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In this study, a machine scheduling problem with controllable processing times in a parallel-machine environment is considered. The
objectives are the minimization of manufacturing cost, which is a convex function of processing time, and total weighted earliness
and tardiness. It is assumed that parts have job-dependent earliness and tardiness penalties and distinct due dates, and idle time is
allowed. The problem is formulated as a time-indexed integer programming model with discrete processing time alternatives for each
part. A linear-relaxation-based algorithm is used to assign the parts to the machines and to find a sequence on each machine. A
non-linear programming model is proposed to find the optimal starting and processing times of the parts for a given sequence. The
proposed non-linear programming model is converted to a minimum-cost network flow model by piecewise linearization of the convex
manufacturing cost in the objective function. The proposed method is used to find initial schedules in predictive scheduling. The
proposed models are revised to incorporate a stability measure for reacting to unexpected disruptions such as machine breakdown,
arrival of a new job, delay in the arrival or the shortage of materials in reactive scheduling.

Keywords: Scheduling, controllable processing times, earliness and tardiness, reactive scheduling

1. Introduction

In most scheduling studies the processing times of jobs are
assumed to be known and fixed. However, in many manu-
facturing applications the processing times can be altered
or controlled (albeit at higher cost) by using additional re-
sources (e.g., manpower, fuel) or by changing machining
conditions such as cutting speed and feed rate. Control-
lable processing times provide additional flexibility in find-
ing solutions to the scheduling problem, which in turn can
improve the overall performance of the production system.
In this study our aim is to show the effectiveness of using
controllable processing times in both predictive and reac-
tive scheduling.

Most of the studies on scheduling with controllable pro-
cessing times assume that the processing time is a linear
function of the amount of resource allocated to the process-
ing of the job as summarized in the recent survey of Shabtay
and Steiner (2007). Thus, the manufacturing cost increases
linearly with decreasing processing time. There are several
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studies on scheduling with resource allocation in which the
job processing time is a convex decreasing function of the
amount allocated to the processing of the job. Shabtay and
Kaspi (2004) and Gurel and Akturk (2007) study the prob-
lem of minimizing the total weighted flow time on a single
machine with controllable processing times using differ-
ent non-linear compression cost functions, whereas Shab-
tay and Kaspi (2006) study an identical parallel-machine
scheduling problem with a convex resource consumption
function to minimize the total completion time. Shabtay
et al. (2007) consider the case of a convex resource con-
sumption function to minimize the makespan in a two-
machine flowshop with a no-wait restriction. In this study,
we also assume that the manufacturing cost is a convex
function of processing time. In existing studies, schedul-
ing objectives such as makespan, total completion time,
total earliness and tardiness are also considered besides
minimizing the total compression costs. We consider the
objective of minimizing the total weighted earliness and
tardiness as the scheduling objective in addition to minimiz-
ing the manufacturing cost. When a job is finished earlier
than its due date, an inventory holding cost is incurred.
The total weighted tardiness objective is important for
customer satisfaction. Late deliveries will incur additional
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transportation costs and may cause customer dissatisfac-
tion, loss of goodwill and lost sales.

There are several papers that address scheduling prob-
lems with the earliness and tardiness criteria and fixed pro-
cessing times. Baker and Scudder (1990) and Kanet and
Sridharan (2000) provide extensive literature surveys on
non-regular scheduling problems. Most of the cited studies
consider single-machine problems with the assumption of
a common due date. Authors considering single-machine
problems with distinct due dates include Fry et al. (1984),
Yano and Kim (1991), Hoogeveen and Van de Velde (1996),
Chen and Lin (2002) and Sourd (2005). All of these papers
propose a branch-and-bound (B&B) approach. Kedad-
Sidhoum et al. (2008) consider parallel-machine problems
with distinct due dates and propose lower bounds based on
relaxation of time-indexed formulations of the problem.

In the earliness–tardiness scheduling literature, there are
a few papers that consider controllable processing times in
scheduling problems. Panwalkar and Rajagopalan (1992)
and Liman et al. (1997) consider a single-machine prob-
lem with common due date and common due window as-
sumptions, respectively. The common due date/window is
a decision variable that is determined by the proposed as-
signment models in both studies. Alidaee and Ahmadian
(1993) consider the unrelated parallel-machine scheduling
problem with a common due date assumption and pro-
pose a transportation model to solve the problem. Cheng
et al. (1996) study the unrelated parallel-machine schedul-
ing problem with controllable processing times. The due
date is assumed to be unrestrictively large and the cost is
a convex function of the amount that processing times are
compressed. The problem is formulated as an assignment
problem. All these studies, addressing both controllable
processing times and earliness–tardiness penalties, assume
some variety of a common due date thus limiting their
applicability. This assumption is usually not justified in
a manufacturing environment. Furthermore, this assump-
tion simplifies the problem significantly by ignoring the
issue of when and where to insert idle times. In this study,
we solve an unrelated parallel-machine scheduling problem
considering job-dependent earliness and tardiness penal-
ties, inserted idle times, distinct due dates and controllable
processing times simultaneously.

In many manufacturing environments, a schedule formed
at the beginning of the planning horizon cannot be followed
properly due to unexpected events such as machine break-
downs, the arrival of an important job, order cancellation,
etc. The schedule often must be revised to restore feasibil-
ity, and/or to decrease the impact of the disturbance on
system performance. Reactive scheduling is the term most
often used to describe the problem of updating the sched-
ule in response to an unexpected disruption. Several differ-
ent methods such as B&B, dispatching rules and heuristics
have been proposed to form full new or partial schedules.
A review of the reactive scheduling literature can be found
in Vieira et al. (2003). The controllable processing times

are not considered in reactive scheduling studies. However,
they are commonly used in real manufacturing settings to
deal with disturbances. In this study, the use of controllable
processing times as an effective way to deal with shop floor
disruptions is shown.

As an outline of the remainder of this paper, the problem
is defined with its underlying assumptions in Section 2. We
formulate the problem as a time-indexed Integer Program-
ming (IP) model. The continuously controllable processing
times are discretized in this formulation. Then, we propose
a Linear Programming (LP)-relaxation-based algorithm to
solve the problem in Section 3. The proposed algorithm
uses the solution of the linear relaxation of the IP model
to find an assignment of jobs to machines and find the
sequence of jobs on each machine. A non-linear program-
ming model is proposed to find optimal starting times and
processing times of the parts for a given sequence. The
proposed non-linear programming model is converted to a
minimum-cost network flow model by piecewise lineariza-
tion of the convex manufacturing cost in the objective func-
tion. In Section 4, the proposed time-indexed model and
minimum cost network flow model are updated to con-
sider stability measure in reactive scheduling problems. In
Section 5, the effectiveness of controllable processing times
in predictive and reactive scheduling problems is shown
through computational results. In the last section, conclud-
ing remarks and future research directions are provided.

2. Problem definition

The notation used throughout the study is as follows.

Parameters:
M = number of machines;
N = number of jobs;
Nm = number of jobs assigned to machine m;
T = planning horizon, t = 1, 2, . . . , T;
D = set of disrupted jobs;
fim(pim) = manufacturing cost, which is a convex

function of processing time;
f̃ im(.) = piecewise linearized manufacturing cost

function;
pl

im, pu
im = lower and upper bounds for processing

time of part i on machine m;
εi = earliness penalty for part i ;
τi = tardiness penalty for part i ;
di = due date of part i ;
ri = release time of part i ;
tstart
m = starting time period of machine m;
psimk = processing time setting k of part i on

machine m;
costimtk = total cost of assigning part i using

processing time setting k to time period
t on machine m (t is the starting time
period);
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Kim = number of processing time settings for
part i on machine m;

f min
im = minimum manufacturing cost of part i

on machine m;
Gim = number of line segments in the

piecewise linearized manufacturing cost
function ( f̃ im(.));

bg
im = slope of the line segment g of the

piecewise linearized manufacturing cost
function ( f̃ im(.));

δ
g
im = breakpoints of the linearized

manufacturing cost function ( f̃ im(.));
Ci = completion time of part i in the initial

schedule.

Variables:
pim = processing time of part i on machine m

(pl
im ≤ pim ≤ pu

im);
Sim = starting time of part i on machine m;
Zimtk = binary variable that is equal to one if

part i is assigned to machine m;
starts to be processed at time period t
and uses processing time setting k;

Iim = inserted idle time before part i on
machine m;

Eim = earliness of part i on machine m;
Tim = tardiness of part i on machine m;
ag

im = amount of compression in processing
time in line segment g of f̃ im(.);

C
′
i = completion time of part i in the revised

schedule;
D−

im, D+
im = negative and positive deviations of the

completion time of part i in the revised
schedule with respect to the completion
time in the initial schedule.

In this study, the unrelated parallel-machine schedul-
ing problem with controllable processing times problem
is solved. The objective is to minimize the sum of weighted
earliness and tardiness and the manufacturing cost. When
part i is assigned to machine m, the weighted earliness and
tardiness can be calculated as (εi max{0, di − (Sim + pim)})
and (τi max{0, (Sim + pim) − di }), respectively. The manu-
facturing cost is a function of processing time (pim), which
can take any continuous value between the lower bound,
pl

im, and the upper bound, pu
im. The manufacturing cost is

assumed to be convex in this study. The main motivation in
using a convex compression cost function is the convexity
of the manufacturing cost, which is the sum of machining
and tooling costs, in flexible manufacturing systems as dis-
cussed in Turkcan et al. (2003). The manufacturing cost,
earliness and tardiness values as functions of processing
time can be seen in Fig. 1.

In order to solve the unrelated parallel-machine schedul-
ing problem with continuously controllable processing
times and earliness–tardiness penalties the decisions that

Fig. 1. Objective functions.

should be made are: assignment of parts to machines, de-
termination of the processing times, and sequencing and
scheduling of parts on each machine. Furthermore, it may
be necessary to have inserted idle times between the pro-
cessing of consecutive jobs due to consideration of a non-
regular performance measure. It is important to note that
even the single-machine version of this problem, where the
jobs have different due dates and different earliness and
tardiness weights with fixed processing times, is strongly
NP-hard (Hoogeveen and Van de Velde, 1996). These op-
timization problems (assignment, sequencing, scheduling,
determination of processing times and idle times) are not
independent and it is very difficult to make all these de-
cisions simultaneously. Therefore, we propose a two-stage
algorithm below.

3. The proposed two-stage algorithm

A two-stage algorithm is proposed in order to solve the
unrelated parallel-machine scheduling problem with con-
tinuously controllable processing times. In the first stage, a
time-indexed IP model is used to assign parts to machines
and to determine the sequence of parts on each machine. In
the second stage, a non-linear programming model is used
to determine the optimal start times and processing times
for a given sequence of parts on each machine.

3.1. Time-indexed IP model

In the literature, the existing time-indexed models consider
fixed processing times for the parts (Van den Akker et al.,
2000; Avci, 2001; Kedad-Sidhoum et al. 2008). The pro-
posed time-indexed IP model incorporates alternative pro-
cessing time settings, which take discrete values between
the lower and upper bounds of the processing times for the
corresponding parts. Shabtay and Steiner (2007) provide an
extensive literature survey of continuously and discretely
controllable processing times.

The proposed time-indexed IP model, which allocates
parts to the machines, determines starting times and
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processing times of the parts, is as follows:

(IP)

min
N∑

i=1

M∑
m=1

Kim∑
k=1

T−psimk+1∑
t=1

costimtkZimtk, (1a)

subject to

M∑
m=1

Kim∑
k=1

T−psimk+1∑
t=1

Zimtk = 1, i = 1, . . . , N, (1b)

N∑
i=1

Kim∑
k=1

min{T−psimk+1,t}∑
u=max{t−psimk+1,1}

Zimuk ≤ 1,

m = 1, . . . , M and t = 1, . . . , T, (1c)
Zimtk ∈ {0, 1}, ∀i, m, t, k, (1d)

where Zimtk is a binary variable that is equal to one when
part i using processing time setting k starts to be processed
at time period t on machine m. psimk is the kth processing
time setting for part i on machine m (psim1 < psim2 < · · · <

psi,m,Kim ). costimtk, which is the sum of manufacturing cost
and weighted earliness and tardiness, is the cost of assigning
part i with processing time setting k to time period t on
machine m. It is calculated as

costimtk = fim(psimk) + εi max{0, di − (t + psimk − 1)}
+ τi max{0, (t + psimk − 1) − di }.

In the proposed IP model, the first constraint (1b) guaran-
tees that every part is scheduled exactly once. The second
constraint (1c) is the machine capacity constraint stating
that each time unit on each machine can be occupied by
at most one part. The size of the IP model depends on the
length of the unit time period used to discretize the pro-
cessing times and the number of processing time settings.
As the number of breakpoints increases, the accuracy of
the time-indexed IP model increases at the expense of an
increase in problem size and computation times.

The proposed time-indexed IP model is a variant of the
generalized assignment problem for which an extensive
number of studies exist. Cattrysse and Van Wassenhove
(1992) provide a survey of algorithms for the generalized
assignment problem. Since the LP relaxations of the time-
indexed formulations provide strong bounds, time-indexed
formulations have received considerable attention from re-
searchers. The solutions found by solving the relaxed time-
indexed model can be used to develop algorithms as is done
for generalized assignment problems in the literature.

In this study, we propose a two-stage algorithm based
on the LP relaxation of the time-indexed IP model. In the
first stage, the LP relaxation of the IP model is solved.
The LP relaxation might give a non-integral solution.
This infeasible solution is used to find an assignment of
parts to machines and part sequence on each machine.
The maximum Zimtk value is found for each part i , i.e.,
{m∗, t∗, k∗} = arg maxm,t,k Zimtk. The part is assigned to

machine m∗. The parts assigned to each machine are se-
quenced in non-decreasing order of their starting times, t∗.
After the sequences of the parts on each machine are found,
the optimal starting times, processing times of parts and the
inserted idle times between parts should be determined in
the second stage.

3.2. The non-linear programming model

After the LP relaxation of the IP model is solved, the parts
are assigned to machines and the sequence on each machine
is fixed as discussed above. The following non-linear pro-
gramming model is solved for each machine m to determine
the final schedule that includes finding both the processing
times of the parts and the idle times that should be inserted
between each part for a given sequence to minimize the sum
of earliness, tardiness and manufacturing costs:

(SNLPm)

min
Nm∑
i=1

ε[i ] E[i ]m +
Nm∑
i=1

τ[i ]T[i ]m +
Nm∑
i=1

f[i ]m(p[i ]m), (2a)

subject to

T[i ]m − E[i ]m = S[i ]m + p[i ]m − d[i ], ∀i, (2b)
S[1]m = I[1]m, (2c)
S[i ]m = S[i−1]m + p[i−1]m + I[i ]m i = 2, . . . , Nm, (2d)

pl
[i ]m ≤ p[i ]m ≤ pu

[i ]m, ∀i, (2e)
S[i ]m, T[i ]m, E[i ]m, p[i ]m, I[i ]m ≥ 0, ∀i. (2f)

The first constraint (2b) calculates the earliness and tar-
diness value of each part according to the starting time,
processing time and the due date of the corresponding
part. The second and third constraints (2c) and (2d) are
used for determining the starting times of the parts. The
starting time of a part in sequence position [i ], is the sum
of the starting time and processing time of the part in se-
quence position [i − 1] and the idle time between the parts
in sequence positions [i − 1] and [i ]. The fourth constraint
(2e) gives the lower and upper bounds of the processing
times. The processing times can take any continuous value
between the lower and upper bounds.

Lemma 1. The proposed non-linear programming model has:
(i) a convex feasible set; and (ii) a convex objective function.

Proof. We skip the detailed proof due to space limitations;
it can, however, be obtained from the first author. We can
briefly give the general outline of the proof such that: (i)
each constraint is a linear equation or inequality, therefore
the feasible region is convex; and (ii) the objective function
is the sum of linear and convex functions and therefore it
is convex. �

3.2.1. Piecewise linearization
In the proposed SNLP model, the manufacturing cost,
which is a non-linear convex function of processing time,
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Fig. 2. Linearized manufacturing cost.

can be approximated with a piecewise linear function. The
piecewise linearized function can be written as f min

[i ]m −∑G [i ]m

g=1 bg
[i ]mag

[i ]m, where f min
[i ]m is the minimum manufacturing

cost, ag
[i ]m is the amount of compression in processing time

in line segment g and bg
[i ]m is the slope of the line segment

g, g = 1, 2, · · · , G [i ]m. In Fig. 2, one can see an example of
the piecewise linearized manufacturing cost function.

In order to find solutions that are close to the real op-
timal solution, the piecewise linearized function should be
a good representation of the real function. The linearized
function is found in such a way that the difference between
the approximate and real function values at any point is
less than a certain percentage (NWL) of the real function
value, i.e., ( f̃ (x) − f (x))/ f (x) ≤ NWL, where f̃ (x) is the
approximate function value and f (x) is the real function
value at point x. The algorithm used to find the approxi-
mate piecewise linear function is as follows.

Algorithm 1. Piecewise linearization algorithm

Step 1. Initialize g, x1 and x2 (g = 0, x1 = pl
im and x2 =

pu
im).

Step 2. Find point x∗ giving the maximum difference be-
tween the approximate function, f̃ (x), and the real
function, f (x). Point x∗ is calculated by taking the
derivative of the difference, equating it to zero and
solving the resulting function for x.
2.1. The approximate function is

f̃ (x) = f (x1) + f (x2) − f (x1)
x2 − x1

(x − x1).

2.2. x∗ is the solution of the equation

∂( f̃ (x) − f (x))
∂x

= f (x2) − f (x1)
x2 − x1

− ∂ f (x)
∂x

= 0.

Step 3. Calculate the maximum difference between the ap-
proximate function, f̃ (x), and the real function,
f (x).

Step 4. If the maximum difference is greater than a cer-
tain percentage of the real function value ( f̃ (x∗) −
f (x∗) ≥ f (x) × NWL)
4.1. Divide the region between x1 and x2 by updat-

ing x2 as (x1 + x2)/2. Go to Step 2.
Step 5. Else if the maximum difference is less than a cer-

tain percentage of the real function value ( f̃ (x∗) −
f (x∗) < f (x) × NWL)
5.1. Assign the value of breakpoint g (δg

im = x1)
and increase g by one.

5.2. Update x1 and x2 (x1 = x2 and x2 = pu
im).

5.3. If x1 �= x2, go to Step 2.
5.4. Otherwise, update the value of the last break-

point (δg
im = x1 and Gim = g).

The time-indexed formulation, presented in Section 3.1,
uses a set of discrete processing time alternatives (psimk).
Any method can be used to discretize the processing times
between the lower and upper bounds. In the computational
study section, we use Algorithm 1, the piecewise lineariza-
tion algorithm, to determine the discrete processing time
alternatives that will be used in the time-indexed IP model.
That means, we first linearize the convex manufacturing
cost function for each part on each machine and then solve
the linear relaxation of time-indexed IP model. The pro-
cessing time settings used in IP are found by dividing the
breakpoints of the piecewise linear function to the unit time
period and rounding them to the nearest integer values.

Example (Piecewise linearization): Suppose the manu-
facturing cost function of part i on machine m is f (x) =
2x + 1.5x−1.2. The minimum and maximum processing
times are 0.1 and 0.7, respectively. NWL = 0.2. The lin-
earization algorithm works as follows.

Step 1. Initialize breakpoints x1 = pl
im = 0.1, x2 = pu

im =
0.7 and g = 0.
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Step 2. The approximate linear function between x1 and x2
is

f̃ (x) = f (x1) + f (x2) − f (x1)
x2 − x1

(x − x1)

= 23.97 − 33.79(x − 0.1).

The difference between the approximate function
and the real function is f̃ (x) − f (x) = 57.76 −
33.79x − 2x − 1.5x−1.2. The point x∗ giving the
maximum difference is calculated by first taking
the derivative of the difference (−35.79 + 1.8x−2.2),
equating it to zero and solving the resulting func-
tion for x (x = (35.79/1.8)−1/2.2 = 0.26).

Step 3. The maximum difference between the approx-
imate function and real function at point
x∗ is f̃ (x∗) − f (x∗) = 57.76 − 33.79x∗ − 2x∗ −
1.5(x∗)−1.2 = 10.50.

Step 4. Since the maximum difference is greater than a cer-
tain percentage of the real function value (maxi-
mum difference = 10.5 ≥ f (x∗) × NWL = 1.64),
the region between x1 and x2 is divided into two.
x1 = 0.1 and x2 = (x1 + x2)/2 = 0.4.

Steps 2 to 4 are repeated for (x1 = 0.1, x2 = 0.4), (0.1, 0.25)
and (0.1, 0.175). When x1 = 0.1 and x2 = 0.175, f̃ (x) −
f (x) = 1.78 is less than f (x∗) × NWL = 3.46. Therefore,
x1 = 0.1 becomes the first breakpoint (δ0

im = 0.1). x1 and x2
are updated as 0.175 and 0.7, respectively. Steps 2 to 5 are
repeated until all breakpoints are generated. The steps are
summarized in Table 1. The breakpoints of the approximate
piecewise linear function are found as 0.1, 0.175, 0.306
and 0.7. The discrete processing time settings are found
by dividing each breakpoint by the unit time period and
rounding it to the nearest integer. If the unit time period is
set as 0.1, the discrete processing time settings, which will
be used in the time-indexed IP model, will be 1, 2, 3 and 7.

For this example, the minimum manufacturing cost
is 3.7 ( f min

im = 2pu
im + 1.5(pu

im)−1.2 = 3.7). The number of
lines in the approximate function is three (Gim = 3). The
breakpoints are 0.1, 0.175, 0.306 and 0.7 (δ0

im = pl
im = 0.1,

δ1
im = 0.175, δ2

im = 0.306 and δ3
im = pu

im = 0.7). The slope

of line g is calculated as

bg
im = fim

(
δ

g
im

) − fim
(
δ

g−1
im

)
δ

g
im − δ

g−1
im

,

where b1
im = −13.23, b2

im = −3.79, b3
im = −0.82.

3.2.2. Minimum-cost network flow model
In the proposed SNLP model, the manufacturing cost,
f[i ]m(p[i ]m), is replaced with f min

[i ]m − ∑G [i ]m

g=1 bg
[i ]mag

[i ]m, the pro-

cessing time, p[i ]m, is replaced with pu
[i ]m − ∑G [i ]m

g=1 ag
[i ]m, and

the starting time, S[i ]m, is replaced with T[i ]m − E[i ]m −
(pu

[i ]m − ∑G [i ]m

g=1 ag
[i ]m) + d[i ]. The piecewise linearized cost

function provides a LP model that has a special structure.
The new model, MCNFm, is a minimum-cost network flow
model for each machine m.

(MCNFm)

min
Nm∑
i=1

ε[i ] E[i ]m +
Nm∑
i=1

τ[i ]T[i ]m +
Nm∑
i=1

(
f min
[i ]m

−
G [i ]m∑
g=1

bg
[i ]mag

[i ]m

)
, (3a)

subject to

T[1]m − E[1]m +
G [i ]m∑
g=1

ag
[1]m − I[1]m = pu

[1]m − d[1], (3b)

T[i ]m − E[i ]m − T[i−1]m + E[i−1]m +
G [i ]m∑
g=1

ag
[i ]m − I[i ]m

= pu
[i ]m − d[i ] + d[i−1], i = 2, . . . , Nm, (3c)

−T[Nm]m + E[Nm]m +
Nm∑
i=1

I[i ]m −
Nm∑
i=1

G [i ]m∑
g=1

ag
[i ]m

= −
Nm∑
i=1

pu
[i ]m + d[Nm], (3d)

ag
[i ]m ≤ δ

g
[i ]m − δ

g−1
[i ]m , ∀i, g, (3e)

T[i ]m, E[i ]m, I[i ]m, ag
[i ]m ≥ 0, ∀i, g. (3f)

Table 1. Piecewise linearization example

x1 x2 f (x1) f (x2) f (x2)− f (x1)
x2−x1

x∗ f (x∗) f̃ (x∗) f̃ (x∗) − f (x∗) f (x∗) × NWL

0.1 0.7 23.97 3.7 −33.79 0.26 8.18 18.67 10.50 1.64
0.1 0.4 23.97 5.30 −62.23 0.20 10.94 17.94 7.01 2.19
0.1 0.25 23.97 8.42 −103.71 0.16 14.15 18.06 3.91 2.83
0.1 0.175 23.97 12.50 −153.03 0.13 17.31 19.08 1.78 3.46
0.175 0.7 12.50 3.70 −16.75 0.34 6.08 9.65 3.58 1.22
0.175 0.438 12.50 4.92 −28.86 0.27 7.62 9.62 2.00 1.52
0.175 0.306 12.50 6.82 −43.26 0.23 9.17 10.08 0.91 1.83
0.306 0.7 6.82 3.70 −7.92 0.46 4.73 5.60 0.87 0.95
0.7 0.7
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Fig. 3. Network graph.

Constraints (3b), (3c) and (3d) are used to calculate the
earliness/tardiness, amount of compression in processing
time of each part and idle time before each part. Constraint
(3e) puts an upper bound on the amount of compression
in the processing time. The upper bounds are based on
the range of linear line segments in the approximate func-
tion. One can see a pictorial representation of the model in
Fig. 3. Each constraint is represented by a node. For con-
straint (3c), the variables with coefficient +1 (T[i ]m, E[i−1]m,
ag

[i ]m) are represented as outgoing arcs from the correspond-
ing node i . The variables with coefficient −1 (E[i ]m, T[i−1]m,
I[i ]m) are incoming arcs. Constraint (3d) is a dummy con-
straint, which is added to have a feasible solution for the
minimum-cost network flow model. Constraint (3e) puts
an upper bound on ag

[i ]m, which is an upper bound on the
flow for the corresponding arc. The MCNFm model can
be solved efficiently by minimum-cost network flow algo-
rithms. More detailed information on minimum-cost net-
work flow algorithms can be found in Ahuja et al. (1993).
The proposed model finds the optimal starting times and
the processing times of the parts for a fixed sequence of
parts on a single machine. An important advantage of us-
ing the MCNF model is the fact that we are no longer
restricted to considering only discrete processing time al-
ternatives. The processing times can take any value between
the lower and upper bounds.

4. Numerical example

A numerical example with two identical parallel-machines
and ten parts will clarify the proposed algorithm. The due
dates, earliness and tardiness penalties of the parts, the
breakpoints of the processing times and the corresponding
manufacturing costs are provided in Table 2.

The two-stage algorithm starts by solving the LP relax-
ation of the time-indexed IP model in the first stage. The
LP relaxation gives a non-integral solution with the objec-
tive function value of 148.56. The LP relaxation solution

is Z1,1,3,4 = 0.6, Z1,2,3,3 = 0.2, Z1,2,25,3 = 0.2, Z2,2,57,4 =
1, Z3,2,41,5 = 1, Z4,1,44,5 = 1, Z5,1,36,4 = 0.8, Z5,2,4,5 = 0.2,
Z6,1,79,5 = 1, Z7,2,13,3 = 0.2, Z7,2,17,3 = 0.2, Z7,2,19,3 = 0.2,
Z7,2,21,3 = 0.2, Z7,2,23,3 = 0.2, Z8,2,1,4 = 0.6, Z8,1,1,4 = 0.4,
Z9,1,1,2 = 0.6, Z9,2,1,2 = 0.4, Z10,1,31,3 = 0.6, Z10,2,27,3 = 0.2
and Z10,2,31,3 = 0.2. This infeasible solution is used to find
an initial sequence on each machine. The maximum Zimtk
value is found for each part and the starting time t is used
to find a sequence on each machine. The parts 1, 4, 5, 6,
9 and 10 are assigned to the first machine and parts 2, 3,
7 and 8 are assigned to the second machine. The parts are
sequenced according to the time periods they are assigned.
The sequence on the first machine is {9, 1, 10, 5, 4, 6} and
the sequence on the second machine is {8, 7, 3, 2}. In the
second stage, the MCNFm model is solved to find the opti-
mal starting times and processing times for the given fixed
sequences on each machine. The objective function value is
found to be 174.6. A pictorial representation of the optimal
solutions on machines 1 and 2 can be seen in Fig. 4.

Table 2. Data used in the numerical example

Part d ε τ Processing times Machining costs

1 40 0.6 15 (4, 9, 16, 28,
40)

(255.9, 84.4, 35.8, 18.4,
13.7)

2 69 0.8 20 (1, 3, 6, 13) (48.2, 10.6, 4.6, 2.9)
3 53 0.1 2.5 (1, 2, 4, 7, 13,

22, 30)
(351.2, 129.6, 48.2,

22.1, 10.3, 6.7, 6.2)
4 69 0.6 15 (2, 4, 8, 15, 26,

37)
(201.4, 76.3, 29.5, 13.6,

8.6, 7.7)
5 40 0.2 5 (1, 2, 3, 5, 9,

16, 22)
(197.8, 69.0, 37.4, 17.6,

8.0, 4.8, 4.4)
6 87 1 25 (1, 2, 4, 7, 9) (23.3, 8.7, 3.6, 2.2, 2.0)
7 26 0.5 12.5 (1, 2, 4, 11) (29.0, 11.1, 4.6, 2.3)
8 34 0.3 7.5 (9, 15, 25, 34) (325.1, 150.6, 71.3,

46.9)
9 0 0.2 5 (1, 2) (22.7, 7.9)

10 34 0.7 17.5 (1, 2, 4, 7, 10) (26.5, 9.9, 4.1, 2.4, 2.2)
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Fig. 4. Representations of the optimal solutions for MCNF1 and MCNF2.

The arcs that have a positive flow in the optimal so-
lution are shown in Fig. 4. All other arcs that have zero
flow in the optimal solution are not shown. Part 9, which
is the first part on machine 1, has a tardiness value of
2 (T9 = 2). Since a1

91 = 0, the processing time of part 9
is two (p91 = pu

91 − a1
91 = 2 − 0 = 2). Since the idle time

before part 9 is zero (I9 = 0), the start time of part 9
on machine 1 is also zero. Part 1, which is the sec-
ond part on machine 1, has an earliness value of ten.
The processing time of part 1 is p11 = pu

11 − a1
11 − a2

11 −
a3

11 − a4
11 = 40 − 0 − 0 − 0 − 12 = 28. The start time of

part 1 is S11 = T11 − E11 − (pu
11 − a1

11 − a2
11 − a3

11 − a4
11) +

d1 = 0 − 10 − (40 − 0 − 0 − 0 − 12) + 40 = 2. The start
times are calculated by using S[i ]m = T[i ]m − E[i ]m − (pu

[i ]m −∑G [i ]m

g=1 ag
[i ]m) + d[i ] and the processing times are calculated

by using p[i ]m = pu
[i ]m − ∑G [i ]m

g=1 ag
[i ]m for all parts on each

machine. The Gantt chart of the solution found by the
proposed algorithm can be seen in Fig. 5.

When we solve the time-indexed IP model of the nu-
merical example optimally, we obtain a solution with an
objective function value of 154. The Gantt chart of the so-
lution found by solving the time-indexed IP model can be
seen in Fig. 6.

5. Reactive scheduling

In reactive scheduling, different performance measures are
often used to measure the quality of the new schedule
formed after the disruption. The aim in reactive scheduling
is to find a new schedule that is close to the initial sched-
ule in terms of both stability and efficiency. The efficiency
measure is often the same as that used in predictive schedul-
ing and typically reflects schedule quality using objectives
such as makespan, tardiness or total cost. The stability
measures how much the new schedule is different from the
initial schedule and reflects costs incurred due to changing

Fig. 5. Numerical example; two-stage algorithm.
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Fig. 6. Numerical example; IP.

plans based on the original schedule. Presumably the “cor-
rect” objective in reactive scheduling varies considerably
from one manufacturing setting to another.

In this part of the study, the minimization of the sum of
total weighted earliness, tardiness and manufacturing costs
is used as the efficiency measure. It is the same objective
used in determining the predictive schedule. In manufac-
turing systems, the initial schedule is used to determine the
due dates of the parts in preceding workstations, the release
times in succeeding workstations, delivery of raw material
and transportation schedules. A disturbance changes the
schedule in a workstation, and the change in the schedule
affects the schedules of all preceding and succeeding sta-
tions. The aim is to find a new schedule which does not
deviate too much from the initial schedule in terms of com-
pletion times. In this study, the absolute difference between
the completion times of the parts in the initial and final
schedules is used as the stability measure. As the stability
measure improves, the new schedule gets closer to the initial
schedule in terms of completion times. The stability is cal-
culated as

∑
i |Ci − C

′
i |, where Ci and C

′
i are the completion

times of part i in the initial and final schedules, respectively.
The time-indexed IP model can be revised to handle a va-

riety of disruptions including machine breakdown, arrival
of a new job, order cancellation, due date change, change
in job priority and delay in the arrival or shortage of ma-
terials. The model is revised as follows in order to react to
disturbances:

(IP′)

min
∑
i∈D

M∑
m=1

Kim∑
k=1

T−psimk+1∑
t=max{tstart

m ,ri }
reactcostimtkZimtk, (4a)

subject to

M∑
m=1

Kim∑
k=1

T−psimk+1∑
t=max{tstart

m ,ri }
Zimtk = 1, ∀i ∈ D, (4b)

∑
i∈D

Kim∑
k=1

min{T−psimk+1,t}∑
u=max{t−psimk+1,tstart

m ,ri }
Zimuk ≤ 1,

∀m and t = tstart
m , . . . , T, (4c)

Zimtk ∈ {0, 1}, ∀i, m, t, k. (4d)

The objective function is the sum of the efficiency mea-
sure used in the IP model (1a) (which is the sum of man-

ufacturing cost and total weighted earliness and tardiness)
and stability measure (which is the deviation of completion
times in the initial and final schedules). The new cost term
is calculated as

reactcostimtk = costimtk + |(t + psimk − 1) − Ci |.
The set of parts that are affected by the disruption is de-
noted by D and the revised IP′ model is solved for these
parts. If a machine breakdown occurs, the part that is being
processed at the breakdown time and all other parts that are
not processed yet are the parts affected by the disruption.
When a new job arrives, an order is canceled, a change in
the due dates or job priorities occurs, the parts that are not
processed yet are also denoted as the affected jobs. The first
constraint guarantees that every affected part is scheduled
in the available time periods exactly once. The second con-
straint is the machine capacity constraint which states that
each available time unit on a machine can be occupied by
at most one part. The proposed model allows reassignment
of parts to different machines.

The model handles different starting time periods for the
machines (tstart

m ) and different release times for the parts
(ri ). When a machine breakdown occurs, the machine will
be unavailable for a certain period of time. The starting
time of the broken machine is found by adding the dura-
tion of breakdown to the breakdown time. The starting
times of the other machines are the completion times of the
last unaffected jobs in the sequences of the corresponding
machines. The release times can be determined in different
ways. For example, the starting times of the parts in the
initial schedule could be considered as the release times in
reactive scheduling to model the case where raw material is
scheduled to arrive in just-in-time. Another method might
assume the availability of all parts at the beginning of the
scheduling period.

MCNFm must also be revised in order to cope with dis-
ruptions. When stability is incorporated into the model, the
following model is achieved:

(MCNF′
m)

min
Nm∑
i=1

ε[i ] E[i ]m +
Nm∑
i=1

τ[i ]T[i ]m +
Nm∑
i=1

(
f min
[i ]m −

G [i ]m∑
g=1

bg
[i ]mag

[i ]m

)

+
Nm∑
i=1

D−
[i ] +

Nm∑
i=1

D+
[i ], (5a)
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subject to

T[1]m − E[1]m +
G [1]m∑
g=1

ag
[1]m − I[1]m = pu

[1]m − d[1], (5b)

T[i ]m − E[i ]m − T[i−1]m + E[i−1]m +
G [i ]m∑
g=1

ag
[i ]m − I[i ]m

= pu
[i ]m − d[i ] + d[i−1], i = 2, . . . , Nm, (5c)

D+
[1]m − D−

[1]m +
G [1]m∑
g=1

ag
[1]m − I[1]m = pu

[1]m − C[1], (5d)

D+
[i ]m − D−

[i ]m − D+
[i−1]m + D−

[i−1]m +
G [i ]m∑
g=1

ag
[i ]m − I[i ]m

= pu
[i ]m − C[i ] + C[i−1], i = 2, . . . , Nm, (5e)

−T[Nm]m + E[Nm]m + D+
[Nm]m − D−

[Nm]m = d[Nm] − C[Nm], (5f)

ag
[i ]m ≤ δ

g
[i ]m − δ

g−1
[i ]m , ∀i, g, (5g)

T[i ]m, E[i ]m, D+
[i ]m, D−

[i ]m, I[i ]m, ag
[i ]m ≥ 0 ∀i, g. (5h)

The objective function of the revised model, MCNF′
m,

is the sum of earliness (E[i ]m), tardiness (T[i ]m), manufac-
turing cost ( f min

[i ]m − ∑G [i ]m

g=1 bg
[i ]mag

[i ]m) and deviation of the
completion time in the final schedule from the completion
time in the initial schedule (D−

[i ]m, D+
[i ]m). D−

[i ]m and D+
[i ]m are

negative and positive deviations of the completion time of
part i in the revised schedule with respect to the comple-
tion time in the initial schedule. D−

i = max{0, Ci − C
′
i } and

D+
i = max{0, C

′
i − Ci }, where Ci and C

′
i are the completion

times in the initial and revised schedules, respectively. Con-
straints (5b) and (5c), which are the same as constraints
(3b) and (3c), are used to calculate the earliness/tardiness
value of each part according to processing times and the
due dates. Constraints (5d) and (5e) are used to determine
the negative and positive deviations of the completion times
in the revised schedule and initial schedule. The compres-

sion amounts in processing times (ag
[i ]m) are bounded from

above in constraint (5g).
The inclusion of a stability measure into the MCNF

model does not affect the network structure. A pictorial
representation of the model can be seen in Fig. 7. Each
constraint is represented by a node. In constraint (5e), the
variables with coefficient +1 (D+

[i ]m, D−
[i−1]m, ag

[i ]m) are rep-
resented as outgoing arcs from the corresponding node i ′.
The variables with coefficient −1 (D−

[i ]m, D+
[i−1]m, I[i ]m) are in-

coming arcs. Constraint (5f) is a dummy constraint, which
is added to have a feasible solution for the minimum-cost
network flow model. Constraint (5g) puts upper bound on
the flow for the corresponding arc.

For different machine starting times, the lower bound on
the idle time before the first affected part in the sequence,
I[1]m, should be set to the starting time of the machine.
Thus, the following constraint is added to the MCNF′

m
model: I[1]m ≥ tstart

m . The additional constraint does not af-
fect the network structure of the model and network flow
algorithms can be used to solve the model. The release
times of the parts can be incorporated into the model by
adding the constraint T[i ]m − E[i ]m − (pu

[i ]m − ∑G [i ]m

g=1 ag
[i ]m) +

d[i ] ≥ r[i ]. The network structure no longer holds with this
constraint. However, the model can be solved as a linear
program.

Since the structure of both the time-indexed model and
minimum-cost network flow do not change, the proposed
algorithm using updated models can also be used to solve
reactive scheduling problems.

6. Computational study

We performed two computational studies in order to
demonstrate three key points. First, we want to demon-
strate that significant improvements in system efficiency
are possible by solving the scheduling problem with con-
trollable processing times. Second, we want to verify that

Fig. 7. Network graph with stability measure.



1090 Turkcan et al.

we can find good solutions for this complex problem and
test the performance of the proposed two-stage algorithm
as well as the time-indexed IP. Third, we want to show
that the proposed model and algorithm can be used both
in predictive and reactive scheduling environments. In the
first part of the study we considered a predictive schedul-
ing environment with the goal of finding both processing
times and a schedule so as to minimize the sum of earliness,
tardiness and manufacturing costs. In the second part of
the study, we considered a reactive scheduling environment,
and tested how the proposed methods perform in reaction
to a disturbance. The proposed algorithm was coded in
the C language and compiled with Gnu C compiler. The
minimum-cost network flow model and the time-indexed
IP model were solved using the callable library routines
of CPLEX 7.1. The problems were solved on a 400 MHz
UltraSPARC station.

For both computational studies, the same basic set of
problems was used. We generated a variety of problems
with 30, 50 and 100 parts and three, five and ten machines.
For the three and five-machine problems, we considered
different types of machines. For the problems with ten ma-
chines, we assumed that there were two identical machines
each of the five different machine types. For a specific de-
scription and cost coefficients of these unrelated Computer
Numerical Controled (CNC) machines, we refer to Turk-
can et al. (2007).

Due dates were randomly generated from the interval
UN∼[(1−TF − RDD)/2, (1−TF + RDD)/2] ×(

∑
i pi/M),

where TF is the tardiness factor, RDD is the range of due
dates and pi = (pl

i + pu
i )/2. Both TF and RDD were set

to 0.2, 0.5 and 0.8. The earliness weights were selected
randomly from the interval UN∼ [0.1, 1.0]. The ratio of
tardiness weight to earliness weight, τi/εi , was taken as 25
and 50 in the computational study reflecting the fact that
tardiness is usually far more costly than earliness.

Since we have a well-defined convex cost function for
turning operations using CNC machines, we used the same
cost function in our computational study. We calculated
the processing times of the parts using operation and tool-
related parameters. With the specified values of these pa-
rameters, the average of the lower bounds of the processing
times is 0.5 and the average of the upper bounds of the
processing times is 5.1. Overall, the processing times vary
between 0.01 and 42.2.

Two other parameters were employed in this study. The
first one was the linearization constant (NWL), which was
used in the piecewise linearization of the non-linear convex
manufacturing cost function. As the linearization constant
decreases, the number of breakpoints in the approximate
cost function increases, and the approximation becomes
better. The second factor was the scale factor (SC), which
was used to find the unit time period. The unit time period,
which was used to discretize the processing time settings
in the IP formulation, was calculated as (maxi pu

i )/SC. As
the scale factor increases, the unit time period decreases

and the processing times increase. Decreasing the unit time
increases the accuracy of the proposed IP model, but at
the expense of an increased computation time. Since there
is a trade-off between the solution quality and computa-
tion time, we performed an initial computational study to
determine the values of these two factors. We tried 0.05,
0.1 and 0.2 for the linearization constant, and 20, 30 and
40 for the scale factor. We solved a number of problems
with these factor combinations. Based on the results of the
initial runs, we found that the difference between differ-
ent linearization constants was insignificant. As the scale
factor increases, the solution quality increases. We there-
fore selected 0.2 for the linearization constant and 40 for
the scale factor. With these values, the average number
of breakpoints in the approximation to the manufactur-
ing cost function was 3.8 for the time-indexed IP model
and 5.4 for the proposed algorithm (the difference be-
ing accounted for by the discretization used in the IP
model).

6.1. Predictive scheduling

For each combination of the levels of N, M, TF, RDD and
(τi/εi ) (3 × 3 × 3 × 3 × 2), we generated five replications
resulting in 810 randomly generated problems. These prob-
lems were solved with both the time-indexed IP model and
the proposed two-stage algorithm.

First, we report the percentage of total weighted earli-
ness, tardiness and manufacturing cost in the total cost. The
minimum percentage of total weighted earliness to the to-
tal cost is 0.13%. The maximum percentage is 33.41%. The
percentage of total weighted tardiness changes between 0
and 96.41%. The percentage of manufacturing cost is be-
tween 3.44 and 94.38%. These results show that none of
the objective function terms dominate in the total objective
function.

In most studies in the literature, the processing times are
assumed to be fixed at and equal to the most economical
processing times in terms of machining and tooling costs.
As pointed out previously, this might not be the best al-
ternative for scheduling-related criteria. Controllable pro-
cessing times provide flexibility in finding solutions with
better overall objective function values. To demonstrate
the value of controllable processing times, we first solved
the 810 test problems with the proposed time-indexed IP
model using both fixed processing times based on the up-
per (pu) and lower (pl) bound values and the controllable
processing times denoted as (p). We used the percentage
improvement of the objective function found by using con-
trollable processing times over fixed processing times for
comparison. In Table 3, the minimum, average and max-
imum percentage improvements can be seen. The prob-
lems for which the optimal IP solution cannot be obtained
by CPLEX are not included in these results. For (30, 3)
problems, the average percentage improvement achieved
by using controllable processing times instead of using pu
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Table 3. Effect of the controllable processing times

(pu − p)/pu (pl − p)/pl

(N, M) Minimum Average Maximum Number Minimum Average Maximum Number

(30, 3) 0.04 63.5 97.5 84 9.0 62.6 93.4 90
(30, 5) 0.0 56.2 96.9 88 9.8 64.1 93.9 90
(30, 10) 2.9 38.2 90.2 90 17.0 68.0 94.4 90
(50, 3) 4.2 50.0 97.2 43 4.5 57.8 94.4 89
(50, 5) 2.3 51.5 98.4 57 7.3 62.7 94.9 87
(50, 10) 2.9 45.3 97.0 76 11.8 69.1 95.9 88
(100, 3) 0 2.3 42.0 89.8 68
(100, 5) 43.3 43.3 43.3 1 3.9 43.2 91.4 63
(100, 10) 5.1 30.0 72.3 3 7.7 38.5 84.3 39

is 63.5%. The average is taken over the 84 runs out of 90
that were solved optimally by CPLEX. The improvement is
62.6% when controllable processing time is used instead of
pl.

In order to show that the linear relaxation of the time-
indexed formulation gives a tight lower bound, we com-
pare the LP relaxation solution and integer solution. The
minimum, average and maximum percentage gap between
the linear relaxation solution (LP) and IP solution can be
seen in Table 4. The left half of the table shows the results
only for those problems that the IP model could solve to
optimality. For this half of the table, the percentage gap
is between the optimal solution (IP) and the linear relax-
ation solution (LP). In the right half of the table, results
are presented for problems the IP model cannot solve to
optimality (within a 1800 second time limit), but for which
a feasible solution was found. Thus, for these problems, the
best feasible solution (FEAS) is used for comparisons. We
also note that for some problems, CPLEX could not find
a feasible solution. For example, 39 problems were solved
optimally for the 100 job, 10-machine problems and the
average percentage gap is 0.05%. A feasible solution was
found within the given time limit for 22 problems and the
percentage gap is 0.55%. CPLEX was unable to find a fea-
sible solution to the IP model within the time limit for 29

problems. We can see from the results that the percentage
gaps are very small. This shows that the solution obtained
by solving the LP relaxation can be a good starting point
to find feasible solutions.

In order to compare the performance of the proposed
algorithm with IP, we look at the percentage gap of the
solutions over the best solution. The best solution can be
found by either the proposed algorithm or IP, since the
proposed MCNF model is no longer restricted to consider
only discrete processing time alternatives as opposed to the
IP model. Table 5 shows the minimum, average and maxi-
mum percentage gap of solutions over the best solution and
number of best solutions found in 90 runs for each job, ma-
chine (N, M) pair. For (30, 3) problems, the average gap for
the algorithm is 6.27% and it is 1.64% for IP. The proposed
algorithm finds the best solution in 42 problems among the
90 problems. IP finds the best solution in 48 problems. Even
though the number of problems with the best solution are
close to each other for both methods, the percentage gaps
are smaller for IP. The variability in solution quality for the
proposed algorithm is higher.

Table 6 shows the minimum, average and maximum com-
putational times in seconds for the proposed algorithm and
IP. The average computation times for the proposed algo-
rithm are significantly better than the ones for IP. Most of

Table 4. Percentage gap between integer solution and LP relaxation solution of the time-indexed IP model

I P−LP
LP

F E AS−LP
LP

(N, M) Minimum Average Maximum Problems Minimum Average Maximum Problems

(30, 3) 0 0.22 1.57 90
(30, 5) 0 0.14 0.75 90
(30, 10) 0 0.06 0.24 90
(50, 3) 0 0.22 1.89 89 0.25 0.25 0.25 1
(50, 5) 0 0.17 0.67 87 0.12 0.36 0.84 3
(50, 10) 0 0.12 0.69 88 0.06 0.15 0.23 2
(100, 3) 0.002 0.08 0.43 68 0.10 0.72 1.58 22
(100, 5) 0.003 0.07 0.31 63 0.05 2.08 9.62 27
(100, 10)∗ 0.003 0.05 0.21 39 0.02 0.55 4.93 22

∗29 problems unsolved by IP.
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Table 5. Percentage gap of the solutions for the proposed algorithm and time-indexed IP model over the best solution and number
of best solutions in 90 runs for each (N, M) pair

ALG IP

Number of Number of
(N, M) Minimum Average Maximum best solutions Minimum Average Maximum best solutions

(30, 3) 0 6.27 58.6 42 0 1.64 18.03 48
(30, 5) 0 13.82 125.88 32 0 0.49 4.96 58
(30, 10) 0 9.34 92.84 49 0 0.63 9.83 42
(50, 3) 0 4.64 55.53 52 0 2.79 37.78 38
(50, 5) 0 8.2 74.47 37 0 1.45 16 53
(50, 10) 0 11.48 65.04 32 0 1.31 25.1 58
(100, 3) 0 1.6 16.51 59 0 3.42 24.79 31
(100, 5) 0 3.94 27.4 47 0 1.86 18.6 43
(100, 10)∗ 0 2.23 25.46 58 0 1.18 9.02 32

∗Two problems cannot be solved by LP relaxation and 29 problems cannot be solved by IP in the 1800-second time limit.

the CPU time spent by the algorithm is for the solution of
the LP relaxation.

6.2. Reactive scheduling

Our reactive scheduling computational study considered
machine breakdown as the disruption on the shop floor.
The breakdown could occur at any one of the machines at
any time on the planning horizon, T. The machine break-
down time was selected randomly from the interval UN∼[1,
0.3T]. We deliberately selected the breakdown time from
the earlier periods so that a higher number of jobs needed
to be rescheduled and hence the rescheduling problems
were not trivial. Furthermore, the breakdown duration
may be either short or long. The duration was selected
randomly from the distribution UN∼[0.1T, 0.3T] for the
short-duration case and from the distribution UN∼[0.5T,
0.7T] for the long duration case. Before the breakdown
time, the initial schedule was followed, and the breakdown
time was not known in advance. When the breakdown oc-
curs, we assumed that we could determine the duration of
the down time immediately. The 781 problems considered
and solved in the previous section were solved for the short
and long breakdown duration cases. The schedule found

by solving the IP model (in the predictive scheduling exper-
iments) was used as the initial schedule. The 29 problems
where the IP model could not find a feasible solution in
1800 seconds were not solved in this part of the study.

We considered three rescheduling methods for the pur-
poses of comparison. The first one was a static pushback
strategy, also called the Right-Shift (RS) algorithm, which
is the most commonly cited method in the literature. In this
method, when a machine breakdown occurs, the job se-
quences on each machine are kept the same, only the start-
ing times on the failed machine are shifted to the right (in
a Gantt chart representation) as far as necessary to accom-
modate the disruption. The second method (RS-MCNF)
was a partial rescheduling of the jobs on the failed machine.
The initial sequence of the jobs was not changed and the
MCNF′ model was solved to determine the starting and
processing times of the parts. Thus the jobs on the failed
machine were right-shifted, then the MCNF′ model was
used to recalculate the processing times to minimize cost.
The third method entailed rescheduling all remaining jobs
after the breakdown using the methods proposed in this
paper. We tested both the proposed LP-relaxation-based
two-stage algorithm (ALG) and the time-indexed IP model
(IP′) for this purpose.

Table 6. Average CPU times in seconds for the proposed algorithm and time-indexed IP model

ALG IP

(N, M) Minimum Average Maximum Minimum Average Maximum

(30, 3) 2 11 42 5 43 399
(30, 5) 3 17 48 5 59 631
(30, 10) 4 23 64 10 46 305
(50, 3) 4 35 153 9 155 1811
(50, 5) 6 48 154 11 240 1832
(50, 10) 13 68 238 21 239 1852
(100, 3) 95 422 1048 95 795 1922
(100, 5) 113 595 2026 115 1006 1973
(100, 10)∗ 175 776 2021 278 1436 1991

∗Two problems cannot be solved by LP relaxation and 29 problems cannot be solved by IP in the 1800-second time limit.
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Table 7. Percentage improvements over the RS method in terms of efficiency and stability

RS-MCNF ALG IP′

Short Long Short Long Short Long

(N, M) Efficiency Stability Efficiency Stability Efficiency Stability Efficiency Stability Efficiency Stability Efficiency Stability

(30, 3) 50 75 41 52 62 93 77 96 63 94 77 96
(30, 5) 41 73 32 50 51 92 67 96 53 93 68 97
(30, 10) 27 70 23 43 34 92 50 96 36 97 52 98
(50, 3) 54 78 46 56 65 84 81 94 65 85 81 93
(50, 5) 48 76 36 49 60 85 76 94 61 90 77 95
(50, 10) 31 64 20 35 42 81 61 93 45 91 62 97
(100, 3) 57 83 49 58 65 91 82 96 66 92 82 96
(100, 5) 52 83 46 60 58 83 75 95 59 84 75 95
(100, 10) 35 80 32 53 39 70 57 92 41 88 58 95

We considered the sum of earliness, tardiness and manu-
facturing costs as the efficiency measure, and the absolute
difference between the completion times in the initial and fi-
nal schedules as the stability measure. In order to show the
performance of the proposed rescheduling methods, RS-
MCNF, ALG and IP′, over the RS method, the percentage
improvements in terms of both the efficiency and stabil-
ity are reported. The percentage improvement of a method
over the RS method in terms of efficiency or stability is
calculated as [efficiency (stability) of RS − efficiency (sta-
bility) of the other method)/efficiency (stability) of RS]. In
Table 7, the average percentage improvements are shown.
Each value in the table is the average of 90 values for all
(N, M) values except the (100, 10) problems for the IP′
method. The values for (100, 10) problems are the average
of 61 values for the IP′ method since 29 problems could not
be solved with IP′ in the given time limit.

According to the average percentage improvements in ef-
ficiency, “partial rescheduling” (RS-MCNF) gives signifi-
cantly better objective function values than the RS method.
When the MCNF model is solved for the fixed sequence of
parts, the sum of earliness and tardiness decreases at the
expense of increased manufacturing costs. Consequently,
a better objective function value is found, which reflects
what one might expect in practice. For example, when the
breakdown duration is short, RS-MCNF yields a 50% im-
provement in the average cost for the (30, 3) problems. This
clearly shows that we can obtain solutions better than the
RS method by changing only processing times (and without
changing the sequence of jobs or rerouting jobs to other ma-
chines). The average percentage improvement for the (30,
3) problems increases to 62% when the proposed algorithm
is used and to 63% when the time-indexed IP model is used.
The rescheduling of all jobs with the proposed algorithm
and the time-indexed IP model gives the best efficiency val-
ues for all problem types. The percentage improvement in
efficiency over all problems is 61.9% for the proposed al-
gorithm and 63% for the time-indexed IP′ model. The per-
centage of idle time in the initial schedule should affect the

performance of the algorithms. For a fixed tardiness fac-
tor, the idle time percentage increases as the range of due
dates increases, and the percentage improvement of the
algorithms over the RS method decreases. When there is
enough idle time in the initial schedule, a simple algorithm
such as the RS method does not increase the objective func-
tion value too much. When the tardiness factor increases,
the idle time percentage decreases. However, as the number
of tardy jobs increases due to tighter due dates, the process-
ing times of the parts are already compressed in the initial
schedule in order to decrease the total weighted tardiness
value. In such a low idle time case, most of the processing
times cannot be (inexpensively) decreased any further and
the percentage improvement in efficiency decreases.

The stability measure shows the difference between the
initial and final schedules in terms of completion times.
As the stability measure decreases, the final schedule ap-
proaches the initial schedule. The experimental results indi-
cate that all algorithms give better stability measures than
the RS method. The proposed algorithm and the time-
indexed IP′ model give the best stability measures. There is
no significant difference between the proposed algorithm
and the IP′ model.

The average computation times, which are very impor-
tant in reactive scheduling, can be seen in Table 8 for all
algorithms. The average CPU times of the RS and RS-
MCNF algorithms are very small. The rescheduling of all
affected jobs requires more computation time. The time-
indexed formulation, which is solved by CPLEX, requires
the most CPU time.

The computational results demonstrate that the pro-
posed algorithm and the MCNF model can be used ef-
ficiently to solve reactive scheduling problems with con-
trollable processing times. The controllable processing
times provide flexibility in finding solutions with bet-
ter efficiency and stability measures. The proposed algo-
rithms can solve these problems in very reasonable com-
putation times, which is an important issue in reactive
scheduling.
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Table 8. Average CPU times (in seconds)

RS RS-MCNF ALG IP′

(N, M) Short Long Short Long Short Long Short Long

(30, 3) 0.014 0.015 0.012 0.013 3 4 27 15
(30, 5) 0.014 0.016 0.011 0.014 3 5 9 13
(30, 10) 0.016 0.016 0.012 0.014 4 6 8 12
(50, 3) 0.019 0.020 0.020 0.022 10 12 30 48
(50, 5) 0.019 0.021 0.018 0.021 12 16 84 59
(50, 10) 0.024 0.026 0.022 0.024 16 20 41 62
(100, 3) 0.048 0.058 0.049 0.063 147 172 439 557
(100, 5) 0.052 0.065 0.049 0.064 167 195 551 565
(100, 10) 0.059 0.073 0.050 0.070 140 184 469 661

7. Conclusions

In this study, we consider the problem of scheduling
with controllable processing times and earliness–tardiness
penalties. The aim is to determine the processing times
and schedule for jobs on unrelated parallel CNC machines.
We consider the objective of minimizing the manufactur-
ing cost, and the total weighted earliness and tardiness. To
the best of our knowledge, the parallel-machine scheduling
problem that considers job-dependent earliness and tardi-
ness penalties, idle times, distinct due dates and control-
lable processing times simultaneously, is not considered in
the literature.

We propose a time-indexed IP model with discrete pro-
cessing time alternatives for jobs. The model allocates the
jobs to machines, and determines starting times and pro-
cessing times. The time-indexed formulation requires dis-
crete approximations, and has the disadvantage of size.
A LP-relaxation-based algorithm is proposed to solve the
problem in reasonable computation times. First, the linear
relaxation of the time-indexed model is solved and the so-
lution of the relaxation with partial machine, time period
and processing time assignments is used to find a sequence
for parts on each machine. Then, a non-linear program-
ming model is proposed to solve the optimal idle time in-
sertion problem (timetabling problem) for determining the
start, finish and processing times of parts on each machine.
The non-linear model is converted to a minimum-cost net-
work flow model by piecewise linearization of the convex
manufacturing cost. This allows us to solve the timetabling
problem with controllable processing times quite efficiently.

The models and algorithms presented in this paper can
have significant impact in reactive scheduling. First, our
model considers both earliness and tardiness, an important
consideration in reactive scheduling. The (predictive) mas-
ter schedule serves as the basis for planning many other
activities including the arrival of raw materials and parts
from upstream processing on one end and the scheduling of
downstream processing on the other. Deviations (earliness
or tardiness) from the original schedule can be expected to
increase cost. The second reason we believe our approach

is important is that it reflects the current practice of plant
and line managers. A common approach to disruptions
is in fact to reduce processing times through additional
resources or changes in machining conditions. Thus, our
approach formalizes existing practice. The computational
results also show the “good” performance of the proposed
rescheduling methods in terms of both the efficiency and
stability.
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