(W) which is Ft -measurable, we have

E
[
f ◦ UtLt ◦ Utρ

(−δut
)] = E[f Lt ]

= E[f ◦ Ut ].

Since, for any Ft -measurable function G, G ◦ Ut is Ut measurable, we get

Lt ◦ UtE
[
ρ
(−δut

) ∣∣ Ut

] = 1.
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Conversely, it follows from the relation (4.1) and from the Girsanov theorem that

E[f ◦ U ] = E
[
f ◦ UL ◦ Uρ(−δu)

] = E[f L],

a similar relation holds when we replace U by Ut . �
Let us calculate E[ρ(−δut ) | Ut ] = E[ρ(−δu) | Ut ] in terms of the innovation process asso-

ciated to U . Recall that the term innovation, which originates from the filtering theory is defined
as (cf. [7] and [14])

Zt = Ut −
t∫

0

E[u̇s | Us]ds

and it is a μ-Brownian motion with respect to the filtration (Ut , t ∈ [0,1]). A similar proof as
the one in [7] shows that any martingale with respect to the filtration of U can be represented as
a stochastic integral with respect to Z. Hence, by the positivity assumption, E[ρ(−δu) | Ut ] can
be written as an exponential martingale

E
[
ρ(−δu)

∣∣ Ut

] = exp

(
−

t∫
0

(ξ̇s , dZs) − 1

2

t∫
0

|ξ̇s |2 ds

)
.

Below we give a more detailed result:

Proposition 4. We have the following explicit result

E
[
ρ(−δu)

∣∣ U
] = exp

(
−

1∫
0

(
E[u̇s | Us], dZs

) − 1

2

1∫
0

∣∣E[u̇s | Us]
∣∣2

ds

)
, (4.3)

hence

E
[
ρ(−δu)

∣∣ Ut

] = exp

(
−

t∫
0

(
E[u̇s | Us], dZs

) − 1

2

t∫
0

∣∣E[u̇s | Us]
∣∣2

ds

)
, (4.4)

almost surely.

Proof. The proof follows from the double utilization of the Girsanov theorem. Let us denote by
lt the Girsanov exponential

lt = exp

(
−

t∫ (
E[u̇s | Us], dZs

) − 1

2

t∫ ∣∣E[u̇s | Us]
∣∣2

ds

)
.

0 0
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On the first hand, we have, for any f ∈ Cb(W),

E
[
f ◦ Uρ(−δu)

] = E[f ],
and on the other hand, applying the Girsanov theorem to the decomposition

Ut = Zt +
t∫

0

E[u̇s | Us]ds,

we get

E[f ◦ Ul1] � E[f ] = E
[
f ◦ Uρ(−δu)

]
for any positive, measurable f on W . Taking f to be Ft measurable, we conclude that

lt � E
[
ρ(−δu)

∣∣ Ut

]
a.s. for any t ∈ [0,1]. Consequently (lt , t ∈ [0,1]) is a uniformly integrable martingale and in
particular E[l1] = 1. Hence we have

E[f ◦ Ul1] = E[f ] = E
[
f ◦ Uρ(−δu)

]
,

for any f ∈ Cb(W) which implies that l1 = E[ρ(−δu)|U ] and the proof of (4.3) follows. The
relation (4.4) is obvious since Ut ⊂ Ft . �
Theorem 5. A necessary and sufficient condition for the relation (4.1), that is to say for the
representability of L = ρ(−δv) by U = IW + u is that

E[u̇t | Ut ] = −v̇t ◦ U

dt × dμ-almost surely.

Proof. We have

Lt ◦ U = exp

(
−δvt ◦ Ut − 1

2
|vt ◦ Ut |2H

)
.

Moreover using the identity

δvt ◦ Ut =
t∫

0

(v̇s ◦ U,dWs) +
t∫

0

(v̇s ◦ U, u̇s) ds,

we get

Lt ◦ U = exp

[
−

t∫ (
v̇s ◦ U,dWs + u̇s ds + 1

2
v̇s ◦ U ds

)]
.

0
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Substituting all these relations in (4.1) and using the representation (4.3), we obtain

1 = Lt ◦ UE
[
ρ(−δu)

∣∣ Ut

]

= exp

[
−

t∫
0

(
v̇s ◦ U,dWs + u̇s ds + 1

2
v̇s ◦ U ds

)]

exp

(
−

t∫
0

(
E[u̇s | Us], dZs

) − 1

2

t∫
0

∣∣E[u̇s | Us]
∣∣2

ds

)
.

But

t∫
0

(
E[u̇s | Us], dZs

) =
t∫

0

(
E[u̇s | Us], dWs + (

u̇s − E[u̇s | Us]
)
ds

)
.

Consequently we get

t∫
0

(
v̇s ◦ U + E[u̇s | Us], dWs

) = 0,

almost surely for any t ∈ [0,1] and this implies that

E[u̇s | Us] = −v̇s ◦ U

ds × dμ-almost surely. The sufficiency is obvious. �
Corollary 1. A necessary and sufficient condition for the relation (4.1) is that

V ◦ U = Z,

in other words

Ut = Zt −
t∫

0

v̇s ◦ U ds

almost surely, where Z is the innovation process associated to U .

Proof. The condition in Theorem 5 reads as

v̇t ◦ U + E[u̇t | Ut ] = 0 (4.5)

almost surely. Hence
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(V ◦ U)(t) = U(t) + (v ◦ U)(t)

= Z(t) +
t∫

0

E[u̇s | Us]ds +
t∫

0

v̇s ◦ U ds

= Zt ,

by the relation (4.5). �
Corollary 2. Suppose that the innovation process Z is an (Ft , t ∈ [0,1])-local martingale, then
U is almost surely invertible and its inverse is V .

Proof. We have

Ut = Wt +
t∫

0

u̇s ds = Zt +
t∫

0

E[u̇s | Us]ds,

hence (Wt − Zt , t ∈ [0,1]) is a continuous local martingale of finite variation. This implies that
Z and W are equal hence

u̇t = E[u̇t | Ut ],
dt ×dμ-almost surely. From Theorem 5, it follows that u+v ◦U = 0 almost surely, i.e., V ◦U =
IW almost surely. It follows from Proposition 1 that

U ◦ V = IW

also μ-almost surely. �
We can give a complete characterization of the representable random variables as follows:

Theorem 6. Assume that L = ρ(−δv), V = IW + v, v ∈ L0
a(μ,H). Assume that U = IW + u

is also an adapted perturbation of identity with E[ρ(−δu)] = 1. Assume that V ◦ U = B is a
Brownian motion with respect to its own filtration. We have Uμ = L · μ if and only if B is a
local martingale with respect to the filtration generated by U and in this case B is equal to the
innovation associated to U .

Proof. The necessity has already been proven, for the sufficiency, note that, we have U =
B − v ◦ U . On the other hand we can always represent U by its innovation process as

Ut = Zt +
t∫

0

E[u̇s | Us]ds = Bt −
t∫

0

v̇s ◦ U ds

where Z is the innovation process associated to U , which is a Brownian motion with respect to
(Ut , t ∈ [0,1]). Consequently

−v̇s ◦ U = E[u̇s | Us],
ds × dμ-almost surely and the proof follows from Theorem 5. �
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5. Relations with entropy

Assume that u ∈ D
a
2,0(H) with E[ρ(−δu)] = 1 and let L ∈ L log L(μ) be the Radon–

Nikodym density of Uμ = (IW + u)μ with respect to μ. Let us represent L as ρ(−δv). Denote
E[ρ(−δu)|U ] by ρ̂. Then, due to the Girsanov theorem, we have

E[ρ̂ log ρ̂] = 1

2
E

[
ρ̂|v ◦ U |2H

]
= 1

2
E

[
ρ(−δu)|v ◦ U |2H

]
= 1

2
E

[|v|2H
]
.

In particular, the Jensen inequality implies that

E[|v|2H ] � 2E
[
ρ(−δu) logρ(−δu)

]
= E

[
ρ(−δu)|u|2H

]
.

Proposition 5. Let Pε denote the Ornstein–Uhlenbeck semigroup and denote by vε the regular-
ization Pεv and denote by uε the H -valued mapping which is defined as IW +uε = (IW + vε)

−1

whose existence follows from [15]. The set (uε, ε > 0) has a unique weak accumulation point
ũ ∈ D2,0(H). If the relation (4.1) holds then ũ satisfies the following relation:

d

ds
ũ(s) ◦ Z = −E[v̇s ◦ U | Zs] = E[u̇s | Zs]

ds × dμ-almost surely, where Z denotes the sigma algebra generated by the innovation Z asso-
ciated to U .

Proof. From [15], Vε = IW + vε is almost surely invertible and its inverse can be written as
Uε = IW + uε . Moreover uε = −vε ◦ Uε . Hence (uε, ε > 0) is bounded in L2(μ,H). Conse-
quently, there exists a subnet which converges weakly to some ũ. Let ξ be an H -valued, bounded
continuous function on W . Denoting by 〈·,·〉 the duality bracket of L2(μ,H), we get

〈uε, ξ 〉 = 〈
uε ◦ Vε, ξ ◦ Vε ρ(−δvε)

〉
= −〈

vε, ξ ◦ Vερ(−δvε)
〉

→ −〈
v, ξ ◦ Vρ(−δv)

〉
.

Hence

〈ũ, ξ 〉 = −〈
v, ξ ◦ Vρ(−δv)

〉
.

Consequently ũ is unique, i.e., the net (uε, ε > 0) has only one accumulation point in the weak
topology of D2,0(H) = L2(μ,H). From the last hypothesis

dU μ = ρ(−δv).

dμ
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Hence

〈ũ, ξ 〉 = −〈
v, ξ ◦ Vρ(−δv)

〉
= −〈v ◦ U,ξ ◦ V ◦ U 〉
= −〈v ◦ U,ξ ◦ Z〉

= −E

1∫
0

E[v̇s ◦ U | Zs]ξ̇s ◦ Z ds.

Since Z is a Brownian motion, we also have

〈ũ, ξ 〉 = 〈ũ ◦ Z,ξ ◦ Z〉,

hence the proof is completed. �
Remark 4. We draw the attention of the reader to the fact that in general the weak convergence
does not imply the strong convergence. The situation illustrated above is a typical example for
this; in fact if there were also a strong convergence, then I + v would have been invertible and
we would have IW + ũ = IW + u = (IW + v)−1 (cf. [15]).

Remark 5. Similarly, suppose that v is bounded and that

E
[|ũ|2H

] = 2E[L logL]. (5.1)

Then V = IW +v is invertible and its inverse is U = IW +u with u = ũ. In fact this follows from
the hypothesis (5.1), which implies that

lim
ε→0

E
[|uε|2H

] = lim
ε→0

E
[|vε|2H Lε

]
= E

[|v|2H L
]

= 2E[L logL]
= E

[|ũ|2H
]
.

Since D2,0(H) is a Hilbert space, the convergence of the norms implies that limε→0 uε = ũ in
the norm topology of D2,0(H). Therefore V is invertible as proven in [15]. Consequently, in the
case where the mapping V is not invertible, this equality cannot take place.

The remark above suggests the following claim:

Theorem 7. Assume that u ∈ D
a
2,0(H), E[ρ(−δu)] = 1 and

dU μ = ρ(−δv) = L,

dμ
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such that v ∈ L0
a(μ,H). U = IW +u is then almost surely invertible with its inverse V = IW + v

if and only if

2E[L logL] = E
[|u|2H

]
.

In other words, U is invertible if and only if

H(Uμ | μ) = 1

2
‖u‖2

D2,0(H),

where H(Uμ | μ) denotes the entropy of Uμ with respect to μ.

Proof. Since U represents Ldμ, we have E[u̇s |Us]+ v̇s ◦U = 0 ds × dμ-almost surely. Hence,
from the Jensen inequality E[|v ◦ U |2H ] � E[|u|2H ]. Moreover the Girsanov theorem gives

2E[L logL] = E
[|v|2H L

] = E
[|v ◦ U |2H

] = E

[ 1∫
0

∣∣E[u̇s | Us]
∣∣2

ds

]
.

Hence the hypothesis implies that

E
[|u|2H

] = E

[ 1∫
0

∣∣E[u̇s | Us]
∣∣2

ds

]
.

From which we deduce that u̇s = E[u̇s | Us] ds × dμ-almost surely. Finally we get
u̇s + v̇s ◦ U = 0 ds × dμ, which is a necessary and sufficient condition for the claim. The
necessity is obvious. �
Remark 6. This theorem says that U is invertible if and only if the “kinetic energy” of U is equal
to the entropy of the measure that it induces. Moreover U is non-invertible if and only if we have

H(Uμ | μ) <
1

2
‖u‖2

D2,0(H).

The above relation between the entropy and the (kinetic) energy can be generalized to the
maps IW + u, where u ∈ L0(μ,H) which do not fulfill necessarily the integrability condition
E[ρ(−δu)] = 1 as follows:

Theorem 8. Assume that u ∈ L2
a(μ,H), let U = IW + u and define L as to be

L = dU μ

dμ
.

We then have

H(Uμ | μ) = E[L logL] � 1

2
E

[|u|2H
]
.
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Proof. If |u|H ∈ L∞(μ), the claim is obvious from above. For the general case, let (Tn, n � 1)

be a sequence of stopping times increasing to infinity such that |un|H is bounded, where un(t) =∫ t

0 1[0,Tn](s)u̇s ds. Denote by Ln the Radon–Nikodym derivative of (IW + un)μ w.r.t. μ. From
Remark 6, it follows that the sequence (Ln, n � 1) is uniformly integrable, hence it converges
to L in the weak topology of L1(μ). From the lower semi-continuity of the entropy w.r.t. this
topology, we get

E[L logL] � lim inf
n

E[Ln logLn] � lim
1

2
E

[∣∣un
∣∣2
H

] = 1

2
E

[|u|2H
]
. �

6. Relations with the innovation conjecture of the filtering

Let us briefly explain the question (cf. [16,1,7] for further details): Assume that we are given
a process of the form

yt (w,β) = Wt(w) +
t∫

0

hs(w,β)ds,

called the observation, where β is independent of the Wiener path w, s → hs(w,β) ∈
L2([0,1], ds) almost surely and adapted to some filtration in which the filtration of (Wt ) can
be injected. The question is whether the filtration of y = (yt , t ∈ [0,1]) is equal to the filtration
of the innovation process defined as before:

νt = yt −
t∫

0

E[hs | Ys]ds (6.1)

where (Ys , s ∈ [0,1]) is the filtration of y, called the observation process. The following result
gives a complete answer to the innovation conjecture in the general case to which the above
problem can be translated:

Theorem 9. Assume that U = IW + u is an adapted perturbation of identity such that
u ∈ D2,0(H) and that E[ρ(−δu)] = 1. Define L as the Radon–Nikodym density

L = dU μ

dμ

and define v ∈ L0
a(μ,H) as L = ρ(−δv). Let U = (Ut , t ∈ [0,1]) be its filtration eventually

completed with μ-null sets. Let Z be the innovation process associated to U as defined above,
denote by Z = (Zt , t ∈ [0,1]) its filtration. Then U = Z if and only if there exists some û ∈
L0

a(μ,H) such that Û = IW + û is almost surely invertible with inverse V = IW + v and U =
Û ◦ Z almost surely.

Proof. Sufficiency: We have Z ⊂ U by the construction of Z, on the other hand the relation
U = Û ◦ Z implies that U ⊂ Z , hence the sufficiency is proved.
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Necessity: Suppose now that Z = U , let L be the Radon–Nikodym derivative

L = dU μ

dμ
.

Since L > 0 almost surely, there exists some v : W → H such that v̇ is adapted and that L can
be represented as L = ρ(−δv). Hence the random variable L is represented by U , this implies
that V ◦ U = Z almost surely, where V = IW + v. Since U = Z , we can write U as a function
of Z, i.e., U = Û (Z). Then

1 = μ{V ◦ U = Z} = μ
{
V ◦ Û (Z) = Z

}
= μ

{
V ◦ Û(w) = w

}
,

since Zμ = μ. Consequently, Û is a right inverse of V . Moreover Ûμ = Û ◦ Zμ = Uμ ∼ μ

hence it follows from Proposition 1 that V ◦ Û = Û ◦ V = IW μ-almost surely. �
Corollary 3. Assume that we are in the situation described by the relation (6.1). Let us denote
by Ĥ : W → H defined by

Ĥ (t, y) =
t∫

0

E[hs | Ys]ds.

Denote by V the mapping defined by V = IW −Ĥ . Then the filtration generated by the innovation
ν is equal to the filtration of the observation y if and only if

E

[
dV

dμ
log

dV μ

dμ

]
= 1

2
E

[|Ĥ |2H
]
.

Proof. It follows from Theorem 9, that the invertibility of V is a necessary and sufficient condi-
tion, then we apply Theorem 7. �
Remark 7. In [1], the authors treat the case where the noise is independent of the signal, this
amounts to say that u is independent of w, here on the contrary we are in a situation where the
things are correlated.

7. The properties of U ◦ V

Assume that L, U = IW + u and V = IW + v be as in Section 4. We know then that the
mapping V ◦ U preserves the Wiener measure μ. On the other hand we have, from the Girsanov
theorem

E[f ◦ U ◦ V L] = E
[
f ◦ U ◦ Vρ(−δv)

]
= E[f ◦ U ]
= E[f L],
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for any f ∈ Cb(W). In other words U ◦ V preserves the measure ν which is defined by dν =
Ldμ. Let us denote U ◦ V with M . This mapping is of the form M = IW + m, where m =
v + u ◦ V is an adapted, H -valued mapping.

Proposition 6. Assume that m satisfies the following hypothesis:

E
[
ρ(−δm)

] = 1,

where δm denotes the Itô integral of (ṁs, s ∈ [0,1]) in L0(μ)-sense.4 Then the mapping M =
U ◦ V satisfies the following probabilistic Monge–Ampère equation:

L ◦ ME
[
ρ(−δm)

∣∣ M
] = E[L | M], (7.1)

almost surely, where M denotes the sigma-algebra generated by M .

Proof. Let us note that the hypothesis E[ρ(−δm)] = 1 is satisfied as soon as E[ρ(−δu)] = 1
and E[ρ(−δv)] = 1. Now, from the Girsanov theorem, for any f ∈ Cb(W), we get

E[f L] = E
[
f ◦ ML ◦ Mρ(−δm)

]
.

On the other hand M preserves the measure dν = Ldμ, hence

E[f ◦ ML] = E[f L].

Therefore

E
[
f ◦ ML ◦ Mρ(−δm)

] = E[f ◦ ML],

for any f ∈ Cb(W) and this proves the claim. �
Let us denote by (Mt , t ∈ [0,1]) the filtration generated by M and let us suppose that m =

v + u ◦ V is in L1(μ,H). This last hypothesis is amply sufficient to ensure the existence of
the dual predictable projection m̂ of m with respect to the filtration (Mt , t ∈ [0,1]). It can be
calculated as in Proposition 4

m̂(t) =
t∫

0

E[ṁs | Ms]ds, t ∈ [0,1].

Besides, the innovation process (Rt , t ∈ [0,1]) associated to M , defined by

Rt = Mt −
t∫

0

E[ṁs | Ms]ds

4 This is an abuse of notation since the divergence coincides with the Itô integral only for the adapted elements of
Lp(μ,H) with p > 1.
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is an (Mt , t ∈ [0,1])-Brownian motion and again from [7], any martingale of this filtration can
be represented as a stochastic integral with respect to this innovation process. Consequently, the
martingale E[ρ(−δm) | Mt ] can be represented as in Proposition 4:

E
[
ρ(−δm)

∣∣ Mt

] = exp

(
−

t∫
0

(
E[ṁs | Ms], dRs

) − 1

2

t∫
0

∣∣E[ṁs | Ms]
∣∣2

ds

)
.

From the Itô representation theorem, there exists an (Mt , t ∈ [0,1])-adapted process (γ̇t ,

t ∈ [0,1]) such that
∫ 1

0 |γ̇t |2 dt < ∞ almost surely and that

E[L | Mt ] = exp

(
−

t∫
0

(γ̇s, dRs) − 1

2

t∫
0

|γ̇s |2 ds

)
.

Let us calculate the terms at the right of the relation (7.1):

L ◦ M = exp

(
−δv ◦ M − 1

2
|v ◦ M|2H

)
.

Using the identity

δv ◦ M = δ(v ◦ M) + (v ◦ M,m)H

and taking into account the exponents of the relation (7.1), we get

δ(v ◦ M) + (v ◦ M,m)H + 1

2
|v ◦ M|2H +

1∫
0

(
E[ṁs | Ms], dRs

) + 1

2

1∫
0

∣∣E[ṁs | Ms]
∣∣2

ds

=
1∫

0

(γ̇s , dRs) + 1

2
|γ |2H ,

where the letters without “dot” denote the primitives of those with “dot”. If we restrict all these
calculations to the time interval [0, t], for any t ∈ [0,1], similar relation holds, consequently we
have proven

Theorem 10. If Uμ = ν = L · μ and if L = ρ(−δv), where u and v are adapted and if
E[ρ(−δm)] = 1 and if m = v + u ◦ V ∈ L1(μ,H), then we have the following relation between
v and m:

v̇t ◦ M = Eν[v̇t − ṁt | Mt ] (7.2)

dt × dμ-almost surely, where the conditional expectation is taken w.r.t. the measure ν.
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Proof. Let us calculate the conditional expectation E[L | M]: by a stopping argument, it suffices
to suppose that L is bounded. Let ξ be a bounded, (Mt , t ∈ [0,1])-adapted process. Then

E

[
L

1∫
0

ξs dRs

]

= E

[(
−

1∫
0

v̇sLs dWs

)( 1∫
0

ξs dRs

)]

= E

[( 1∫
0

E
[−v̇sLs + Ls

(
ṁs − E[ṁs | Ms]

) ∣∣ Ms

]
dRs

)( 1∫
0

ξs dRs

)]

= E

[( 1∫
0

{
Eν

[−v̇s + ṁs − E[ṁs | Ms]
∣∣ Ms

]}
E[Ls | Ms]dRs

)( 1∫
0

ξs dRs

)]
.

Consequently

E[L | M] = exp

(
−

1∫
0

Eν

[
v̇s − (

ṁs − E[ṁs | Ms]
) ∣∣ Ms

]
dRs

− 1

2

1∫
0

∣∣Eν

[
v̇s − (

ṁs − E[ṁs | Ms]
) ∣∣ Ms

]∣∣2
ds

)

and the proof follows from the relation 7.1 of Proposition 6. �
8. Relations with the Monge’s transport map

Assume that the density L is in the class L logL(μ). It follows from [5] that there exists an
H − 1-convex element ϕ of D2,1 such that the perturbation of identity T defined as

T (w) = w + ∇ϕ(w)

maps the Wiener measure μ to ν = L · μ and also there is another map S = IW + ∇ψ , ψ ∈ D2,1
also H − 1-convex such that

μ
({

w: S ◦ T (w) = w
}) = 1

and

ν
({

w: T ◦ S(w) = w
}) = 1.

In particular, whenever μ and ν are equivalent, then T and S are inverse to each other μ-almost
surely. Let us remark that neither T nor S are adapted to the filtration (Ft ). We shall assume in
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the sequel that L is μ-almost surely strictly positive and represented as before as an exponential
density L = ρ(−δv). Let us denote by (Tt , t ∈ [0,1]) the filtration generated by (Tt , t ∈ [0,1]),
where Tt is defined as Tt (w) = w(t) + ∇ϕ(t) with ∇ϕ(t) = ∫ t

0 Dsϕ ds. We have

Theorem 11. Assume further that L ∈ L1+ε(μ) for some ε > 0, then T is a μ-semimartingale
with respect to (Tt ) and it has the following decomposition:

Tt = Bt +
t∫

0

(
E[DsL | Fs]
E[L | Fs]

)
◦ T ds, (8.1)

where B = (Bt ) is a (Tt )-Brownian motion. Moreover (8.1) can be also expressed as

Tt = Bt −
t∫

0

v̇s ◦ T ds, (8.2)

where v̇ is defined as L = ρ(−δv).

Proof. Since (Wt , t ∈ [0,1]) is the canonical Brownian motion, the equality Tt = T −1(Ft )

is immediate. Consequently, for any positive, measurable function f , we have the following
identity:

E[f ◦ T | Tt ] = Eν[f | Ft ] ◦ T .

This relation implies that (Tt , t ∈ [0,1]) is a (μ, (Tt ))- quasimartingale if and only if (Wt ,

t ∈ [0,1]) is a (ν, (Ft ))-quasimartingale. This latter property is immediate since V = W + v

is a (ν, (Ft ))-Brownian motion and Eν[|v|2H ] = 2E[L logL] < ∞. Let us calculate the drift
of (Tt , t ∈ [0,1]): if θ is a bounded, Ft -measurable cylindrical function, we have, using the
integration by parts formula

1

h
E

[
(Tt+h − Tt )θ ◦ T

] = 1

h
E

[
(Wt+h − Wt)θL

]

= 1

h
E

[
θ

t+h∫
t

DsLds

]

→ E[θDtL]
= E

[
θE[DtL | Ft ]

]
= E

[
θE[DtL | Ft ] L

Lt

]

= E

[
θ ◦ T

E[DtL | Ft ]
Lt

◦ T

]
,

as h → 0, where Ls = E[L|Fs]. Moreover, the local martingale part is a continuous process
with 〈Bi,Bj 〉t = δi,j t , hence it is a Brownian motion and (Tt ) has the decomposition given
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by the formula (8.1) which is equivalent to the decomposition given by (8.2). In fact L can be
represented as

L = 1 +
1∫

0

E[DsL | Fs]dWs.

On the other hand from the Itô’s formula, we have

L = 1 −
1∫

0

v̇sLs dWs

hence Lsv̇s = −E[DsL | Fs] ds × dμ-almost surely. �
Remark 8. We could have guessed this theorem by observing simply that the mapping B =
V ◦ T preserves the Wiener measure due to the Girsanov theorem. Therefore the process
(t,w) → B(w)(t) is a Brownian motion with respect to its own filtration. However the theorem
says that it is also a Brownian motion with respect to the larger filtration (Tt , t ∈ [0,1]).

Theorem 12. Assume that L = ρ(−δv) satisfies the hypothesis of Theorem 11, let V = IW + v.
The map V is not invertible, i.e., the equation

Ut = Wt −
t∫

0

v̇s ◦ U ds (8.3)

has no strong solution if and only if the equation

Tt = Bt −
t∫

0

v̇s ◦ T ds (8.4)

has no strong solution.

Proof. Assume that T is a strong solution, then by definition T should be adapted to the filtration
of the Brownian motion B = (Bt ), hence it is of the form T = T̂ ◦ B . Then

1 = μ{B = T̂ ◦ B + v ◦ T̂ ◦ B}
= μ

{
w = T̂ (w) + v ◦ T̂ (w)

}
= μ

{
w: V ◦ T̂ (w) = w

} = μ(D),

hence T̂ is a right inverse to V . Moreover, for any f ∈ Cb(W),

E[f ◦ T̂ ] = E[f ◦ T̂ ◦ B] = E[f ◦ T ] = E[f L].
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Therefore T̂ μ is equivalent to μ. Since

1
T̂ (D)

◦ T̂ � 1D,

we obtain μ(T̂ (D)) = 1 which means that T̂ is almost surely surjective, consequently it is also
a left inverse and it follows from Proposition 1 that T̂ is a strong solution to Eq. (8.3), which is
a contradiction. To show the sufficiency suppose that Eq. (8.3) has a strong solution U , then U

and V are inverse to each other almost surely. moreover B = V ◦ T is also invertible hence U =
T ◦ B−1 is (Ft )-adapted and this implies that T is (B−1(Ft ))-adapted, consequently Eq. (8.4)
has a strong solution which is a contradiction. �
9. Variational techniques for representability and invertibility

In this section we shall derive a necessary and sufficient condition for a large class of adapted
perturbation of identity. We begin with some technical results:

Lemma 2. Assume that f ∈ D2,1 and η ∈ D
a
2,0(H) such that |η|H ∈ L∞(μ). Then we have

f
(
w + η(w)

) = f (w) +
1∫

0

∇ηf
(
w + tη(w)

)
dt

μ-almost surely.

Proof. If f is Fréchet differentiable or if it is H − C1, then the identity is obvious. Assume that
(fn, n � 1) is a sequence of such functions converging to f in D2,1 and denote IW + η by Tη.
Then we have on the one hand

E
[|fn ◦ Tη − fm ◦ Tη|

] = E

[
|fn − fm| dTημ

dμ

]

� E
[|fn − fm|2]1/2

E

[(
dTημ

dμ

)2]1/2

.

From Lemma 1, we have

E

[(
dTημ

dμ

)2]
= E

[(
dTημ

dμ

)
◦ Tη

]

= E

[
1

E[ρ(−δη) | Tη]
]

� E

[
1

ρ(−δη)

]

= E

[
exp

(
δη + 1 |η|2H

)]
< ∞
2
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since |η|H ∈ L∞(μ). Hence we get that

lim
n,m→∞E

[|fn ◦ Tη − fm ◦ Tη|
] = 0.

Similarly

E

1∫
0

|∇ηfn − ∇ηfm|H ◦ Ttη dt = E

[
|∇ηfn − ∇ηfm|H

1∫
0

dTtημ

dμ
dt

]

� ‖fn − fm‖2,1

(
E

1∫
0

(
dTtημ

dμ

)2
)1/2

� ‖fn − fm‖2,1

(
E

1∫
0

exp

(
tδη + t2

2
|η|2H

)
dt

)1/2

→ 0

as n,m → ∞. �
Corollary 4. Assume that f ∈ D2,1 is Ft0 -measurable for some fixed t0 < 1. Then the conclusion
of Lemma 2 holds for any u ∈ D

a
2,0(H).

Proof. Let (τn) be a sequence of stopping times increasing to infinity such that |uτn | is essentially
bounded where uτn is defined as

uτn(t) =
t∫

0

1[0,τn](s)u̇s ds.

From Lemma 2, it follows trivially that

f
(
w + uτn(w)

) = f (w) +
1∫

0

(∇f
(
w + tuτn(w)

)
, uτn(w)

)
H

dt,

moreover, on the set {τn > t0}, we have f (w + uτn(w)) = f (w + u(w)) and

(∇f
(
w + tuτn(w)

)
, uτn(w)

)
H

= (∇f
(
w + tu(w)

)
, u(w)

)
H

almost surely. �
Theorem 13. Assume that v ∈ D

a
2,2(H) such that |v|H ∈ L∞(μ) and that

E
[
exp ε‖∇v‖2

op

]
< ∞
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for some ε > 0, where ‖∇v‖op denotes the operator norm of ∇v. If the following infimum

inf

(
1

2
E

[∣∣ξ + v ◦ (IW + ξ)
∣∣2]: ξ ∈ D

a
2,0(H)

)
,

is attained for some u, then its value is zero and U = IW + u is inverse of the shift IW + v.

Proof. The main point is to show the validity of the variational formula:

v
(
w + u(w) + η(w)

) = v
(
w + u(w)

) +
1∫

0

∇ηv
(
w + u(w) + tη(w)

)
dt (9.1)

almost surely where η ∈ D
a
2,0(H) with |η|H ∈ L∞(μ) and that these terms are properly integrable

in such a way that the Gâteaux derivative at u of F(u) is well defined. Let us denote by vn the
regularization of v defined as P1/nv, where P1/n is the Ornstein–Uhlenbeck semigroup. Since
vn is H -differentiable, we get trivially the identity:

vn

(
w + u(w) + η(w)

) = vn

(
w + u(w)

) +
1∫

0

∇ηvn

(
w + u(w) + tη(w)

)
dt. (9.2)

By the Jensen inequality we have

sup
n

E
[
exp ε‖∇vn‖op

]
< ∞. (9.3)

Let us denote by Tt the shift IW + u + tη. Then

E

1∫
0

|∇ηvn ◦ Tt |H dt � ‖η‖L∞(μ)E

1∫
0

‖∇vn‖oplt dt

where lt is the Radon–Nikodym derivative of Ttμ with respect to μ. Using the Young inequality
for the dual convex functions exp and x logx we obtain, for any κ > 0,

‖∇vn‖oplt � expκ‖∇vn‖op + 1

κ
lt log lt . (9.4)

It is clear that, from the hypothesis and the Jensen lemma, the sequence (expκ‖∇vn‖, n � 1) is
uniformly integrable for small κ > 0. From Lemma 1

lt ◦ TtE
[
ρ
(−δ(u + tη)

) ∣∣ Tt

]
� 1,

hence
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E[lt log lt ] = E[log lt ◦ Tt ]
� E

[− logE
[
ρ
(−δ(u + tη)

) ∣∣ Tt

]]
� E

[− logρ
(−δ(u + tη)

)]
= 1

2
E

[|u + tη|2H
]

� E
[|u|2H

] + E
[|η|2H

]
.

Hence (lt , t ∈ [0,1]) is uniformly integrable, but we also need to prove the uniform integrability
of (lt log lt , t ∈ [0,1]). For this, let A be any measurable subset of W , we have, again from
Lemma 1,

E[1Alt log lt ] = E[1A ◦ Tt log lt ◦ Tt ]
= E

[
1A ◦ Tt

(− logE
[
ρ
(−δ(u + tη)

) ∣∣ Tt

])]
� E

[
1A ◦ Tt

(
δ(u + tη) + 1

2
|u + tη|2H

)]

� E
[
1A ◦ Ttδ(u + tη)

] + E

[
1A ◦ Tt

1

2
|u + tη|2H

]
.

The last two terms are equivalent, hence it suffices to show that the second terms can be chosen
arbitrarily small by choosing μ(A) small enough. However this is obvious from the integrability
of |u|2H and from the uniform integrability of (lt , t ∈ [0,1]). From this and from the inequal-
ity (9.3), we see that the left-hand side of (9.4) is uniformly integrable. Consequently we can
pass to the limit in the relation (9.2) in L1(μ) and obtain the relation (9.1). We can now calculate
the Gâteaux derivative of F at u in any direction η ∈ D

a
2,0(H) with |η|H ∈ L∞(μ) (instead of

η ◦ U ) as follows:

F(u + λη) − F(u)

= E

λ∫
0

(
u + tη + v ◦ (IW + u + tη), (IH + ∇v) ◦ (IW + u + tη)[η])

H
dt. (9.5)

Let us remark that

E
[|u|H

∥∥∇v ◦ (IW + u + tη)
∥∥

op

]
� E

[|u|2H
]1/2

E
[∥∥∇v ◦ (IW + u + tη)

∥∥2
op

]1/2

� E
[|u|2H

]1/2
E

[
exp ε‖∇v‖2

op + 1

ε
ltη,u log ltη,u

]1/2

, (9.6)

where

ltη,u = d(IW + u + tη)μ
dμ
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and from Lemma 1, we know that

E[ltη,u log ltη,u] � 1

2
E

[|u + tη|2H
]
.

Hence we can commute the expectation with the Lebesgue integral in the formula (9.5). Let us
denote the expectation of the integrand of (9.5) by F ′(u + tη)[η]. Since v ∈ D

a
2,2(H), using the

formula (9.1) for ∇v instead of v and the inequality (9.6), we see that the map t → F ′(u+ tη)[η]
is continuous on [0,1]. Since u is minimal, we should have F ′(u)[η] � 0 for any η as above.
Writing the things explicitly:

F ′(u)[η] = E
[(

u + v ◦ U, (IH + ∇v ◦ U)η
)
H

]
= E

[(
(IH + ∇v ◦ U)�(u + v ◦ U),η

)
H

]
� 0.

By the invertibility of IH + ∇v, we get

u + v ◦ U = 0

almost surely and this is equivalent to the fact that U = IW + u and V = IW + v are inverse to
each other. In particular F(u) = 0. �

As an application of these kind of variational calculations in relation with the representability,
consider the problem of calculation of

inf

(
E

[
1

2
|α|2H + f ◦ (IW + α)

]
: α ∈ D

a
2,0(H)

)
,

where f : W → R is a fixed Wiener functional. In fact, as it is shown in [2], this infimum is equal
to − logE[exp−f ] which is also equal to

inf

( ∫
W

f dγ +
∫
W

dγ

dμ
log

dγ

dμ
dμ

)
(9.7)

where the infimum is taken w.r.to all the probability measures on (W, B(W)) and the latter is
uniquely attained at

dγ0 = 1∫
e−f dμ

e−f dμ.

In the next theorem we shall give sufficient conditions under which it is attained:

Theorem 14. Assume that f ∈ D2,1 is a 1-convex, bounded Wiener functional such that

E
[
exp ε|∇f |H

]
< ∞,
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for some ε > 0. Then the infimum

inf

(
E

[
1

2
|α|2H + f ◦ (IW + α)

]
: α ∈ D

a
2,0(H)

)

is attained at some u ∈ D
a
2,0(H) and this adapted vector field satisfies the following relation:

u̇t + E[Dtf ◦ U | Ft ] = 0

dt × dμ-almost surely, where U = IW + u. Besides we have

(1)
dU μ

dμ
= exp

(
−

1∫
0

EUμ[Dtf | Ft ]dWt − 1

2

1∫
0

∣∣EUμ[Dtf | Ft ]
∣∣2

dt

)
,

where EUμ denotes the expectation with respect to the measure Uμ, i.e., the image of μ

under U .
(2) Let v̇t = EUμ[Dtf | Ft ], denote by Z the innovation process associated to U , i.e., Zt =

Ut − ∫ t

0 E[u̇s | Us]ds, and define l as

l = exp

(
−

1∫
0

E[u̇t | Ut ]dZt − 1

2

1∫
0

∣∣E[u̇t | Ut ]
∣∣2

dt

)
,

where Ut is the sigma algebra U−1(Ft ) = σ(Ws + u(s), s � t). Then E[l] = 1 and we have

l
dU μ

dμ
◦ U = lρ(−δv) ◦ U = 1

almost surely.

Proof. Let J (α) the expectation above without inf. For λ > 0, let Dλ = {α ∈ D
a
2,0(H):

J (α) � λ}. Then, for sufficiently large λ, Dλ is a non-empty, convex set. Moreover, if (αn,

n � 1) ⊂ Dλ converges to some α in D
a
2,0(H), then, writing An = IW + αn, we have

E

[
dAnμ

dμ
log

dAnμ

dμ

]
� 1

2
E

[|αn|2H
]
.

Hence the sequence of Radon–Nikodym densities (
dAnμ
dμ

, n � 1) is uniformly integrable. This
property, combined with Lusin theorem implies that (f ◦ An, n � 1) converges to f ◦ A in
Lp(μ) for any p � 0, where A = IW + α. Therefore Dλ is closed, since it is convex, it is also
weakly closed in D

a
2,0(H). This implies that α → J (α) is weakly lower semi continuous (l.s.c.).

Since Dλ is weakly compact, J attains its infimum on Dλ and the convexity of J implies that
this infimum is a global one. The scalar version of Proposition 13 implies that

0 = E
[
(u,α)H + (∇f ◦ U,α)H

]
= E

[
(u,α)H + (

π(∇f ◦ U),α
) ]

,

H
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for any bounded α ∈ D
a
2,0(H), where π denotes the dual predictable projection. Hence we get

u̇t + E[Dtf ◦ U | Ft ] = 0

dt × dμ-almost surely. Taking the conditional expectation of this relation with respect to Ut , we
obtain immediately

E[u̇t | Ut ] + EUμ[Dtf | Ft ] ◦ U = 0 (9.8)

dt × dμ-almost surely and the expression for dU μ/dμ follows from Theorem 5. It is a simple
calculation to see that Eq. (9.8) implies

lρ(−δv) ◦ U = 1

almost surely. From the Girsanov theorem, we get

1 = E
[
lρ(−δv) ◦ U

]
� E

[
ρ(−δv)

]
,

therefore E[ρ(−δv)] = 1. Similarly, for any positive, measurable g on W , we have

E[g ◦ U ] = E
[
g ◦ Ulρ(−δv) ◦ U

]
� E

[
gρ(−δv)

]
,

therefore

dU μ

dμ
� ρ(−δv),

since both are probability densities, they are equal μ-almost surely. To prove E[l] = 1 it suffices
to write l = 1/ρ(−δv) ◦ U , then

E[l] = E

[
1

ρ(−δv)
◦ U

]

= E

[
ρ(−δv).

1

ρ(−δv)

]
= 1

and this completes the proof. �
Remark 9. Suppose that ‖∇2f ‖op � c < 1 almost surely, where c > 0 is a fixed constant and the
norm is the operator norm on H . Then the map Φ : D

a
2,0(H) → D

a
2,0(H) defined by

Φ(ξ) = −π
(∇f ◦ (IW + ξ)

)
,

where π denotes the dual predictable projection, is a strict contraction, hence there exists a unique
u ∈ D

a
2,0(H) which satisfies the equation

u̇t + E[Dtf ◦ U | Ft ] = 0

dt × dμ-almost surely.
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Corollary 5. Let u ∈ D
a
2,0(H) be a minimizer whose existence is assured by Theorem 14. Define

U = IW + u. Then

dU μ

dμ
= e−f

E[e−f ] = L

if and only if U is a.s. invertible.

Proof. Since

J (u) = E[f L] + E[L logL] = E[f ◦ U ] + 1

2
E

[|u|2H
]

and since by the hypothesis we have E[f L] = E[f ◦ U ], we obtain

E[L logL] = 1

2
E

[|u|2H
]
.

On the other hand, from Theorem 14,

E[L logL] = E[logL ◦ U ]
= E[− log l]

= 1

2
E

[ 1∫
0

∣∣E[u̇s | Us]
∣∣2

ds

]
.

Consequently, u̇s = E[u̇s | Us] ds × dμ-almost surely. This implies that E[ρ(−δu)] = 1, hence
the hypothesis of Theorem 7 is satisfied and the invertibility of U follows. Conversely, suppose
that U is invertible, let M be the Radon–Nikodym density of Uμ w.r.t. μ. Then we have

J (u) =
∫
W

f M dμ +
∫
W

M logM dμ,

hence Mdμ = Ldμ by the uniqueness of the solution of the minimization problem (9.7). �
Acknowledgment

This work has been done during my sabbatical visit to the Department of Mathematics of
Bilkent University, Ankara, Turkey.

References

[1] D. Allinger, S.K. Mitter, New results on the innovations problem for nonlinear filtering, Stochastics 4 (4) (1980)
339–348.

[2] M. Boué, P. Dupuis, A variational representation for certain functionals of Brownian motion, Ann. Probab. 26 (4)
(1998) 1641–1659.

[3] D. Feyel, A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier 41 (1) (1991) 49–76.
[4] D. Feyel, A.S. Üstünel, The notion of convexity and concavity on Wiener space, J. Funct. Anal. 176 (2000) 400–428.



A.S. Üstünel / Journal of Functional Analysis 257 (2009) 3655–3689 3689
[5] D. Feyel, A.S. Üstünel, Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener
space, Probab. Theory Related Fields 128 (3) (2004) 347–385.

[6] D. Feyel, A.S. Üstünel, M. Zakai, Realization of positive random variables via absolutely continuous transforma-
tions of measure on Wiener space, Probab. Surv. 3 (2006) 170–205 (electronic).

[7] M. Fujisaki, G. Kallianpur, H. Kunita, Stochastic differential equations for the nonlinear filtering problem, Osaka J.
Math. 9 (1972) 19–40.

[8] P. Malliavin, Stochastic Analysis, Springer, 1997.
[9] T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1972.

[10] M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6 (1996) 587–600.
[11] B.S. Tsirelson, An example of stochastic differential equation having no strong solution, Theory Probab. Appl. 20

(1975) 416–418.
[12] A.S. Üstünel, Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995.
[13] A.S. Üstünel, Analysis on Wiener space and applications, electronic text at the site http://www.finance-research.net/.
[14] A.S. Üstünel, M. Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 1999.
[15] A.S. Üstünel, M. Zakai, Sufficient conditions for the invertibility of adapted perturbations of identity on the Wiener

space, Probab. Theory Related Fields 139 (2007) 207–234.
[16] M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 11 (1969)

230–243.


	Entropy, invertibility and variational calculus of adapted shifts on Wiener space
	Introduction
	Preliminaries and notation
	Preliminaries about the Monge-Kantorovitch measure transportation problem

	Characterization of the invertible shifts
	Properties of non-invertible adapted perturbation of identity
	Relations with entropy
	Relations with the innovation conjecture of the filtering
	The properties of U°V
	Relations with the Monge's transport map
	Variational techniques for representability and invertibility
	Acknowledgment
	References


