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GAIN-LOSS PRICING UNDER AMBIGUITY OF MEASURE ∗
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1

Abstract. Motivated by the observation that the gain-loss criterion, while offering economically
meaningful prices of contingent claims, is sensitive to the reference measure governing the underlying
stock price process (a situation referred to as ambiguity of measure), we propose a gain-loss pricing
model robust to shifts in the reference measure. Using a dual representation property of polyhedral
risk measures we obtain a one-step, gain-loss criterion based theorem of asset pricing under ambiguity
of measure, and illustrate its use.
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1. Introduction and background

The problem of pricing financial instruments called “contingent claims” is one of the fundamental problems of
financial mathematics. When a financial market is not complete, and yet does not allow arbitrage opportunities
(or free lunches), it is well known that there exists a set of “risk neutral” probability measures that make the
(discounted) prices of traded instruments martingales. A noticeable feature of the set of risk neutral measures
is that the value of the cheapest portfolio to dominate the pay-off at maturity of a contingent claim coincides
with the maximum expected value of the (discounted) pay-off of the claim with respect to this set. This value,
called the super-hedging price, allows the seller to assemble a portfolio that achieves a value at least as large
as the pay-off to the claim holder at the maturity date of the claim in all non-negligible events. (If the claim is
attainable, then the smallest price to super-hedge is the hedging price, and its expected value does not depend on
the chosen risk neutral measure, so the previous statement still applies.) The super-hedging price is the natural
price to be asked by the writer of a contingent claim and, together with the bid price obtained by considering
the analogous problem from the point of view of the buyer, it constitutes an interval which is sometimes called
the “no-arbitrage price interval” for the claim in question.
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A writer may nevertheless be induced for various reasons not to ask the whole super-hedging price to sell a
claim with pay-off FT ; see e.g., chapters 7 and 8 of [16] for a discussion and examples showing that the super-
hedging price may be too high. In such a case, he/she will not be able to set up a super-hedging portfolio, which
implies that he/she will face a positive probability of “falling short”, i.e., his/her portfolio will take values VT

smaller than those of the claim on a non-negligible event. Thus, the writer will need to choose his/her investment
strategy according to some optimality criterion to be decided. The gain-loss pricing criterion of Bernardo and
Ledoit [3] that we use in the present paper suggests to choose the portfolio which gives the best value of the
difference of expected positive final positions and a parameter λ (greater than one) times the expected negative
final positions, E[(VT −FT )+]−λE[(VT −FT )−] , aimed at weighting “losses” more than “gains”. This criterion
gives rise to a new concept that is more general than the ordinary arbitrage (or free lunch), the “λ gain-loss ratio
opportunity”, i.e., a portfolio which can be set up at a negative price but yields a positive value for the difference
between gains and “λ-losses”. As for the maximum and minimum no-arbitrage prices, it is possible to determine
the maximum and minimum prices which do not introduce λ gain-loss opportunities in the market. Thus, a new
price interval (the “λ gain-loss price interval”) is determined, generally contained in the no-arbitrage interval
(thus more significant from an economical point of view). Clearly, such a price interval depends on the “real
world” reference probability measure P via the expected value, i.e., one may obtain completely different pricing
intervals using two different, but equivalent reference measures, as we shall illustrate with a simple example
from [3,23]. The dependence of gain-loss price bounds on the underlying probability distribution is referred to as
“ambiguity of measure” [14]. This kind of sensitivity to the choice of measure is not an issue in the no-arbitrage
interval since arbitrage free price bounds in incomplete markets remain unchanged even if one works with
another probability measure as long as equivalence between different measures is preserved. In the light of these
remarks, the main purpose of the present paper is to give a “robust” version of the gain-loss pricing approach
which can deal with ambiguity in the probability distribution by “immunizing” the price bounds against shifts
in probability distribution of the assets. This immunization is close in spirit to the classical problem of moments
where the reader is referred to [22,30] and to the bibliography therein. For recent applications, in finance and
stochastic programming, of ambiguity in probability distribution with moment constraints, we cite [4,5,11,13,29].
Ambiguity in option valuation from a different perspective (ambiguity in the equivalent martingale measures in
arbitrage free pricing) is discussed in Cont [9].

In a recent paper that inspired the present one, Korf [20] gave a one-step variant of the fundamental the-
orem of asset pricing (FTAP) in mathematical finance [17,18] (in the context of arbitrage free pricing) using
stochastic programming duality theory and a novel constraint qualification called “direction free feasibility”. In
Theorem 4.1 of the present paper we give a result in the spirit of Korf’s FTAP result for robust Bernardo-Ledoit
gain-loss price bounds in the face of shifts in probability measure. As a by-product of our analysis we also obtain
a result (Cor. 4.6) analogous to this one-step fundamental asset pricing theorem in the framework of gain-loss
pricing of Bernardo and Ledoit (for a fixed measure P ) which yields tighter bounds for contingent claim pricing
in incomplete markets.

We obtain our results in an infinite state probability setting, and using ideas from stochastic minimax
programming [28] and from polyhedral risk measures [12]. For an in-depth treatment of risk measures in finance
under discrete-time models, we direct the reader to the book by Föllmer and Schied [16], the recent paper by
Ben-Tal and Teboulle [2], and to the papers by Ruszczyński and Shapiro [25,26].

The organization of the paper is as follows. In Section 2, we review the result of Korf [20] and we give some
other key observations useful for our purposes. We define the gain-loss pricing problems in Section 3 along
with a numerical example to motivate the need to acknowledge dependence of the resulting price bounds on
the probability measure. In Section 4, we propose a version of the gain-loss pricing approach that allows an
immunization of the bounds to the choice of probability measure, and discuss its consequences. We propose a
variant of the pricing scheme based on Kullback-Leibler relative entropy in Section 5, and we illustrate its use
for option pricing without intermediate trading. We conclude in Section 6 with a summary and future research
directions.
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2. The one-step FTAP

Let Z0 ∈ R
J+1
+ and ZT ∈ L1

+(Ω,F , P,RJ+1) denote the vector of asset prices at times t = 0 and t = T ,
respectively, where (Ω,F , P ) is assumed to be a P -complete underlying probability space. It is assumed without
loss of generality that the first asset is the risk-free asset and that its price is equal to one at times t = 0 and
t = T . A contingent claim is a contract to pay FT ∈ L1(Ω,F , P,R) in the future at time t = T . The writer of
the claim collects a price (premium) F0 ∈ R+ in exchange for the claim. With this endowment F0 , the writer
can commit to a portfolio Θ ∈ R

J+1 today at time t = 0 so as to cover his/her cash outlay at time t = T . The
portfolio problem of the risk-neutral writer is the following Pf

min −E[ZT · Θ]
s.t. Z0 · Θ ≤ F0

ZT · Θ ≥ FT , P − a.s.

where ZT · Θ denotes the usual (Euclidean) inner product of vectors ZT and Θ. It was assumed in Korf [20]
that F0 and FT were such that the problem Pf was feasible.

Korf [20] defined a free lunch portfolio (that can be interpreted as essentially a form of arbitrage opportunity)
as a portfolio Θ̃ ∈ R

J+1 satisfying the conditions

Z0 · Θ̃ ≤ 0

ZT · Θ̃ ≥ 0, P − a.s.

P (ZT · Θ̃ > 0) > 0.

The market is said to offer no free lunches if no such Θ̃ exists. The Lagrangian dual problem Df to Pf is
computed to be the problem1

max E[FT yT ] − F0y0
s.t. E[ZT (1 + yT )] = y0Z0

y0 ≥ 0,
yT ≥ 0, P − a.s.

where yT ∈ L∞(Ω,F , P,R). Korf proved that if the market has no free lunches, then the problem Pf satisfies
the direction-free feasibility constraint qualification, and gave the following theorem (see also Shapiro [27] for a
more general reference on duality in convex semi-infinite optimization).

Theorem 2.1 (Korf [20]). The following are equivalent
(a) Pf is bounded;
(b) Df is feasible;
(c) the market admits no free lunches;
(d) there exists an equivalent martingale measure for the market price process.

The feasibility of the dual problem Df is equivalent to the price process being a martingale under some
measure Q equivalent to P given by

Q(E) =
∫

E

1 + yT (ω)
y0

P (dω)

for a dual feasible pair (y0, yT ).

1Korf’s dual has the signs in the objective function reversed, which must be a typographical error in [20].
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The above theorem established that boundedness of Pf corresponds to feasibility of Df . We also need to
deal with the feasibility of Pf , which corresponds to an initial payment F0 that is at least as large as the
optimal value of the following problem Pfeas

min ν
s.t. Z0 · Θ ≤ ν

ZT · Θ ≥ FT , P − a.s.

In other words, the optimal value in Pfeas gives the super-hedging price. As a result of weak duality, the optimal
value in Pfeas is at least as large as the optimal value of the dual problem Dfeas

max E[FT ζT ]
s.t. E[ZT ζT ] = Z0

ζT ≥ 0, P − a.s.

where ζT ∈ L∞(Ω,F , P,R). We can equivalently express this observation as saying that F0 should be at least
as large as the optimal value in Dm

max E
Q[FT ]

s.t. E
Q[ZT ] = Z0

dQ
dP

≥ 0.

We can also show that if Pfeas has an optimal solution, the optimal values val(Pfeas), val(Dfeas) of the respective
problems Pfeas and Dfeas are equal under the assumption of no free lunches using Proposition 3.4 of [27].
According to this result, under two technical requirements (satisfied in our setting, see [27]) if the set Sol(Pfeas)
of optimal solutions to Pfeas is of the form

Sol(Pfeas) = A+ L,

where A is a non-empty bounded subset of R
J+1 and L is a linear subspace of R

J+1 , we have val(Pfeas) =
val(Dfeas).

Proposition 2.2. If Pfeas has an optimal solution, and the market admits no free lunches then val(Pfeas) =
val(Dfeas) .

Proof. We verify that Sol(Pfeas) has indeed the desired form. Let Θ∗ be an optimal solution to Pfeas . Define
A = {Θ∗} , a bounded subset of R

J+1 and L = {Θ|Z0 · Θ = 0, ZT · Θ = 0, P − a.s.} , a linear subspace of
R

J+1 . It is clear that A+L ⊆ Sol(Pfeas). Now, assume Θ2 is another optimal solution to Pfeas , which implies
that Z0 · (Θ2 − Θ∗) = 0. If ZT · (Θ2 − Θ∗) ≥ 0, P − a.s. with P (ZT · (Θ2 − Θ∗) > 0) > 0, then Θ2 − Θ∗

is a free lunch portfolio, which is a contradiction. By the same token, if ZT · (Θ2 − Θ∗) ≤ 0, P − a.s. with
P (ZT · (Θ2 − Θ∗) < 0) > 0, then Θ∗ − Θ2 is a free lunch portfolio, which is again a contradiction. Hence, we
must have ZT · (Θ2 − Θ∗) = 0, P − a.s., which implies Θ2 − Θ∗ ∈ L . Therefore, Sol(Pfeas) ⊆ A + L , which
completes the verification. Now, the result is a consequence of Proposition 3.4 [27]. �

A similar development can be given for the risk-neutral buyer’s portfolio problem

min E[ZT · Θ]
s.t. Z0 · Θ ≥ F0

ZT · Θ ≤ FT , P − a.s.

which is the opposite of that of the risk-neutral writer.
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It is well-known that the super-hedging price, while offering full protection, may be too high from a practical
point of view; see e.g., [16], Example 7.21. It is also pointed out in Cont [9] that the price bounds obtained by
solving the writer and buyer problems (the arbitrage free price bounds) can be quite wide, and very different
from the prices quoted for buying and selling liquidly traded options in the market, which makes these bounds
of questionable value in pricing options that are not liquidly traded in the market, e.g., exotic options for which
the value has to be computed using a pricing model.

3. Gain-loss pricing

Bernardo and Ledoit [3] proposed a pricing framework where attractiveness of an investment portfolio is
measured by an expected gain to expected loss ratio, and high gain-loss ratio opportunities are ruled out. The
limitation imposed on the gain-loss ratio translates in the pricing space into a limitation on the pricing kernels
and leads to narrower pricing bounds in incomplete markets. In this section we prepare the ground to obtain an
analogue of Theorem 2.1 using gain-loss ratios as a special case of a slightly more general result under ambiguity
of measure.

Let us fix λ > 1. We will say that a portfolio Θ∗ ∈ R
J+1 is a λ gain-loss opportunity if

Z0 · Θ∗ ≤ 0

E[(ZT · Θ∗)+] − λE[(ZT · Θ∗)−] > 0,
where (.)+ = max(., 0) and (.)− = −min(., 0). Note that every free lunch portfolio is also a λ gain-loss
opportunity, and for λ = +∞ every gain-loss opportunity portfolio is a free lunch portfolio. We say that
the market admits no λ gain-loss ratio opportunity if Θ∗ satisfying the above conditions cannot be found, or
equivalently if the following optimization problem (over Θ)

max E[(ZT · Θ)+] − λE[(ZT · Θ)−]
s.t. Z0 · Θ ≤ 0

has optimal value zero.
Now, the portfolio problem of the gain-loss ratio writer is the following Pg(λ)

min λE[(ZT · Θ − FT )−] − E[(ZT · Θ − FT )+]
s.t. Z0 · Θ ≤ F0.

The gain-loss ratio writer does no longer guarantee that he/she will meet the obligations from the contingent
claim P -almost surely. However, he/she wants to minimize the potential losses that would be incurred should a
shortfall occur using a gain-loss ratio of λ . The economic interest in this problem lies in the fact that the writer
may settle for a smaller premium F0 in selling the claim than in Section 2. The magnitude of F0 depends of
course on the risk aversion of the writer that he/she controls via his/her choice of λ . Therefore, the indifference
price of the writer is obtained at those values of F0 where the problem Pg(λ) is bounded by zero from below.

Similarly, the buyer’s portfolio problem, which is the opposite of the writer is

max E[(FT − ZT · Θ)+] − λE[(FT − ZT · Θ)−]
s.t. Z0 · Θ ≥ F0.

As the writer’s problem allows an economically more appealing and intuitive interpretation we will focus in the
rest of the paper on the writer’s problem. Needless to say, all the developments of the paper also apply to the
problem of the buyer.
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We will derive the dual problem Dg(λ) corresponding to Pg(λ) as a special case of a more general problem
in Section 4. Here we state directly the dual problem Dg(λ) as

max E[ζFT ] − y0F0

s.t. E[ζZT ] = y0Z0

y0 ≥ 0
ζ ∈ L∞(Ω,F , P,R)
ζ ∈ [1, λ] P − a.s.

We observe that when λ = +∞ , an optimal solution to Df is feasible in the above problem using the transfor-
mation ζ = yT + 1, and the objective function values of the two problems are equal up to a constant, which is
equal to E[FT ] . Using the above dual problem we will obtain a result similar to Theorem 4.1 in Section 4 as
a corollary to a more general result. Note that feasibility of the dual problem Dg(λ) is equivalent to the price
process being a martingale under some measure Q equivalent to probability measure P given by

Q(E) =
∫

E

ζ(ω)
y0

P (dω)

for a dual feasible couple (y0, ζ).
For numerical computation, one may resort to the case when Ω is a finite set, i.e., Ω = {ω1, . . . , ωn} ,

after a suitable discretization. In this case, the measure P is identified with a n-vector p = (p1, . . . , pn), and
random variable FT can be viewed as an n-vector F = (F1, . . . , Fn) while each component Zi

T of ZT is now
identified with an n-vector Zi = (Zi

1, . . . , Z
i
n) for i = 1, . . . , J + 1. By our assumption, the first component

Z1
T corresponds to the vector with all the components equal to one. In this case, it is easy to see that we are

facing a linear programming problem over the variables y0 and y�, � = 1, . . . , n

max
n∑

�=1

y�F� − y0F0

s.t.
n∑

�=1

Zi
� y� = y0Z

i
0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ y� ≤ λp�, ∀� = 1, . . . , n.

Example 3.1. Consider the following discrete state-space two-period example from [3] where an incomplete
market with a stock and a bond is given. Both trade at some price today while the stock is priced in three
equally probable states the next period, i.e., Ω = {ω1, ω2, ω3} . Trading takes place only today. Both the stock
and the bond are valued at one today. The stock price in the next period is given by (2, 1, 0) in states 1, 2,
and 3 while the bond is valued at one at all states in the next period. We are interested in pricing a call option
written on the stock with strike price equal to one, and maturing at the next period. The no-arbitrage pricing
interval obtained by solving the writer and buyer portfolio problems is the interval (0, 1/2). In particular, the
upper value 1/2 is the smallest value of F0 such that the problem Pf has a feasible solution.

Now, turning to problem Pg with λ = 2 for the writer, we can compute the “no λ gain-loss ratio opportunity”
interval to be (1/4, 2/5). In particular, the value of 2/5 is the indifference price of the writer at level λ = 2
which results in an optimal value of zero in both the primal and dual problems Pg(λ) and Dg(λ). The dual
variable (measure) ζ (which is now a three-dimensional vector) has optimal values (2, 1, 2) with y0 = 5/3,
which corresponds to a martingale measure Q with (Q(ω1), Q(ω2), Q(ω3)) equal to (2/5, 1/5, 2/5).
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4. Ambiguity of measure

In the illustrative example of the previous section, it was assumed that all states of nature were equally likely,
which can be considered as a reference measure. If we pass to an equivalent, but different measure and assign
probabilities (1/6, 2/3, 1/6) to the three states of nature, the “no λ gain-loss ratio opportunity” interval shifts
to (1/10, 1/4), which is different from the previous interval while the no-arbitrage bounds (0, 1/2) remain the
same since they do not depend on the underlying measure. This assertion that no-arbitrage bounds do not
change remains valid provided that the new underlying measure is equivalent to the reference measure (as long
as the super-hedging requirement is that the portfolio value dominates the claim almost surely), as is the case
in this small example. In the light of this simple example, it is a worthwhile undertaking to investigate a pricing
model which alleviates this sensitivity of the “no λ gain-loss ratio opportunity” interval to the underlying
measure. In this section we define an extension of the gain-loss pricing framework which remains robust in the
face of shifts in the reference measure P using a min-max approach. In our subsequent analysis, we adopt the
notation of Shapiro and Ahmed [28].

Let us denote by X the (linear) space of all finite signed measures on (Ω,F). We say that a measure μ ∈ X
is non-negative and write μ � 0, if μ(A) ≥ 0 for any A ∈ F . For two measures μ1, μ2 ∈ X we write μ2 � μ1

if μ2 − μ1 � 0. That is, μ2(A) ≥ μ1(A) for any A ∈ F . We say that μ is a probability measure if μ � 0 and
μ(Ω) = 1. Consider now the set

M = {μ ∈ X : (1 − ε1)P ∗ 	 μ 	 (1 + ε2)P ∗} (4.1)

for some reference probability measure P ∗ , and numbers ε1 ∈ [0, 1] and ε2 ≥ 0. Let P denote the set of all
probability measures from the set M .

Let us again consider a fixed λ > 1. We will say that a portfolio Θ∗ ∈ R
J+1 implies a λ gain-loss ratio for

reference measure P ∈ P if
Z0 · Θ∗ ≤ 0

E
P [(ZT · Θ∗)+] − λE

P [(ZT · Θ∗)−] > 0.

We say that the market admits no “λ gain-loss ratio opportunity under measure ambiguity” if Θ∗ satisfying
the above conditions cannot be found for any of the probability measures in P , or equivalently if the following
optimization problem P1

max min
P∈P

E
P [(ZT · Θ)+] − λE

P [(ZT · Θ)−]

s.t. Z0 · Θ ≤ 0

has optimal value zero.
We are now focusing on the writer’s portfolio problem Pgam(λ) over the variables Θ ∈ R

J+1

min ψ(Θ)
s.t. Z0 · Θ ≤ F0

where the function ψ is defined by

ψ(Θ) = max
P∈P

λE
P [(ZT · Θ − FT )−] − E

p[(ZT · Θ − FT )+]. (4.2)

Notice that ψ is a convex function of Θ. Following [28] we can pose Pgam(λ) as

min E
P∗

[λ(ZT · Θ − FT )− − (ZT · Θ − FT )+ + Lε1,ε2(λ(ZT · Θ − FT )− − (ZT · Θ − FT )+ − γ)]
s.t. Z0 · Θ ≤ F0
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over the variables Θ and γ ∈ R and where the function Lε1,ε2 is defined as

Lε1,ε2(a) =
{ −ε1a if a ≤ 0

ε2a if a > 0.

However, this approach complicates the passage to a dual problem. We will obtain a Lagrangian dual problem
for Pgam(λ) that is useful for our purposes using Lemma 4.1 below, which gives a dual representation of the
objective function; see [24] for background on convex duality in infinite dimensional spaces.

Lemma 4.1. Let Z ∈ L1(Ω,F , P,R) and λ > 1 . Then, we have

λE[(Z)−] − E[(Z)+] = sup{−E[ηZ] | η ∈ L∞(Ω,F , P,R), η ∈ [1, λ] a.s.}. (4.3)

Proof. Using Definition 2.2 of [12] we can write λE[(Z)−] − E[(Z)+] as

λE[(Z)−] − E[(Z)+] =

inf{0 · y1 + E[λy(2)
2 − y

(1)
2 ] : y1 ∈ {0}, y1 + y

(1)
2 − y

(2)
2 = Z a.s., y2 ∈ R+ × R+ a.s.,

y2 ∈ L1(Ω,F , P,R)}.
Here, in the notation of [12] we have D1 = R and D2 is the interval [1, λ] by a simple computation. Then doing
calculations similar to those in Example 2.10 of [12], we have that the dual representation (2.3) of Theorem 2.4
of [12] holds. �

Using the result of this lemma we rewrite the problem of the writer as

min
Θ

max
η ∈ L∞(Ω,F , P,R), η ∈ [1, λ] a.s.

P∈P,y0≥0

−E[η(ZT · Θ − FT )] + y0(Z0 · Θ − F0).

Interchanging the min and the max the Lagrangian dual of the problem Pgam(λ) is the following

max
η ∈ L∞(Ω,F , P,R), η ∈ [1, λ] a.s.

P∈P,y0≥0

min
Θ

−E[η(ZT · Θ − FT )] + y0(Z0 · Θ − F0).

By evaluating the inner minimization over Θ we obtain the dual problem Dgam(λ) expressed as

max E
P [ηFT ] − y0F0

s.t. E
P [ηZT ] = y0Z0

y0 ≥ 0
η ∈ L∞(Ω,F , P,R)
η ∈ [1, λ] P − a.s.
P ∈ P .

It is easy to see that we can equivalently rewrite the dual as the convex programming problem using measure
variables Y :

max
∫

Ω

FT (ω)Y (dω) − y0F0

s.t.
∫

Ω

ZT (ω)Y (dω) = y0Z0

y0 ≥ 0
P 	 Y 	 λP
P ∈ P .

Now, we have the following result.
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Theorem 4.2. The following are equivalent:

(a) Pgam(λ) is bounded;
(b) the dual Dgam(λ) is feasible;
(c) the market admits no λ gain-loss ratio opportunities under measure ambiguity;
(d) there exists an equivalent martingale measure for the market price process, satisfying the side conditions

dQ
dP

∈ [V, V λ] P − a.s.

with V > 0 for some P ∈ P .

Proof. We first prove that (b) and (c) are equivalent. Consider the following pair of primal-dual problems P1

and D1 , where P1 was already defined above and D1 is the feasibility problem:

min 0
s.t. E

P [ηZT ] = y0Z0

y0 ≥ 0
η ∈ L∞(Ω,F , P,R)
η ∈ [1, λ] P − a.s.
P ∈ P .

Problems D1 and Dgam(λ) have identical feasible sets. Hence (b) implies that D1 is feasible. By weak duality,
we have that this implies (c). If (c) holds, i.e., if supP1 is equal to zero, using the fact that P1 is a convex
programming problem (maximization of a concave function over a linear constraint) which is strictly feasible,
by Theorem 3.2.2 of [1] we have minD1 = 0, i.e., the minimum value of zero is attained in D1 by some feasible
point. Hence, we have that D1 is feasible, which implies that Dgam(λ) is feasible.

We have that (b) implies (a) since it is always true that inf Pgam(λ) ≥ supDgam(λ), and if Dgam(λ) is
feasible, we have supDgam(λ) > −∞ , which implies that Pgam(λ) is bounded. On the other hand if (a) holds,
due to the strict feasibility of Pgam(λ) and by Theorem 3.2.2 of [1] we have that inf Pgam(λ) = supDgam(λ).
Moreover, boundedness of Pgam(λ) implies inf Pgam(λ) > −∞ , hence supDgam(λ) is finite, which in turn
implies that Dgam(λ) is feasible. Therefore, (a) implies (b).

Finally, the equivalence of (b) and (d) comes from the dual problem Dgam(λ). The feasibility of the dual
problem Dgam(λ) implies by the Radon-Nikodým theorem that the price process is a martingale under some
measure Q equivalent to some feasible probability measure P̃ , given by

Q(E) =
∫

E

η(ω)
y0

P̃ (dω)

for a dual feasible triple (y0, η, P̃ ). Let V be the inverse of y0 . The variable V is positive since y0 should
assume a positive value in Dgam(λ) as a result of our assumption that the first component Z1

0 of Z0 and the
first component Z1

T of ZT are equal to one, and that η ∈ [1, λ] , P -almost surely for any feasible P .
Conversely, if there exists an equivalent martingale measure Q for the market price process (i.e., such that

one has E
Q[ZT ] = Z0 ), satisfying the side conditions

dQ
dP

∈ [V, V λ] P − a.s.

where V > 0, for some P ∈ P , then this is equivalent to having a feasible solution to Dgam(λ). �
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Remark 4.3. As a result of the theorem, the indifference price F a
0 (or, the “no λ gain-loss price under measure

ambiguity”) for the writer is given by

max E
Q[FT ]

s.t. E
Q[ZT ] = Z0

dQ
dP

∈ [V, V λ] P − a.s.

V ≥ 0
P ∈ P

where the Radon-Nikodỳm derivative of the equivalent martingale measure lies in L∞(Ω,F , P,R). As already
observed in the last part of the proof the variable V takes on only positive feasible values.

Remark 4.4. Without having to repeat all the previous developments for the buyer problem under ambiguity

max min
P∈P

E[(FT − ZT · Θ)+] − λE[(FT − ZT · Θ)−]

s.t. Z0 · Θ ≥ F0

we can assert that the indifference price F b
0 (the “no λ gain-loss price under measure ambiguity”) for the buyer

is computed by solving
min E

Q[FT ]
s.t. E

Q[ZT ] = Z0

dQ
dP

∈ [V, V λ] P − a.s.

V ≥ 0
P ∈ P .

Obviously, we have F b
0 ≤ F a

0 .

Remark 4.5. The dual problem Dg(λ) for a fixed reference measure (that we can suppress to avoid encumbering
the notation unnecessarily) is obtained as

max E[ηFT ] − y0F0

s.t. E[ηZT ] = y0Z0

y0 ≥ 0
η ∈ L∞(Ω,F , P,R)
η ∈ [1, λ] P − a.s.

by shrinking the set of allowed probability measures to a singleton, namely the reference measure P ∗ . This
problem is equivalently expressed as

max
∫

Ω

FT (ω)Y (dω) − y0F0

s.t.
∫

Ω

ZT (ω)Y (dω) = y0Z0

y0 ≥ 0
P ∗ 	 Y 	 λP ∗.

Now, the following result which is in the spirit of Theorem 1 from [20], is obtained as a corollary of the
previous theorem.
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Corollary 4.6. The following are equivalent

(a) Pg(λ) is bounded;
(b) Dg(λ) is feasible;
(c) the market admits no λ gain-loss ratio opportunities;
(d) there exists an equivalent martingale measure for the market price process, satisfying the side conditions

dQ
dP ∗ ∈ [V, V λ] P ∗ − a.s.

with V > 0 .

The indifference price, referred to as F f
0 (or, the “no λ gain-loss price”) is given this time by

max E
Q[FT ]

s.t. E
Q[ZT ] = Z0

dQ
dP

∈ [V, V λ] P − a.s.

V ≥ 0

where we take P to be the reference measure P ∗ , and the variable V is positive as it is the inverse of y0 ,
which should assume a positive value by the same reasoning as in Dgam(λ). Note that F f

0 is at most equal to
the no-free-lunch price F0 as every feasible solution to the above problem in Q is also feasible for Dm . On the
other hand, a similar relationship about F a

0 and F0 cannot be guaranteed.
Concerning numerical computation when Ω consists of a finite number of atoms, we can calculate the

indifference price F f
0 above by solving the linear fractional programming problem with quasi-linear (both

quasi-convex and quasi-concave) objective function in y0 , and y� , � = 1, . . . , n , and linear constraints in all the
variables (y0 , y� , � = 1, . . . , n)

max
∑n

�=1 y�F�

y0

s.t.
n∑

�=1

Zi
� y� = y0Z

i
0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ y� ≤ λp�, ∀� = 1, . . . , n

which is equivalent to the nonlinear program in variables q� = y�/y0, � = 1, . . . , n and y0

max
n∑

�=1

q�F�

s.t.
n∑

�=1

Zi
� q� = Zi

0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ q�y0 ≤ λp�, ∀� = 1, . . . , n.
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On the other hand, the practical computation of F a
0 can be accomplished by solving the linear-fractional

programming problem

max
∑n

�=1 y�F�

y0

s.t.
n∑

�=1

Zi
� y� = y0Z

i
0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ y� ≤ λp�, ∀� = 1, . . . , n

(1 − ε1)p∗� ≤ p� ≤ (1 + ε2)p∗� , ∀� = 1, . . . , n

while we note again the relationships V = 1/y0 and q� = y�/y0 , for all � = 1, . . . , n . Linear-fractional
programming problems are almost as routinely solved as linear programming problems by state-of-the art
optimization software. In fact, the discretized version

max
n∑

�=1

y�F� − F0y0

s.t.
n∑

�=1

Zi
� y� = y0Z

i
0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ y� ≤ λp�, ∀� = 1, . . . , n

(1 − ε1)p∗� ≤ p� ≤ (1 + ε2)p∗� , ∀� = 1, . . . , n

of Dgam(λ) is nothing other than a device to solve the above linear-fractional program by solving a sequence of
linear programming problems for different trial values of F0 until zero is achieved as optimal value.

Example 4.7. Returning to the previous example in discrete time, choosing the reference measure as P ∗ =
(1/3, 1/3, 1/3), ε1 = 1/2, and ε2 = 1, we obtain the pricing interval as [0.10, 0.4545]. The worst-case measure
for the writer is the measure (0.417, 0.167, 0.417), while for the buyer it is (1/6, 2/3, 1/6). The pricing bounds
that address ambiguity are still not as wide as the no-arbitrage bounds, i.e., we achieve a writer’s price smaller
than 0.5, and a buyer price greater than zero.

A final note to close this section is on the choice of the set M (and, hence of P ) which did not play any
role in our main result. While it is true that our result holds for other specifications of M as we shall see
in Section 5 below, it is important to keep in mind that convexity of P plays an important role in numerical
computation.

5. Gain-loss bounds based on φ-divergence

In this section we develop a version of the gain-loss bounds based on the φ-divergence functional introduced
by Csiszar [10]. Our reference on φ-divergence is the paper by Ben-Tal and Teboulle [2]. A recent example of
the use of φ-divergence functionals in portfolio optimization is [8].

Let φ : R 
→ (−∞,+∞] be a proper closed convex function such that dom φ is an interval with endpoints
α < β . Since φ is closed, then

lim
t→α+

φ(t) = φ(α)

if α is finite, and
lim

t→β−
φ(t) = φ(β)
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if β is finite. We assume that 1 ∈ int dom φ and that the minimum of φ is zero and attained at the point
t∗ = 1 ∈ int dom φ . The class of such functions is denoted by Φ. Now, given φ ∈ Φ, the φ-divergence of the
probability measure Q with respect to P is

Iφ(Q,P ) =

{ ∫
Ω
φ(dQ

dP )dP if Q� P

+∞ otherwise,
(5.1)

where the notation Q� P is meant to be understood as “Q is absolutely continuous with respect to P ”. For
the choice of φ(t) = t ln t − t + 1 we obtain the well-known Kullback-Leibler relative entropy [21] with which
we shall work in the rest of this section.

Whenever Iφ is finite, i.e., Q� P , the φ-divergence can be expressed as

Iφ(Q,P ) = E
P

[
φ

(
dQ
dP

)]
·

For a fixed reference measure P ∗ , we propose to use in this section the set P given by the set of all probability
measures P such that Iφ(P, P ∗) ≤ d from some d ≥ 0. I.e., we consider the set

K(P ∗, d) = {P ∈ π : Iφ(P, P ∗) ≤ d}

where we use φ(t) = t ln t− t+ 1 and π = {μ ∈ X : μ � 0, μ(Ω) = 1} .
For practical computation we obtain the problem Dgam(λ) in the form

max
n∑

�=1

y�F� − F0y0

s.t.
n∑

�=1

Zi
� y� = y0Z

i
0, ∀i = 1, . . . , J + 1

y0 ≥ 0
p� ≤ y� ≤ λp�, ∀� = 1, . . . , n

n∑
�=1

p� ln
p�

p∗�
≤ d

which is a convex programming problem with a single non-linear (convex) constraint.
We illustrate the use of bounds obtained from Kullback-Leibler relative entropy-based pricing on an example

from [3,23].

5.1. Relative entropy and option pricing bounds

Assume we have a stock and a bond, and we are trying to price a European Call option written on the stock
with strike price equal to 100, and one year to expiration. The one year continuously compounded rate of return
of the bond is 4.88%, and the annual volatility of the compounded rate of the return on the stock is 14.09%.
We assume that there is no intermediate trading between now and expiration. The Black-Scholes price of this
option [6] is equal to 5.22.

Consider now a discretization Z2 of the stock price at expiration of the option (Z1 is reserved for the
bond price which is equal to one). We assume the possible realizations of Z2 are given by Z2

1 = 41, Z2
2 =

42, . . . , Z2
120 = 160. The riskless asset, i.e., the bond has value equal to one in all 120 states of nature, while the

option value at expiration F� takes the value 0 for � = 1, . . . , 60 and then evolves as F61 = 1, F62 = 2, . . . , F120 =
60. Assume the stock price is currently equal to 95. The no-arbitrage bounds for this incomplete market
example are quite far apart: 0 and 28.21. We use the Black-Scholes risk-neutral probabilities as benchmark,
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Figure 1. Bounds on call option price where the initial price of the underlying is equal to 95.
The option expires in one year and has strike K = 100, the one year continuously compounded
risk free rate of return is 4.88%, and and the standard deviation of the continuously com-
pounded rate of return on the stock is σ = 0.1409 per year. The solid curves represent the
bounds computed with the relative entropy based gain-loss approach under ambiguity; the
outer smooth curves correspond to d = 0.01, while the dotted curves correspond to the origi-
nal gain-loss bounds under the risk-neutral reference measure. The smooth curves sandwiched
between the outermost smooth and the inner dotted curves correspond to the choice d = 0.001
in the relative entropy distance constraint.

hence we compute p∗1 = Pr{γ ≤ ln 41.5} , p∗2 = Pr{γ ∈ (ln 41.5, ln 42.5]} , and so on until p∗119 = Pr{γ ∈
(ln 158.5, ln 159.5]} and p∗120 = Pr{γ > ln 159.5} , where γ is a normally distributed random variable with mean
ln 95 + 0.0488 − 0.14092

2 and standard deviation 0.1409. For further details about this example, we refer the
reader to Section 3 of [23] and Section V of [3].

Now, let us take the view-point of the investor whose confidence in the risk-neutral probability measure is
limited and compute gain-loss price bounds using the Kullback-Leibler relative entropy constraint with different
values of d . We solve the resulting convex programming problems through GAMS/PATHNLP [7,15]. The
results of this experiment are summarized in Figure 1 where the solid curves represent the price bounds from
the ambiguous gain-loss approach while the dotted curves represent the gain-loss approach without ambiguity
of measure as advocated in [3,23]. With d = 0.01, and solving the discretized version of problem Dgam(λ) for
the writer and buyer, for λ = 5, we obtain the price bounds 2.58 for the buyer versus 8.9 for the writer, which
are wider than the corresponding gain-loss bounds obtained under the risk-neutral measure 2.97 and 8.09, as
expected and already observed in Example 4.7. For λ = 2, the numbers are 3.68 and 7.06, respectively while
for λ = 1.5 they are 4.39 and 6.12. Finally, for λ arbitrarily close to one, we obtain the bounds 4.65 and 5.81.
Notice that these bounds form an interval containing the Black-Scholes value of the option.

If we took d = 0 we would obtain the Black-Scholes value 5.22 as common bound for λ = 1 by solving the
associated buyer and writer problems, as done in [3].
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We observe from the results that the price to pay to acknowledge an ambiguity in the reference measure
measured by a information-theoretic distance of at most 0.01 translates into approximately 10% wider price
bounds in this example. It is reasonable to expect that the bound intervals will widen with increasing d ,
and vice versa, i.e., will narrow down with decreasing d . This is indeed the case in practical computation
as we observe in Figure 1 with the smooth curves (for d = 0.001) sandwiched between the outer smooth
curve corresponding to d = 0.01 and the dotted curve corresponding to the original Bernardo-Ledoit gain-loss
approach.

The experiment can be repeated using different values for the stock price. However, the reader is warned
that the results depend on the choice of initial stock price. For the initial stock price equal to the strike price,
i.e., for an at-the-money call, we may not be able to decrease λ to 1. We obtain infeasible problems for values
below λ = 1.8. This leads to the observation as in [3] that bounds are looser for near-the-money options.

6. Conclusions and future work

Departing from the observation that the price bounds on contingent claims obtained from the gain-loss
criterion of Bernardo and Ledoit [3] are sensitive to the reference measure, we developed a result akin to the one-
step fundamental theorem of asset pricing using the gain-loss based criterion of Bernardo-Ledoit acknowledging
a certain ambiguity of measure. The ambiguity of measure can be specified in different ways, as long as it
leads to computationally tractable optimization problems. We have illustrated the computation of the bounds
in option pricing without intermediate trading in an incomplete market setting where an investor questions the
validity of the risk-neutral probabilities in a Black-Scholes framework.

In the future, we intend to develop multiperiod extensions of the present work. However, this extension will
require a more complicated duality setup than required for the present paper, e.g., the duality approaches used
in [19,31].
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