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1 Introduction

Loosely coupled data integration among networked sources has become so ubiqui-
tous over the recent years that many of the services and applications used daily are
actually not monolithic information systems but rather collections of sources tied
together. Instead of building centralized and large data sources (i.e., the Extract-
Transform-Load method), many organizations and individuals are opting for a vir-
tual database approach. Especially along with the advent of service-oriented archi-
tectures, it has become very easy to leave data in its original source and to instead
recruit the service provided by that source as needed. This structure is seen in a
variety of scenarios such as hybrid web applications (mash-ups), enterprise infor-
mation integration models, aggregation services and federated information retrieval
systems. Furthermore, individual users are often forced to procure and assemble the
information they need from sources distributed across a network.

Consequently, a good amount of work done to obtain the answers, including in-
termediate results, sub queries and the sources used, are observable to some degree
to a third party. Ultimately, this leads to the question of whether an intelligent infor-
mation system with access to this information may be able to infer the global aim of
these component information retrievals. Our research is an effort towards this goal.
We propose a structure and the associated methods which may enable this structure
to combine a number of seemingly independent queries into a single, meaningful
global query which represents the reason for these component queries.

Consider an individual who submits a set of queries to different databases, and
then, off-line, consolidates the information obtained in a “big answer” of some sort.
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Because the information this user requires is dispersed over multiple databases, the
user is forced into a laborious process of submitting individual queries to different
databases and then correlating and assembling the information off-line. Discovering
a single interpretation for his entire query set may help suggest how information
could be reorganized to facilitate similar tasks in the future. Indeed, the main argu-
ment for constructing virtual databases has always been to provide in a single source
all the information necessary for a particular task [Motro(1987)]. Thus, discovering
interpretations for distributed query sets may suggest useful reorganizations and
consolidations, either physical or virtual.

As an analogy, consider a shopping center with multiple stores, and assume that
an analysis of sale records shows that within a small time interval, the same cus-
tomer purchased a box of candy in one store, gift-wrapping paper in another, and a
greeting card in a third. A global interpretation of this local information may sug-
gest that service could be improved if these three items where to be sold in the same
store. Similarly, query consolidation may suggest redesign of available information
sources to correspond more efficiently to popular information needs.

A different, though not entirely unrelated, reason for interpreting query sets, in
either the distributed or centralized cases, is user inexperience or ignorance. In the
distributed case, the user might be submitting a set of queries to different databases
and correlating them off-line, when the same goal could be achieved by accessing a
single database. In the centralized case, the user might be submitting a set of small
queries and assembling them off-line, when the same goal could be achieved with
a single query, perhaps using a feature of which the user is not aware. A query
consolidation analysis may suggest flaws in the way the system is advertised or in
the training of its users. This application is reminiscent of other systems that track
user behavior and suggest improvements, such as office software or on-line stores.

Returning to the analogy of the shopping center, the reason for the individual
purchases could be that the customer may be trying to hide his overall purpose. Ac-
cordingly, a possible application of query consolidation is surveillance and security:
A consolidated query discloses the intentions of the user posing the queries. While
the elucidation of these intentions from consolidated queries is a task for human ex-
perts, a query consolidation system can do the preparatory work. Since there could
be a large number of users each with multiple queries, the function of the query con-
solidator will be to sift through the logs, compile likely consolidations, and present
them to the expert for judgement. A variety of options are available: The expert can
focus on a single user and get a listing of interests during a time period. Alterna-
tively, trends can be analyzed across many sources looking for intentions shared by
a group of users. Query consolidation can also be useful as a detection mechanism
when the possible intentions and the global queries that imply them are known in
advance. Then, an operator can set up the system so that certain information is on a
watch-list and any consolidation of queries that significantly overlaps that informa-
tion is flagged automatically by the system, along with the users who posed these
queries. An earlier attempt at security-inspired query consolidation, albeit using a
different approach, can be found in [[Acar and Motro(2004)].
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We propose to address the problem of interpreting distributed sets of queries, by
using the well-researched architecture of virtual databases [Motro(1999)]. Briefly, a
virtual database architecture integrates a set of local databases by means of a global
database scheme which is mapped into the local databases. A query submitted to the
virtual database (based on the global scheme) is decomposed into queries against the
local databases, and the corresponding answers are assembled in an answer to the
original query. The entire process is transparent to the user.

Query decomposition is summarized thusly: Given a global query Q, find local
queries Qy,...,Q, and an assembly expression E such that Q = E(Qy,...,0y).

For our purpose here of interpreting a set of local queries, we adopt the same
architecture, but consider a process that is the reverse of query decomposition, and
which we name query consolidation: Given local queries Qy,...,Qy, find a global
query Q and expression E, such that the query decomposition procedure will de-
compose Q into Qy,...,Q, using E, so that Q = E(Qy,...,0n).

The main obstacle here is that whereas query decomposition is usually a function
(itis a deterministic process in which each query generates a unique decomposition),
it is not injective. That is, there could be multiple global queries Q',...,Q™ and
corresponding expressions E!, ..., E™, such that the query decomposition procedure
will decompose Q' into Qy,...,Q, using E’ (for 1 < i < m).

Our approach to this new problem can be sketched as follows. We assume that the
independent databases to which queries are submitted have been incorporated into
a virtual database system. Under assumptions of sufficiency (the given query set in-
cludes all the information necessary to achieve the goal) and necessity (it includes
only information necessary to achieve the goal) we “reverse” the query decompo-
sition process. The process incorporates two steps where multiplicity of solutions
must be considered: At one point the system must infer the most likely set of equi-
Jjoins for a set of relations; at another point it must discover the most likely selection
constraints that would be applied to a relation. In each case we develop a proce-
dure that ranks solutions according to their perceived likelihood. The final result is
therefore a ranked list of suggested consolidations.

The focus of this chapter is on the definition of the new problem and its appli-
cations, its setting in a virtual database architecture, and the methodology of its
solution; detailed discussions of the algorithms, the software prototype, and results
of experimentation are largely omitted, for reasons of space. The chapter is orga-
nized as follows. Section 3 provides the formal framework for this work, Section 4
details the solution methodology, and Section 5 concludes with a brief summary and
discussion of work in progress. We begin with a brief review of related work.

2 Background
The work presented in this chapter draws from a diverse range of subjects, including

information integrating systems (multidatabase systems) and query decomposition,
join inference, and association analysis.
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2.1 Information Integration Systems

An information integration system combines information from a heterogeneous col-
lection of autonomous information sources. The integrating site is often referred
to as global, and the individual sources are termed local. There have been many
different models and architectures for information integration systems. Of inter-
est to us here are systems that follow the architecture of virfual databases. A
virtual database has a database scheme (a global scheme), but no database in-
stance. Instead, it has information that maps the global scheme into schemes of
local databases. The materialization of a global query is done by translating the
query into multiple subqueries to be materialized at the local sources and shipped
back to the integrator for assembly. Virtual databases can be classified by the
type of their global-local associations [Halevy(2001)]. This classification distin-
guishes between architectures in which the local database schemes are defined as
views of the global scheme (termed Local-as-View or LAV), and architectures in
which the global scheme is defined as views of the local schemes (termed Global-
as-View or GAV). An example of the former type are The Information Mani-
fold [Kirk et al(1995)]. Examples of the latter type are SIMS [Arens et al(1996)],
TSIMMIS [Garcia-Molina et al(1997)] and HERMES [Subrahmanian et al(1994))).
The architecture of Multiplex is more powerful in that it associates
views of the global schema with views of the local schema’s. This hybrid approach
earned the term GLAV.

A primary concern in virtual database systems is the process of query decompo-
sition: The translation of a global query to a set of local queries. The main prob-
lem here is the need to rewrite queries defined over relations to queries over views
of these relations (this is especially difficult for LAV systems) [Halevy(2001)].
Optimization is also challenging because statistical information on local data is
often unavailable. Finally, the decomposition procedure may have to account for
temporary unavailability of some data, or multiple, inconsistent copies of other
data [Naumann et al(1999), Motro and Anokhin(20006)].

One of the main obstacles to the usability of relational databases among naive
users is the difficulty of performing joins. Much effort has been invested over
the years to simplify this operation, often by inferring joins “automatically”. An
early endeavour in this respect was the universal relation model [Maier et al(1984)].
The universal relation model attempts to make the joins among relations in a
database transparent by automatically traversing the scheme through join depen-
dencies. Another approach to the problem of identifying the join path intended
by the user assumes the path with the lowest cost tends to be the correct an-
swer [Wald and Sorenson(1984), Motro(1986)]. Here, the cost is computed by re-
ducing the problem to a minimum directed cost Steiner tree problem and edge costs
are defined in terms of the cardinality of the relationship. The Discover system,
described in [Hristidis and Papakonstantinou(2002)], uses keyword-based queries.
Once the keywords are located in the various relations of the database, these rela-
tions are connected through their primary-foreign key relationships. Another query
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interface, INFER [Mason and Lawrence(2005)], generates and ranks the top-k join
possibilities and allows the user to select the one intended before materializing the
query. The results are ranked by prioritizing shorter join sequences over longer ones
and lossless joins over lossy joins.

Association analysis or association rule mining has been an active field for more
than a decade. Association analysis mines a set of transactions in a database to find
rules that generalize the associations among the items in the transactions. The major
problem in association analysis has been the complexity of finding frequent item sets
in a set of transactions. While finding individual items occurring frequently in the
orders is rather trivial, when all possible sets that can be built from these items are
considered, the problem is time consuming indeed. Hence, association analysis al-
gorithms all aim to prune the search space to manageable proportions. Most of these
algorithms are based on the fact that the frequency of occurrence of a set of items
is anti-monotone with respect to its subsets. Apriori [Agrawal and Srikant(1994)],
is an example of a breadth-first counting algorithm. It is the first algorithm to uti-
lize the anti-monotone property of support. Apriori works in a breadth-first manner,
counting each level in one pass of the transaction database. It is therefore possible to
prune any k-item sets without counting them if any of their subsets are infrequent.
If one requires only the maximal frequent item sets, depth-first analysis tends to
be faster in finding the pruning boundary. Also, with maximal frequent item sets
look-aheads and neighbor branch pruning is also possible. A good example of an
algorithm that exploits these advantages is MAFIA [Burdick et al(2001)].

3 Formal Framework

The formal framework for this research consists of three parts: (1) A statement of
the problem, (2) a description of a “generic” virtual database architecture and query
decomposition procedure, and (3) assumptions on the sufficiency and necessity of
the given queries for the overall goal.

3.1 The Problem

A virtual database architecture consists of a set of local databases D1,...,D,, a
global database scheme D, and a mapping of the global scheme into the local data-
bases. The main service of this architecture is query decomposition:

Given a global query Q, find local queries Qy,...,Q, and expression E such that
Q=E(Q1,.--,0n).

Query decomposition can be viewed as a function that assigns each query Q a unique
set of queries Q1,...,Q, and suitable assembly expression E.
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The problem of query consolidation, which is the subject of this chapter, is de-
fined as the reverse of the query decomposition problem:

Given local queries Q1,...,0,, find global query Q and expression E such that
the query decomposition procedure will decompose Q into Qy,...,Q, using E, so

that Q = E(Q,...,0n).

The solution to the problem as stated is not unique. That is, there could be multi-
ple global queries Q',..., Q" and corresponding expressions E!, ... E™, such that
the query decomposition procedure will decompose Q' into Q1. .., Q, using E’ (for
1 <i < m). We address this issue in Section 3.3.

3.2 The Multiplex Model for Virtual Databases

To solve the query consolidation problem we must adopt a virtual database model.
Many different architectures have been proposed for virtual databases, and we adopt
the Multiplex architecture [Motro(1999)]. The advantages of Multiplex that are at-
tractive include its simplicity and generality. Simplicity is due to the fact that Mul-
tiplex assumes that all databases are in the well-known relational model, without
introducing any new concepts or structures. Generality is achieved by the method in
which the global and local databases are associated, namely by arbitrary view pairs.

We begin by defining the language for all queries and views. We assume the
subset of the relational algebra defined by the operators selection, projection and
Cartesian product (SPCﬂ with selections that are purely conjunctive. Although this
family of queries is a restricted subset of the algebra (i.e., it excludes union, differ-
ence, non-conjunctive selections), it is often considered adequately expressive for

the large portion of queries used in the real world [Levy et a!(199g)%. In has been
shown that any expression in this language can be written in the fornl3:

Q = my0c(R; xRy % ... X Ry) (1

Assuming expressions in this form often simplifies discussions and proofs.
A Multiplex database is:

1. A global database scheme D,

2. A set Dy,...,D, of local database schemes, and their associated database in-
stances dy, .. .,dy, and

3. Aset (V1,Uy),...,(Vin,Up) of view pairs, where each V; is a view of the global
scheme D, and each U; is a view of one of the local schemes.

Thus, the global database scheme D has no associated database instance. Instead,
there is a collection of views of this scheme that are materialized using the corre-
sponding local views, i.e., the instance of the global view V; is materialized by the
instance of the view U; (in the appropriate local database).

1 Or, equivalently, selection projection, join, rename (SPJR).
2 See [Abiteboul et al(1995)] for proof.
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Assume a virtual database as previously defined, and let Q be a query submitted
to its scheme D. The decomposition of Q can be outlined in this 7-step procedure :

w =

that are relevant to Q.

Nowns

As described in step 3, the local query Q; retrieves only part of the view U;. If this
cannot be accomplished due to local limitations, then Q; would have to retrieve all
of Uj;, and the answer A; would have to be processed to extract the part relevant to
Q. An example decomposition is shown in Fig.[Il Notice that while a fourth source
exists in the example it is not utilized by the decomposition since the global query

does not require it.

Evaluate Q; in the local databases, obtaining answers A;.
Extend A; with nulls, creating instances A; of scheme R.
Coalesce the instances A; to a single instance A.

Apply Q’s selection and projection operators, yielding an answer A to the query Q.

Create a global relation scheme R for the Cartesian product operations in Q.
Determine the views V; that are relevant to Q (i.e., overlap with Q).
Construct queries Q; to retrieve from the corresponding local views U the parts

! Input ;
| Global Query ! Global A
! obal Answer
! Q= f(R1 x R) :
I |
____________________________ »
7 \
\
Q \
| A
Global Scheme ‘ ‘\‘
R R1 23 A \\ dom(A) =R
A —A|3
V,
4 4 Ag

Source 1

(Ch) (Up)

Source 2

Source 3 Source 4

(Ug)

(Uy)

Fig. 1 Query Decomposition
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3.3 Assumptions on Sufficiency and Necessity

We interpret the consolidating query Q as the goal of the user in submitting the
queries Qi,...,0,. This assumes that the user is not using information obtained
elsewhere to achieve his goal. In other words, we adopt a principle of sufficiency:
The information in the local queries Qy, ..., Q, is sufficient to achieve the goal, and
hence can be approximated by an appropriate consolidation.

Recall that we characterized query decomposition as a procedure with a unique
outcome. Consider a simple global query that retrieves a single value such as a per-
son’s age. Obviously, there could be multiple correct decompositions. For example,
the local query Q; could retrieve just the person’s age; or it could retrieve that per-
son’s entire tuple, and the expression E would project the age; or it could retrieve
the tuples of multiple persons and E would select that person’s tuple and project the
age. The guiding principle of the query decomposition procedure is to retrieve from
the local databases as little as possible, taking advantage of the local system’s query
processing capabilities. This reduces possible costs charged by the local database,
as well as the costs and time of transmitting the data. Hence, the decomposition
adopted is one that optimizes the process.

A similar principle will guide our query consolidation procedure. In the previous
example, assume a given local query Q; that retrieves tuples of multiple persons.
From this, one could conclude a global query Q that needs all this information; or
one that selects a single tuple from the set; or one that extracts the age of a par-
ticular person. A principle that guides the query consolidation procedure is that of
necessity: All the information given in the queries is assumed to be necessary for the
global query. The consolidation necessity principle is similar to the decomposition
optimality principle: both assume that all information extracted from local databases
is necessary, either to answer Q (decomposition) or to conclude Q (consolidation).

We note that both assumptions are at times unjustified. The user may have some
additional information that may be instrumental in achieving his goal. Or he may
submit non-optimal queries that retrieve unnecessary information (or he may be
dishonest, attempting to hide his true goals). We discuss such situations in Section[3]
where we outline on-going and future work.

Note that while the necessity principle limits the problem space considerably, it
does not generate unique consolidations. This issue is addressed next.

4 Methodology

In rough strokes, our overall approach may be sketched as follows. We assume a
virtual database is available that integrates local databases Dy,...,D, in a global
scheme D. Given local queries Q1,...,0,, we follow a procedure that roughly re-
verses query decomposition:

1. For each local query Q;, determine the views U; that are relevant (that overlap
with Q).
2. Process the answers A; to obtain the part A; that is within U;.
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3. Inthe virtual database, materialize the corresponding views V; with the answers A;.
4. Populate the relations Ry with materialized views V.

As described in steps 1 and 2, it is possible that a local query Q; would not be
contained in a local view Uj, causing some data to be discarded when global struc-
tures are populated. As this will decrease the effectiveness of the consolidation, we
assume that all local queries are contained in mapped views.

Let Ry, be the global relations populated by at least one view V;. These relations
must now be joined meaningfully. If a view V; joins two (or more) of these relations,
then a join is implied. Hence, the relations R; are clustered with implied joins, but
the clusters still need to be joined.

Assume now that a decision has been made on the remaining joins. A single
relation scheme is thus obtained. If it includes attributes that are not in any of the
views V;, they are removed. Denote the resulting scheme R. The global query Q
is assumed to be embedded in R. A schematic representation of the counterpart
consolidation for the previous decomposition example (Fig.[I) is given in Fig.

Consolidated Consolidated
Query Answer
Q= f(R1 x R) 13 .
\\
/ \
\
\
\
\
Global Scheme / A‘
\\
O \
R Ro N\
Q’% \ —
] A Y Q= dom(A)
Q A .
A
4 A _|3
/ 4

Source 2
(Uo)

Source 1
Uy)

Source 4
Uy

Source 3
(Ug)

Fig. 2 Query Consolidation



234 A.C. Acar and A. Motro

We now consider processing R by selection and projection, as the canonical rep-
resentation of Q suggests (Equation[I). The necessity assumption implies that this
relation should not be subjected to any selections based on constants, as these should
have been done in the local queries. Similarly, the necessity assumption implies that
this relation should not be subjected to projections, as these could have been done
in the local queries as welll}

The multiplicity of possible consolidations is therefore due to two sources:

. The given relations may be joined in different ways.
. The resulting relation could be subjected to different global selections (selections
that compare attributes retrieved from different local queries).

[N

We handle these issues consecutively. First, we generate all the possible join
plans and rank them according to plausibility. Then, for each join plan, we suggest
possible global selections, ranking them as well.

4.1 Inferring Joins

Upon materializing the views V; from the received answers A;, and then populating
the relations Ry with these views, we find that a view may be contained in a relation,
or several views may be contained in the same relation, or a view may span several
relations. Consider the example in Figure Bt V| spans relations Ry and R;, both V,
and V3 are contained in R3, and Vj is contained in R4. The task now is to join the
relations that received data; all other relations are ignored.

Vg

Aq Ay Ag Ay

Alternative Join Path

——————— Discarded Join Path

Locked Join Path

Fig. 3 View Mapping and Join Paths

3 Possibly, some join attributes may not be required in the ultimate query Q, but we shall
ignore this possibility for now.
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The global scheme contains information (essentially, foreign key constraints) that
establishes possible relationships among its relations. Figure Bl also shows the rela-
tionships among the four relations. Initially, we ignore the relationships that can-
not be used because none of their attributes were materialized. These are shown
as dashed lines. Furthermore, any relations that are spanned by a single view are
considered to be joined unambiguously. Therefore, the join implied by the spanning
view is “locked” and all its alternatives (i.e., other join paths between the two rela-
tions) are ignored. Thus, we obtain a graph in which vertices are relations and edges
are possible joins. The join graph for the example is given in Figure[l Locked joins

are shown in bold lines.

Fig. 4 Join Graph

A join plan is a tree that spans this graphEI We can therefore obtain all the possible
join plans by enumerating the spanning trees in the join graph. To rank these plans
with respect to plausibility, we assign a score to each tree: We assign a weight to
each edge, and, as all spanning trees have the same number of edges, the score of a
tree is the sum of its edge weights. Mandatory edges indicating locked joins (such
as the one between R; and R,) are handled by merging their two end vertices.

We now describe a method for assigning weights to edges, to indicate the plau-
sibility of the corresponding joins. Our fundamental assumption is that joins over
foreign keys are to be preferred, and when foreign key information is not available,
or when the data retrieved does not obey foreign key constraints, extension-based
relationships that most resemble foreign keys are to be preferred. Hence our method
quantifies the levels to which attribute relationships obey referential constraints. The
method is based on the concept of entropy in information theory.

Consider a relation R with attribute A, and let Dom(A) be the set of distinct values
in attribute A. The entropy of A is defined as

H(A)= 3 —p()log,p(i)
i€Dom(A)

4 Although join plans that include cycles are possible, we consider them to have low plausi-
bility.
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p(i) is simply the proportion of tuples in which it occurs. Intuitively, H (A) measures
the uniformity of the distribution of the values of A. Assuming n distinct values,
entropy ranges between 0 and log,(n). The maximal value corresponds to perfect
uniformity of distribution (lowest information content); for example, when dom(A)
includes 4 distinct values, and each occurs 5 times, then H(A) = log,(4) = 2. In
this case, it is the number of bits required to represent the values of dom(A). Hence,
entropy is measured in bits. We define the entropy of a relation R as the sum of the
entropies of its attributes.

Assume now that attribute A is used to partition the tuples of R into several non-
overlapping sets (the tuples in each set have the same value of A), calculate the
entropy of each slice of the partition, and then average these slice entropies. The
value obtained is the average entropy of this partition by A:

o EiEDom(B) H(GA=i(R))
HA®) = Dom ()

In our case, assume attribute A participates in a join with an attribute from another
relation, say S.B. This join induces a partition of R by attribute A, and the average
partition entropy is therefore associated with that join. We refer to this as posterior
entropy. Finally, we combine the apriori entropy of R and its posterior entropy in
an expression that measures the relative entropy reduction, or information gain, that
can be attributed to the join:

H(R) — Hp(R)

IB(R) = H(R)

Note that a join between R and S on attributes A and B, respectively, modifies the
entropy of both R and S. That is, the join is associated with two different information
gain values: Ig(R) and I, (S). We assign the higher of these as the weight of the join
edgeE

We illustrate these definitions with five short examples. Consider relations

R(A’B) = {(1,b1),(2,b2)7(37b3),(4,b4)}
S(A,C) = {(2761)7(3762)7(4763)7(5764)}

and a join between R.A and S.A. It is a one-to-one matching and it results in three
tuples. Consider now the effect of the join on the entropy of S. Initially, the entropy
of the attributes of S are H(S.A) =2 and H(S.C) = 2, and the apriori entropy is
therefore H(S) = H(S.A)+ H(S.B) =2+ 2 = 4. When the join iterates over the four
values of R.A it creates in S four slices: A = 1 creates an empty slice, A = 2 creates
{(2,¢1)}, A =3creates {(3,c2)}, and A = 4 creates { (4, c3) }. Each slice has entropy
0+ 0 =0, and the posterior entropy is therefore Hy(S) = (0+0+0+0)/4 = 0.
Consequently, the information gain for S from this join is [4(S) = (4 —0)/4=1.In
this case, the information gain for R from this join would be identical: I (R) = 1.

3 The spanning tree algorithm uses the lower values to resolve ties.
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As a second example, consider

R(AaB) = {(Lbl)a(27b2)7(3vb3)7(47b4)}
S(A’C) = {(2,01),(2,6‘2),(3,6‘3),(3,6‘4),
(4’05)’(4’06)’(5’07)’(5’68)}

and a join between R.A and S.A. It is a one-to-many matching in which every tuple
of R matches zero or two tuples of S, and it results in six tuples. The apriori entropy
of Sis H(S) = H(S.A)+ H(S.B) = 2+ 3 = 5. When the join iterates over the four
values of R.A it creates in S one empty slice and three slices with two tuples each:
{(2,¢1),(2,¢2)}, {(3,¢3),(3,ca)} and {(4,c5), (4,c6) }. The empty slice has entropy
0, and each of the other three slices has entropy 0+ 1 = 1, and the posterior entropy
is therefore Hy(S) = (0+ 1+ 14 1)/4 = 0.75. Consequently, the information gain
for S from this join is I4 (S) = (5—0.75)/5 = 0.85. The information gain for R from
this join would be I4(R) = 1.
Next, consider a join between

R(A7B) = {(lab1)7(27b2)a(3vb3)7(47b4)}
S(Avc) = {(2761)7(27C2)7(37C3)7(47C4)7(4vc5)7(57C6)}

It is a one-to-many matching in which tuples of R match different numbers of tuples
of S, and it results in 5 tuples. The apriori entropy is H(S) = 4.5 and posterior
entropy is H4 (S) = 0.5. The information gain for S is I4 (S) = 0.89. The information
gain for R would be I4(R) = 1.

Next, consider

R(A,B) = {(1,b1),(1,b2),(2,b3),(2,b4),
(3,5),(3,b6),(4,b7),(4,b3) }

S(A,C) = {(2,c1),(2,¢2),(3,¢3), (3, ca),
(4,¢5),(4,¢6),(5,¢7),(5,c8) }

It is a many-to-many matching in which every tuple of R relation matches zero or
two tuples of S. Both information gains are identical: I (S) =0.85 and I4(R) = 0.85.
Finally, consider

R(A,B) = {(1,b1),(2,b2),(2,b3),(2,b4),
(3,b5),(4,b5), (4,b7),(4,b8)}
S(A,C) = {(2,¢1),(2,¢2),(3,¢3),(3,c4),
(4,¢5),(4,¢6),(4,¢7),(5,c8)}
It is a many-to-many matching in which tuples of R match different numbers of
tuples of S. The information gains are I, (S) = 0.82 and I4(R) = 0.83.

The examples demonstrate how the method is sensitive to the selectivity of the
join (on both participating relations). A join matching a single tuple is scored with
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perfection, and as the average number of tuples matched increases, the score de-
creases. Therefore, on average, a one-to-n join will be scored higher than a one-to-m
join when n < m.

This method is an information theoretic way of quantifying referential con-
straints. If a foreign attribute has an information gain of 1 over a relation, that re-
lation is functionally dependent on the attribute. A one-to-one relationship is one
where gains in both directions are 1. A one-to-many relationship has gain of 1 in
one direction. Indeed, this approach generalizes the definition of dependency from
a binary concept to a gradual one. The more an attribute acts like key, the closer its
gain will be to 1. Conversely, an attribute that has no selectivity at all will have a
gain of 0.

Once the weights are assigned to each edge, the enumeration of spanning trees
can be done by a variety of algorithms. We use the algorithm reported by Kapoor and
Ramesh [Kapoor and Ramesh(1995)]], which allows the enumeration of an arbitrary
number of spanning trees in order of total weight (i.e., the top-k trees can be listed
without necessarily enumerating every candidate).

4.2 Inferring Global Selections

Once a viable join is found among the relations and the irrelevant attributes are re-
moved, a single relation R is obtained that encompasses the information retrieved
by the user from the various sources. Our sufficiency principle guarantees that the
sought-after goal of this user is embedded in this relation. As previously discussed,
to achieve his goal, the user who gathered this information could apply further oper-
ations to R. Yet, the principle of necessity implies that these operations are global se-
lections: comparisons between attributes that were retrieved from different sources.

Domain information available in the global scheme reduces the number of possi-
ble global comparisons, as the pairs of attributes that can be compared are known.
Nonetheless, the number of possible comparisons is still prohibitively large.

Our approach to the problem of inferring likely global comparisons is to extract
pertinent knowledge from the guery repository. This repository is a log of queries
that have been previously submitted to this virtual database, and thus includes infor-
mation on likely global comparisons. We shall refer to this repository as our training
set.

Referring to the tax example, if there are a significant number of examples in our
training set that project the attributes ( TaxOwed, TaxWithheld ), and a significant
portion of these also include the selection predicate TaxWithheld > TaxOwed, then
we can infer the rule:

IT(TaxWithheld) N\ IT(TaxOwed) —
o (TaxWithheld > TaxOwed)

A similar problem has been researched extensively in the area of data mining. The
goal of association analysis is to analyze sets of transactions to discover frequent
item sets. The classical example is market basket analysis, where purchase records
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of retailers are mined to find out which products are purchased together (e.g., beer
and peanuts).

In analogy, we mine our training set of queries to find out which attributes are
frequently projected together. Furthermore, we would like to determine whether the
fact that a set of attributes is projected also implies a comparison. We therefore mine
our training set of queries for sets of projected attributes that have at least a certain
degree of supportf] The threshold for support depends on many factors, including
the number of attributes in the domain, the size of the training set, and the extent of
generality desired.

In our case, we prefer to set the support level so that the total occurrences of the
set of projected attributes is above some absolute number, a number that reflects
significant interest in those attributes. Consequently, as the training set gets larger
(while the threshold of occurrences is maintained), the level of support decreases.
The result is an increase in the number of rules generated and in the time required
for training. Hence, the support threshold is a compromise between the desire to
discover all the significant attribute sets, and practical considerations of rule-base
size and time.

Once a threshold is set, a standard algorithm is used to find maximal frequent
item sets (we use MAFIA). Yet, a difference between our case and that of standard
association analysis should be pointed out. In our case, the item sets must have two
distinct and non-empty subsets: a set of projected attributes and a set of selection
constraints. This requirement results in substantial reduction in the time needed for
the algorithm. Consider an example market basket such as:

{Beer,Milk,Diapers} 2)

having a support of, say 10%. Standard rule generation partitions this frequent item-
set to generate a rule such as:

Milk A\ Diapers — Beer (3)

where the probability of beer existing in a basket is above a certain threshold (viz.
minimum confidence). A query in a training set is analogous to a basket in a database
of transactions. However, in the case of queries, we have two distinct subsets associ-
ated with each query, namely the set of projected attributes and the set of constraints.
Thus the following SQL query for example:

SELECT Al, A2
FROM R
WHERE Cl1 AND C2;

would be a record in our training set in an ordered-pair form:

{{A1,42},{C1, G }} 4)

6 When a set of n cases suggests a rule or association of the type ot — B, the ratio ‘f:‘ is the
support of the rule, and the ratio “g“ is its confidence.
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Ultimately, we require rules that have a conjunction of elements from the first
part of the pair in the antecedent and elements of the second part in the consequent,
e.g.

AL NAy — C 5)

Therefore, we do not need any itemsets that contain only comparisons. This al-
lows us to limit the search for frequent itemsets even further. Consider the search
tree given in Figure[3l This tree maps out how our search for frequent patterns pro-
gresses.

Fig. 5 Partial Evaluation of Lattice. Prefix tree shows the search space of a depth-first search.
A; are projected attributes, C; are comparison predicates. The grey shaded nodes are pruned
away before searching.

Because one of the distinct sets can never occur in the head of a rule, we can
prune a good portion of a prefix-ordered search tree. Namely, none of the subtrees
that are rooted at a C; node need be visited, since none of these trees will have any
nodes which contain any projected attributes, A;. Such nodes will only lead to rules
without antecedents and are therefore not needed. In Fig.[3l these nodes are shaded
gray.

The discovered item sets generate rules much like in standard association rule
mining. Each item set is partitioned into a rule such that, given the items in its
antecedent (the projected attributes), the queries in the training set have at least
a minimum probability of having its consequent (a comparison or conjunction of
comparisons).
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The rule base thus mined is used to finalize candidate consolidations with the
most likely global selections, as follows. Once a single relation has been formed
by the appropriate joins, its attributes are compared against the rule base. When the
attributes match the antecedent of a rule, the selection constraint of its consequent
is retrieved. These possible completions of the query are ranked by the confidence
of the rule.

5 Conclusion

We described a new problem, which we termed query consolidation. Query consol-
idation seeks to interpret a set of disparate queries that were submitted to indepen-
dent databases with a single global query: A query that expresses the ultimate goal
of the user. Setting the problem in the architecture of a virtual database, it exhibits
attractive duality with the much-researched problem of query decomposition.

We assumed that the independent databases to which the component queries are
submitted are “monitored” by means of a virtual database. Since the same set of
queries could be consolidated in different global queries (all of which will decom-
pose back to the same component queries), our solution ranks the possible consol-
idations. The rankings are derived from our own treatment of the problems of join
inference and selection constraint discovery.

The assumption that the databases had been integrated previously in a virtual
database implied the existence of a global scheme. This scheme provided semantic
associations among the individual queries, and thus simplified the task of consolida-
tion. A more challenging situation is when such a virtual database had not been con-
structed. In this situation the extensions of given queries must be analyzed to infer
their semantic associations, a task reminiscent of the well-known scheme-matching
problem [Rahm and Bernstein(2001), Berlin and Motro(2002)].

Much of the research described in this chapter has been completed, and a pro-
totype system has been implemented. Indeed, the research and implementation ad-
dressed also the more difficult problem just described. Work is continuing in several
directions, and we mention here briefly four problems under current investigation.

We assumed the given queries Q1,...,Q, constitute a single task. The first issue
is how to cull from query logs (whether logs of a single database or logs of multiple
databases) a set of queries that constitute one task. Another issue is the relaxation
of the assumptions on sufficiency and necessity; that is, how to find an interpret-
ing global query when the set Oy, ..., 0, is neither sound (some queries should be
discarded) nor complete (some information has been obtained externally). Choos-
ing consolidating queries often poses an interesting dilemma, as to which consol-
idation should be preferred: a complex query that integrates all the gathered infor-
mation precisely, or a simpler query that only approximates the total of informa-
tion [[Shum and Muntz(1988)]. Quite often the latter is more revealing, especially in
situations when the query set is imperfect to begin with. Finally, security-oriented
applications of this problem often require that the discovery of roguish intentions
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would be done in real-time. This means that sequences of queries are analyzed as
they are formed, and their interpretations are updated continuously as the sequences
progress. Obviously, real-time interpretations pose challenging performance issues.
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