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We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and

kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure

framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study

is undertaken and the outcomes are interpreted together with the findings of ballistic transport cal-

culations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above

the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in

between, as well as above the former. We show that these localized states are not due to the oxide

interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to

foreground by the reflections originating from NW junctions and bends. Hence, we show that the

crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to

atomistic disorder. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907585]

I. INTRODUCTION

As the fabrication techniques for silicon nanowire (NW)

polymorphs are relentlessly advancing,1–8 the latest accom-

plishment has been their assembly into higher dimensional

complex architectures. With this aspiration, a new class of

nanostructures emerged, including L-shaped9,10 and kinked9

as well as hyper-branching11,12 and networking Si NWs.13

Among these, kinked NWs (KNWs) in particular, have

received special interest owing to their rich geometries

including U-, V-, and W-shaped varieties.10,14–16 They have

potential application areas ranging from biological and

chemical sensing, nanoscale photon detection to three-

dimensional recording from within living cells and

tissue.17–19

These NW-based superstructures in their ultraclean

forms can be regarded as the electron waveguide compo-

nents making up a quantum network, once theoretically envi-

sioned.20 As a matter of fact, the field has a rich

background.21 The dawn of the ballistic transport era in low-

dimensional semiconductors can be marked by the quantum

interference transistor proposal of Datta and coworkers that

was based on exerting a phase difference between the two

electron channels.22 This was followed by experimental

reports on GaAs/AlGaAs heterojunctions demonstrating

resistive increase when the current path encounters a bend,23

and also resistance oscillations on T-shaped electron channel

when the stub length is electrically tuned.24 More recently,

as observed in a 500 nm-long silicon NW, quantum interfer-

ence effects cause an oscillatory pattern in conductance as

well as a shift in conduction threshold depending on the

quantization energy within the wires.25 Despite the intense

efforts, due to imposing challenges in avoiding diffusive

transport channels, the elicitation of experimental

fingerprints endorsing quantum interference effects remain

still very subtle.

Without any doubt, any theoretical insight would be

invaluable to better understand the rich physics and applica-

tion prospects of these structures such as silicon-based cross-

ing NWs (CNWs) and KNWs. If one sets the objective to

characterize the full mosaic of localized to delocalized states,

then it becomes imperative to acquire atomistic resolution,

and therefore, the methodology needs to surpass the effective

mass, k�p, or transfer matrix-like continuum models.15,26–28

On the other hand, due to large system sizes in CNWs and

KNWs, on the order of ten thousands of atoms including the

silica embedding host matrix, they are not amenable by the

current state-of-the-art ab initio techniques.29 Because of

these constraints, only a small number of realistic-size atom-

istic NW studies exist,30–32 leaving the CNWs and KNWs as

an unchartered territory.

This work aims to provide a computational exploration

of the full scale, from localized to semi-extended up to con-

ducting characteristics of electronic states in Si CNWs and

KNWs. We employ an empirical pseudopotential-based at-

omistic electronic structure solved using the linear combina-

tion of bulk bands (LCBB) method.33,34 Very recently, we

have successfully applied this technique on the bandgaps and

band edge alignments of Si NWs and NW networks.35 In

conjunction with the quantum ballistic transport calculations

utilizing the Kubo-Greenwood (KG) formula, we undertake

an isosurface analysis of wave function distributions for the

CNWs and KNWs. Our main finding is the identification of a

conduction band tail of up to several hundred millielectron

volts in span. Unlike the well-known Urbach tail associated

with an atomistic disorder,36,37 it stems from the electron

wave localization within the junction and kink sections of

ultraclean Si CNWs and KNWs.

The temperature range relevant to this ballistic regime is

a few Kelvin’s, even though we shall be presenting zero-

temperature results. Another noteworthy point is the straina)Electronic mail: bulutay@fen.bilkent.edu.tr
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which can in general play a significant role on the electronic

properties of Si NWs.38–40 Yet, a uniform strain (radial or

axial, compressive or tensile) retains the extensions of states

throughout the NW and does not lead to localized states.38,41

In contrast, inhomogeneous strain can promote the localiza-

tion behavior in NWs; in the same vein, interface roughness

can induce disorder-originated localized states.31,42,43 In this

work, targeting atomistic disorder-free localization, the

strain, as well as the interface relaxation effects, are left out

of the scope, to unambiguously account for the effects of

wire topology. Nevertheless, including the strain and inter-

face disorder is expected to further intensify and enforce the

present localization behavior.

The paper is organized as follows: in Sec. II, we present

the general theoretical framework of our electronic structure

and transport analysis. In Sec. III, we provide our results on

CNWs and KNWs, and conclude in Sec. IV. In the interest

of a lucid presentation, we defer some technicalities to two

Appendixes. The first one provides the essential details on

the LCBB technique, followed by the details on the atomic

pseudopotentials employed in this work.

II. THEORY

For the electronic structure calculations of large-scale

nanostructure systems, the LCBB method has been intro-

duced,33,34 with the distinction to solve the atomistic

pseudopotential-based Hamiltonian using a basis set formed

by the bulk bands of the constituent materials. The virtue of

the method lies in the nanostructure sizes accessible with a

reasonable computational budget. Within a 3-dimensional

(3D) supercell approach the complex NW structures are em-

bedded into an oxide matrix to passivate the dangling bonds

and to prevent the interactions between the structures and

their images in neighboring cells. The nanostructures consid-

ered in this work contain about 1500 core Si atoms, and

including the host medium the supercells contain more than

10 000 atoms. Perfect crystalline order is considered as no

structural relaxation is performed. Being interested in con-

duction states (CSs), we neglect the spin-orbit interaction,

which is mainly influential on the valence states. Details of

the LCBB formalism, description of oxide passivation and

the employed pseudopotential form factors can be found in

Appendixes A and B.

To study the linear-response regime ballistic quantum

transport characteristics of the nanostructures, the KG-for-

mula44,45 is applied as a postprocess over their electronic

structures. The zero-temperature dc-limit KG-formula for

conductance is given as

Gab EFð Þ ¼ gs
p�he2

m2
oL2

sc

X
n;n0
hn0jPajnihnjPbjn0i

� d EF � Enð Þd EF � En0ð Þ ; (1)

where a, b are the Cartesian indices, gs is the spin degener-

acy, mo is the free electron mass, and Lsc is the length of the

computational supercell along the chosen transport direction,

P is the momentum operator, and En is the energy eigenvalue

of the eigenstate jni.46 The KG-formula establishes the

relation between the electronic structure of a system and its

conduction properties, as a function of Fermi energy EF. In

our implementation, the Dirac delta functions of Eq. (1) are

broadened by the Gaussian function with a typical standard

deviation of 5 meV.

It is worthwhile to discuss some technical aspects of the

implementation of KG-formula.47,48 Fig. 1 shows two repre-

sentative cases for a free-electron model 1 nm� 1 nm cross-

section hard-wall NW. On the left column, the coarse-grid

case is displayed in which the sparse energy spectrum ends

up with the Dirac delta function-derived isolated peaks both

for the density of states (DOS) and conductance. The per-

formance of the gridding depends on DE/c, i.e., the ratio of

the energy difference of successive k-points, DE, to the

standard deviation of Gaussian broadening, c. In the coarse

case, the ratio is about 5 at the band edge and further

increases through the band dispersion. Since the energy dif-

ference between successive conductance steps is larger than

the energy broadening, the isolated peaks of both DOS and

conductance do not coalesce to reproduce the well-known

analytically expected 1D DOS and quantized conduction

behavior, a signature of the 1D ballistic transport.21,49 Our

tests indicate that as the ratio drops below 0.02, the coales-

cence of isolated peaks starts to yield reasonable DOS and

conductance shapes. On the right column of representative

fine-grid case, by increasing the number of wave vector, k-

points in the energy dispersion curve, the spectrum is made

dense enough so that the ratio is set about 0.005 to obtain the

analytical behaviors. Hence, this figure signifies the necessity

for a dense energy spectrum in achieving ideal quantized

conductance steps through the KG-formula.

Notwithstanding, a typical LCBB calculation based on a

3D k-grid (see Fig. 2(a) and also Appendix A) yields rela-

tively sparse discrete energies. Obviously, the energy spec-

trum can be made denser (i.e., DE/c reduced) by increasing

the number of k-points in the 3D grid (i.e., in the expansion

basis); however, it becomes computationally quite demand-

ing. Instead, regarding the k-space, we construct a dense k?-

grid over the plane perpendicular to the KNW axis or to the

axis of one of the crossing wires of a CNW, and obtain the

energy dispersion relation En(kk) of subbands by shifting this

plane along that axis of kk (see Fig. 2(b) and also Appendix

A). Once a reasonable dispersion is obtained, by further

interpolating the energy spectrum the KG-formula can be

applied to disclose the conductance steps. We call this the

dispersion-based approach. It should be noted that in the 3D

k-grid case which we shall name as the state-based approach,

the interpolation is not possible since the 3D eigenvalue

problem yields only state energies, En without revealing their

k-dependence. Thus, KG-formula inevitably produces iso-

lated conductance peaks for this state-based case.

For clean single NWs having no localized states, the dis-

persion- and state-based approaches yield the same energy

spectrum—once constructed with the same number of k-

points. However, in the case of CNWs and KNWs the find-

ings of these two approaches deviate: while the state-based

approach is able to capture both the states having localized

or extended characters, the dispersion-based approach finds

only the extended-dispersive states. As we mentioned above,
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the state-based approach at full performance becomes com-

putationally expensive, so we apply a two-pass approach,

where we get the extended states through the dispersion-

based approach, followed by a reasonable-budget state-based

approach to single out the localized states and to mark the

ballistic transport edge (BTE).

III. RESULTS

A. Crossing nanowires

We start our transport analysis targeting the low-lying

conduction band edge states with the CNWs made up of three

crossing 1.5 nm diameter Si NWs oriented along the h110i
directions. We choose the h110i Si NWs since it is the major

growth orientation within the sub-10-nm diameter size re-

gime.5 In Fig. 3, we present the isosurfaces of carrier densities

(wave function modulus squares) of the nine lowest electron

states, where the first one, CS1 corresponds to the lowest unoc-

cupied molecular orbital (LUMO).50 Among them the first six

states, CS1-CS6 are observed to be highly localized at the

junction of the CNW and diminishes sharply beyond the junc-

tion. Energetically, they nest in a window of 51 meV with the

individual splittings being governed by the CNW as well as

the atomistic point group symmetries as in Si nanocrystals.51

FIG. 1. Demonstration of the coales-

cence of isolated conductance peaks

with k-grid resolution to ideal steps for

a representative square cross-section

hard-wall NW. Logarithmic scale is

used for conductance to accommodate

all the peaks. En panels show the

energy spectra for the associated k-

grid.

FIG. 2. Schematic illustration of (a) 3D and (b) 2D k-grids. The tube indi-

cates the alignment of considered dispersion direction. The planar k-grid ~k?
is shifted gradually along the dispersion direction ~kk.

FIG. 3. Isosurfaces for charge densities corresponding to the first nine states

above the conduction band edge for the three-wire crossing with wire orien-

tations along h110i directions and diameters of all 1.5 nm. For clarity, the

surrounding oxide atoms are not shown. In this and following figures,

LUMO energy is set to zero, and the isosurfaces enclose densities from

100% to 10% of their respective maxima.
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Separated from this group by about 200 meV, another set of

states exists, this time having extended wave functions spread

to some portions of the network. As the figure demonstrates,

all the states are Si core-derived, with no interface trapping or

penetration to the oxide matrix.50

To confirm our isosurface-based interpretations, we

compare them with those of the quantum ballistic transport

results using the KG-formula. Specifically, we apply the

aforementioned two-pass treatment to harness their comple-

mentary features to the CNW of Fig. 3. On the top panel of

Fig. 4, the dispersion-based approach is displayed where the

quantized conductance steps are observed. In the center

panel, state-based conduction results are presented. Since the

Dirac delta-originated peak values depend on the broadening

parameters, only their relative amplitudes and sparsity need

to be considered. The energy spectrum underlying the state-

based approach is given on the bottom panel. All these

results corroborate the isosurface analysis of Fig. 3. Both the

dispersion- and state-based approaches pinpoint to the same

energy level as the BTE, which is the energy level of CS7 of

Fig. 3. It needs to be mentioned that in CNWs we have spot-

ted localized states also above the BTE.48

Another important remark is that the BTE for CNW is

very close to the conduction band minimum (and BTE) of an

isolated NW of diameter of 1.5 nm,35 which affirms that indeed

the geometric discontinuity of the junction region in CNW is

responsible for the additional localized states below BTE.

These findings point out that the quantum interference effects

play a prominent role at the crossing regions. Any discontinuity

over the core material silicon not only excites higher order

evanescent modes26,52 but also results in reflections depending

on the state energy and leads to standing waves.

This situation gains a further dimension in the case of

CNWs with all-different diameters. In Fig. 5, we present the

isosurfaces for charge densities of a three-wire crossing with

diameters of 1 nm, 1.5 nm, and 2 nm. We observe that as the

difference among the diameters of crossing wires become

larger, the electron states at the band edge delocalize, in par-

ticular, along the thickest NW. Here, similar to the equal-

diameter CNW of Fig. 3, the energy of the first extended

state CS4 nearly coincides with the LUMO energy of an iso-

lated 2 nm Si NW.35 In Fig. 6, the isosurfaces are given for

the case of wire diameters of 1 nm, 1 nm, and 3 nm.

Concerning the LUMO, beyond a diameter contrast, the

CNW behaves as isolated NW arrays, as if the other thinner

wires are not present. For the higher-lying states, while still

extending along the thickest wire, they get more sensitive to

the thinner branches. These figures show that the formation

and profile of a localized/extended state depends on the rela-

tive diameters of the NWs.

B. Kinked nanowires

Next, we examine KNWs, here one can benefit from

various opportunities for the electronic structure engineering

by tuning the diameter and lengths of NW segments or by

changing the wire crystallographic orientation. Fig. 7

FIG. 4. The calculated ballistic electron conductances and energy spectrum

of 1.5 nm equal-diameter CNW. Top: The conductance through the 1D chan-

nel of [110] NW via the dispersion-based approach. Center: The transport

along the [110] direction within state-based approach. Bottom: The energy

spectra belonging to the center panel.

FIG. 5. Isosurfaces for charge densities corresponding to the low-lying con-

duction band states for a h110i three-wire crossing with wire diameters of

1 nm, 1.5 nm, and 2 nm.

FIG. 6. Isosurfaces for charge densities corresponding to the low-lying con-

duction band states for a h110i three-wire crossing with wire diameters of

1 nm, 1 nm, and 3 nm. Carrier densities extend along the widest crossing wire.
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illustrates the schematic view of a U-shaped KNW where the

blue (red) segments are aligned in the [110] ([001]) direc-

tion. On the same figure, we specify the variation of LUMO

energies as the length of the [001]-aligned segment is

decreased. As observed from this figure LUMO is particu-

larly localized to these sections of the KNW forming a stand-

ing wave along the [001] wires. Therefore, in agreement

with the quantum size effect, the LUMO energy increases as

the length of [001] segments decrease.

Focusing on the KNW-3 sample of Fig. 7, on the top

panel of Fig. 8, we first subject the KNW to the dispersion-

based approach which reproduces the conductance steps, i.e.,

NW-like dispersive states, starting from the BTE about

0.8 eV above LUMO. On the center panel, we present the

conductance values calculated by state-based approach. Note

that the onset of the major peaks is very close to the BTE

indicated on the top panel.

We can classify the states in Fig. 8 according to the rela-

tive values of their conductance peaks: (S1) totally

localized-bound states, not contributing to the conductance,

(S2) quasi-bound states, having low conductance peaks and

energetically closer to BTE than to LUMO, and (S3) NW-

like extended states which have higher conductance peaks

and lie beyond the BTE. As a matter of fact these S3 states

are responsible for the full 1D dispersion and contribute to

the conductance steps. Dispersion-based approach is not able

to capture S1 and S2 states, but identifies the S3 states. The

validity of this classification becomes more founded by cor-

relating these observations with the isosurface charge density

profiles as presented in Fig. 9 for a selection of conduction

states. Here, the first 12 states (CS1-CS12) belong to S1-type

states, indicating localized characteristics. The representative

states CS21, CS31, and CS43 are S2-type also marked on Fig.

8. As observed in Fig. 9, their isosurfaces also display an

FIG. 7. Top: A representative KNW

depicted from two aspects. The blue

segments are along the [110] direction

and the red ones are along [001] direc-

tion. Bottom: Isosurfaces for charge

densities of LUMOs of three different

shape KNWs. Their relative energies

are also included.

FIG. 8. The calculated ballistic electron conductances and energy spectrum

of a 1.5 nm diameter KNW. Top: Conductance steps using the dispersion-

based approach with the corresponding dispersion being given in the inset.

Center: The transport along the [110] direction within the state-based

approach, also zoomed in the inset. Bottom: The energy spectra belonging

to the center panel.

FIG. 9. Isosurfaces for charge densities corresponding to several conduction

states (CS) of a KNW.
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extended behavior. Rest of the states given in Fig. 9 is lying

at or beyond the BTE, exhibiting NW-like extensions (S3-

type).

IV. CONCLUSIONS

In conclusion, combining wave function analysis with

the ballistic transport results, we map out the localization

behavior of silicon CNWs and KNWs. We find that the BTE

can be up to hundreds of millielectron volts above the

LUMO, filled in between with a substantial number of local-

ized states. Their 3D wave functions unambiguously display

localization around the NW geometric discontinuity regions,

such as junctions and bends, which excite higher-order evan-

escent modes and incubate probability amplitude interfer-

ences. In contrast to the states close to LUMO, those in the

vicinity of BTE possess a proto-conducting character which

might contribute to transport through an assisted process,

like phonons. Thus, via a realistic atomistic electronic struc-

ture analysis, we show that ultraclean Si NW architectures

such as CNWs and KNWs should manifest a conduction

band tail that exemplifies a disorder-free localization.
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APPENDIX A: LCBB FORMALISM

In the LCBB method,33,34,48 the jth state of the nano-

structure can be expressed as the linear combination of bulk

Bloch bands

Wj ~rð Þ ¼
1ffiffiffiffi
N
p

X
n;~k ;r

Cr
n;~k ;j

ur
n;~k
~rð Þei~k �~r ;

where N is the number of bulk primitive unit cells within the

large supercell of the nanostructure, n is the bulk band index,
~k is the wave vector sampling the BZ of the underlying lat-

tice, and r labels the constituent materials, i.e., core or

embedding media. The periodic part ur
n;~k
ð~rÞ of the bulk

Bloch function can be expanded by the plane waves as

ur
n;~k
~rð Þ ¼ 1ffiffiffiffiffiffi

Xo

p
XNG

~G

Br
n~k

~Gð Þei~G�~r ;

where NG is the number of reciprocal lattice vectors ~G within

an energy cut-off, and Xo is the volume of the primitive cell.

These bulk expansion coefficients Br
n~k
ð~GÞ can be calculated

by diagonalizing the bulk Hamiltonian for each ~k point. In

our computational implementation, the bulk coefficients are

computed by employing the empirical pseudopotential

method (EPM).53

The total single-particle Hamiltonian of a nanostructure

with the kinetic energy and the ionic potential parts, where

the latter describes the atomistic environment within the

pseudopotential framework, is expressed by

Ĥ ¼ T̂ þ V̂PP ¼ �
�h2r2

2mo
þ
X
r;~Rl;a

Wr
a
~Rl

� �
tr
a ~r � ~Rl � ~d

r
a

� �
;

where mo is the free electron mass, the direct lattice vector
~Rl gives the position of the primitive cell and ~d

r
a specifies

the relative coordinate of a particular atom within the primi-

tive cell. The weight function Wr
a ð~RlÞ keeps the information

about the composition of the system by taking values 0 or 1

depending on the type of the atom located at the position
~Rl þ ~d

r
a . tr

a is the local screened spherical atomic pseudopo-

tential of atom a of the material r.

Hamiltonian matrix elements are evaluated within the

basis set {jn~kri} that is {h~rjn~kri ¼ /r
n;~k
ð~rÞ} in the position

representation. The resulting Hamiltonian is diagonalized to

yield Cr
n;~k ;j

coefficients. The corresponding generalized

eigenvalue problem is

X
n;~k ;r

hn0~k 0r0jT̂ þ V̂PPjn~kriCr
n;~k ;j
¼ Ej

X
n;~k ;r

Cr
n;~k ;j
hn0~k 0r0jn~kri ;

where the matrix elements are

hn0~k 0r0jn~kri ¼ d~k ;~k 0
X
~G

Br0

n0~k
ð~GÞ�Br

n~k
~Gð Þ ;

hn0~k 0r0jT̂ jn~kri ¼ d~k ;~k 0
X
~G

�h2j~k þ ~Gj2

2mo
Br0

n0~k
ð~GÞ�Br

n~k
~Gð Þ ;

hn0~k 0r0jV̂PPjn~kri ¼
X
~G;~G

0
Br0

n0~k
0 ð~G0Þ�Br

n~k
~Gð Þ

�
X
r00;a

Vr00
a j~k þ ~G � ~k 0 � ~G

0j2
� �

�Wr00
a
~k � ~k 0
� �

e�i ~kþ~G�~k 0�~G 0ð Þ�~d r00
a :

Here, Vr00
a andWr00

a are the Fourier transformations of atomic

pseudopotentials and weight functions, respectively.

In the case of dispersion-based approach,48 the separa-

tion of the k-space into k? and kk (illustrated in Fig. 2) leads

to a separated eigenvalue problem of the form ofX
n;~k?;r

hn0~k 0?~kkr0jT̂ þ V̂PPjn~k?~kkriCr
n;~k?;~kk;j

¼ Ejð~kkÞ
X

n;~k?;r

Cr
n;~k?;~kk;j

hn0~k 0?~kkr0jn~k?~kkri ;

which is solved at definite ~kk values to obtain the energy dis-

persion Ejð~kkÞ. This form does not put any restriction on the

treatment of matrix elements. One should only need to form

a planar k-grid at a specific ~kk point.48

APPENDIX B: OXIDE PASSIVATION AND ATOMIC
PSEUDOPOTENTIALS

An important aspect of the electronic structure calcula-

tions is the surface passivation. The surface of an unpassi-

vated nanostructure consists of dangling bonds, which

introduces surface states lying in the otherwise forbidden

064308-6 Keleş, Çakan, and Bulutay J. Appl. Phys. 117, 064308 (2015)



band gap. Surface passivation removes these surface states.

In our implementation, the surface passivation is provided

by embedding the NW structures into a host matrix of SiO2.

However, the EPM calculations involving oxygen is rather

nontrivial and, moreover, the different lattice structure of

SiO2, with reference to Si, causes strain effects.51 To over-

come these obstacles, we introduce an artificial monoatomic

wide band gap material that computationally substitutes

silica. After constructing the Si NW-based core, all the

remaining crystal points within the computational supercell

are filled with the artificial oxide atoms. This artificial

embedding material has the same dielectric constant of SiO2

and band edge lineup, with respect to Si, however with the

diamond structure to prevent complications associated with

strain.51

For the local empirical pseudopotentials of Si and SiO2,

we use the functional form introduced by Freidel et al.54

These authors suggest an analytical expression to produce the

pseudopotential form factor at a given general wave number q

VPP qð Þ ¼
a1 q2 � a2

� �
ea3 q2�a4ð Þ þ 1

1

2
tanh

a5 � q2

a6

� �
þ 1

2

	 

: (B1)

We employ their parameters for Si (listed in Table I).54 On

the other hand, we have generated pseudopotential parame-

ters48 for the artificial SiO2 (given in Table I), which repro-

duces the experimental band alignments of bulk Si/SiO2

interface as 4.4 eV and 3.4 eV for the valence55 and conduc-

tion56 band edges, respectively. The units are arranged such

that the pseudopotential form factors come out in Rydbergs

and the wave number q in Eq. (B1) should be in the atomic

units (1/Bohr radius). For the plane-wave cut-off energies of

EPM, we use 14 Ry for both Si and artificial SiO2.

Though the surface chemistry of oxide-passivation

requires more elaborate first principles calculations, consid-

ering today’s computation limits, we believe that our

approach offers a viable alternative for the calculations of

oxide-embedded large scale Si nanostructures. Despite the

missing surface relaxation and strain effects, the reliability

and competence of our computation method has gained con-

fidence in the context of embedded Si and Ge nanocrystals,51

and in the energetics of single Si NWs and NW networks.35

The LCBB basis set is constructed by only employing

the lowest two bulk conduction bands of the core Si. We

tested and observed that the further increase in the number of

core bulk bands or the inclusion of the bulk bands of oxide-

matrix do not alter the energetics and localization behavior

of the states within the energy window very close to band

edge (�0.5–1 eV above the conduction band minimum).

Further discussion of LCBB method can be found in the

original papers33,34 and in our previous works.35,51
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