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Abstract—In this letter, joint optimization of signal structures
and detectors is studied for binary communications systems
under average power constraints in the presence of additive
non-Gaussian noise. First, it is observed that the optimal signal
for each symbol can be characterized by a discrete random
variable with at most two mass points. Then, optimization over
all possible two mass point signals and corresponding maximum
a posteriori probability (MAP) decision rules are considered. It
is shown that the optimization problem can be simplified into
an optimization over a number of signal parameters instead of
functions, which can be solved via global optimization techniques,
such as particle swarm optimization. Finally, the improvements
that can be obtained via the joint design of the signaling and the
detector are illustrated via an example.

Index Terms—Stochastic signaling, MAP decision rule.

I. INTRODUCTION AND MOTIVATION

IN binary communications systems over additive white
Gaussian noise channels and under average power con-

straints in the form of E{∣s𝑖∣2} ≤ 𝐴 for 𝑖 = 0, 1, the average
probability of error is minimized when deterministic antipodal
signals (s0 = −s1) are used at the power limit (∣s0∣2 = ∣s1∣2 =
𝐴) and a maximum a posteriori probability (MAP) decision
rule is employed at the receiver [1]. In addition, when the
Gaussian noise is colored, the deterministic antipodal signals
along the eigenvector of the covariance matrix of the Gaussian
noise corresponding to the minimum eigenvalue minimizes
the average probability of error [1]. Although the optimal
detector and signaling techniques are well-known when the
noise is Gaussian, the noise can have significantly different
probability distribution from the Gaussian distribution in some
cases due to effects such as interference and jamming [2].
In the presence of non-Gaussian noise, stochastic signaling,
which models signals s0 and s1 as random variables, can
result in improved probability of error performance compared
to deterministic signaling. In [3], optimal stochastic signaling
is studied under second and fourth moment constraints for
a fixed decision rule (detector) at the receiver, and sufficient
conditions are presented to determine whether stochastic sig-
naling can provide performance improvements compared to
deterministic signaling. In [4], randomization between two
deterministic signal pairs and the corresponding MAP decision
rules is studied under the assumption that the receiver knows
which deterministic signal pair is transmitted. It is shown
that power randomization can result in significant performance
improvement.

Although optimal stochastic signaling is studied for a fixed
detector in [3] and the effects of randomization between two

Manuscript received September 18, 2009. The associate editor coordinating
the review of this letter and approving it for publication was W. Hamouda.

The authors are with the Dept. of Electrical and Electronics Engineering,
Bilkent University, Bilkent, Ankara 06800, Turkey (e-mail: {goken, gezici,
oarikan}@ee.bilkent.edu.tr).

Digital Object Identifier 10.1109/LCOMM.2010.02.091875

signaling approaches are considered in [4], no studies have
focused on the joint optimization of stochastic signaling and
the decision rule (detector). In this letter, this joint optimiza-
tion problem is formulated, which involves optimization over a
function space. Then, theoretical results are provided to show
that the optimal solution can be obtained by searching over a
number of variables instead of functions, which greatly simpli-
fies the original formulation. In addition, a global optimization
approach, namely particle swarm optimization (PSO) [5], is
employed to obtain the optimal signals and the decision rule.

The main motivation behind this study is to provide the-
oretical performance limits on the error probability of com-
munications systems under power constraints. It is assumed
that there is a feedback from the receiver to the transmitter so
that the joint optimization of the signaling structure and the
decision rule can be performed. This scenario is reasonable
for cognitive radio systems, and provides theoretical limits on
the error performance of other communications systems.

II. OPTIMAL SIGNALING AND DETECTOR DESIGN

Consider a binary communications system, in which the
receiver obtains 𝐾-dimensional observations over an additive
noise channel:

y = s𝑖 + n , 𝑖 ∈ {0, 1} , (1)

where y is the noisy observation, s0 and s1 represent the trans-
mitted signal values for symbol 0 and symbol 1, respectively,
and n is the noise component that is independent of s𝑖. In
addition, the prior probabilities of the symbols, represented
by 𝜋0 and 𝜋1, are assumed to be known.

The receiver uses the observation in (1) in order to de-
termine the information symbol. A generic decision rule
(detector) is considered for that purpose, which estimates the
transmitted symbol based on a given observation y as follows:

𝜙(y) =

{
0 , y ∈ Γ𝜙0

1 , y ∈ Γ𝜙1

, (2)

where Γ𝜙0 and Γ𝜙1 are the decision regions for symbol 0 and
symbol 1, respectively [1].

The average probability of error for a decision rule 𝜙 can
be expressed as Pe = 𝜋0Pe,0 + 𝜋1Pe,1, where

Pe,𝑖 =

∫
Γ𝜙1−𝑖

𝑝𝑖(y) 𝑑y , (3)

for 𝑖 = 0, 1, represents the probability of error, with 𝑝𝑖(y)
denoting the conditional probability density function (PDF)
of the observation, when the 𝑖th symbol is transmitted.

Unlike the conventional case, a stochastic signaling frame-
work is adopted in this study [3], and s0 and s1 in (1) are
modeled as random variables. Since the signals and the noise
are independent, the conditional PDFs of the observation can
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be calculated as 𝑝𝑖(y) =
∫
ℝ𝐾 𝑝 s𝑖(x)𝑝n(y−x) 𝑑x for 𝑖 = 0, 1.

Then, after some manipulation, (3) can be expressed as

Pe,𝑖 = E

{∫
Γ𝜙1−𝑖

𝑝n(y − s𝑖) 𝑑y

}
≜ E {𝑓(𝜙 ; s𝑖)} , (4)

where the expectation is taken over the PDF of s𝑖.

In a practical system, there is a constraint on the average
power of the signals, which can be expressed as [1]

E
{∣s𝑖∣2} ≤ 𝐴 , for 𝑖 = 0, 1 , (5)

where 𝐴 is the average power limit. Then, the optimal signal-
ing and detector design problem can be stated as

min
𝑝 s0 ,𝑝 s1 ,𝜙

𝜋0Pe,0 + 𝜋1Pe,1

subject to E
{∣s𝑖∣2} ≤ 𝐴 , 𝑖 = 0, 1 , (6)

where Pe,𝑖 is as in (4).

The problem in (6) is difficult to solve in general since
the optimization needs to be performed over a space of PDFs
and decision rules. In the following, a simpler optimization
problem over a set of variables (instead of functions) is
formulated to obtain optimal signal PDFs and the decision
rule. To that aim, the following result is obtained first.

Lemma 1: Assume 𝑓(𝜙 ; s𝑖) in (4) is a continuous function
of s𝑖, and each component of s𝑖 resides in [−𝛾, 𝛾] for some
finite 𝛾 > 0. Then, for a given (fixed) decision rule 𝜙, the
solution of the optimization problem in (6) is in the form of

𝑝 s𝑖(y) = 𝜆𝑖𝛿(y − s𝑖1) + (1− 𝜆𝑖)𝛿(y − s𝑖2) , (7)

for 𝑖 = 0, 1, where 𝜆𝑖 ∈ [0, 1].

Proof: When the decision rule 𝜙 is given, 𝑓(𝜙 ; s𝑖) =∫
Γ𝜙1−𝑖

𝑝n(y − s𝑖) 𝑑y in (4) can be considered as a function
of s𝑖 only. In other words, Pe,𝑖 in (4) can be expressed as
Pe,𝑖 = E{𝑓(s𝑖)} for 𝑖 = 0, 1. Since the objective function
in (6) is the sum of 𝜋0Pe,0 and 𝜋1Pe,1, and the average
power constraints are individually imposed on the signals,
the optimization problem in (6) can be decoupled into two
separate optimization problems as follows:

min
𝑝 s𝑖

E{𝑓(s𝑖)} , subject to E
{∣s𝑖∣2} ≤ 𝐴 , (8)

for 𝑖 = 0, 1. Optimization problems in the form of (8) have
been investigated in various studies in the literature [3], [4].
Under the conditions in the lemma, the optimal solution of (8)
can be represented by a randomization of at most two signal
levels as a result of Carathéodory’s theorem [6]. Hence, the
optimal signal PDFs can be expressed as in (7). □

Lemma 1 states that, under certain conditions, the optimal
stochastic signaling involves randomization among at most
four different signal levels (two for symbol “0” and two for
symbol “1”). Therefore, the problem in (6) can be solved over
the signal PDFs that are in the form of (7). Hence, the search
space for the optimization problem is reduced significantly. To
achieve further simplification, the following result is obtained.

Proposition 1: Under the conditions in Lemma 1, the

optimization problem in (6) can be expressed as follows:

min
{𝜆𝑖,s𝑖1,s𝑖2}1

𝑖=0

∫
ℝ𝐾

min{𝜋0𝑔0(y) , 𝜋1𝑔1(y)} 𝑑y

subject to 𝜆𝑖∣s𝑖1∣2 + (1− 𝜆𝑖)∣s𝑖2∣2 ≤ 𝐴

𝜆𝑖 ∈ [0, 1] , 𝑖 = 0, 1 (9)

where 𝑔𝑖(y) = 𝜆𝑖𝑝n(y − s𝑖1) + (1− 𝜆𝑖)𝑝n(y − s𝑖2).
Proof: For a given signal PDF pair 𝑝 s0 and 𝑝 s1 , the condi-

tional probability of observation y in (1) can be expressed as
𝑝𝑖(y) =

∫
ℝ𝐾 𝑝 s𝑖(x)𝑝n(y−x)𝑑x for 𝑖 = 0, 1. When deciding

between two symbols based on observation y, the MAP deci-
sion rule, which selects symbol 1 if 𝜋1𝑝1(y) ≥ 𝜋0𝑝0(y) and
selects symbol 0 otherwise, minimizes the average probability
of error [1]. Therefore, when signal PDFs 𝑝 s0 and 𝑝 s1 are
specified, it is not necessary to search over all the decision
rules; only the MAP decision rule should be determined
and its corresponding average probability of error should be
considered.

From (3), the average probability of error for any decision
rule 𝜙 can be expressed as

Pe =

∫
Γ𝜙1

𝜋0𝑝0(y) 𝑑y +

∫
Γ𝜙0

𝜋1𝑝1(y) 𝑑y . (10)

Since the MAP decision rule decides symbol 1 if 𝜋1𝑝1(y) ≥
𝜋0𝑝0(y) and decides symbol 0 otherwise, the average proba-
bility of error expression in (10) can be expressed for a MAP
decision rule as [7]

Pe =

∫
ℝ𝐾

min {𝜋0𝑝0(y) , 𝜋1𝑝1(y)} 𝑑y . (11)

Since Lemma 1 states that the optimal signal PDFs are in the
form of (7), the conditional PDFs 𝑝𝑖(y) =

∫
ℝ𝐾 𝑝 s𝑖(x)𝑝n(y−

x)𝑑x can be obtained as 𝑝𝑖(y) = 𝜆𝑖𝑝n(y − s𝑖1) + (1 −
𝜆𝑖)𝑝n(y − s𝑖2), and the average power constraints in (6)
become 𝜆𝑖∣s𝑖1∣2 +(1−𝜆𝑖)∣s𝑖2∣2 ≤ 𝐴, for 𝑖 = 0, 1. Therefore,
(11) implies that the optimization problem in (6) can be
implemented as the constrained minimization problem in the
proposition. □

Comparison of the optimization problems in (6) and (9)
reveals that the latter is much simpler than the former since it
is over a set of variables instead of a set of functions. However,
it is still a non-convex optimization problem in general; hence,
global optimization techniques, such as PSO, differential evo-
lution and genetic algorithms, should be employed to obtain
the optimal PDF [5]. In this letter, the PSO approach is used
in the next section to obtain the solution of (9).

After obtaining the solution of the optimization problem in
(9), the optimal signals are specified as 𝑝opts𝑖 (y) = 𝜆opt

𝑖 𝛿(y−
sopt𝑖1 ) + (1 − 𝜆opt

𝑖 )𝛿(y − sopt𝑖2 ) for 𝑖 = 0, 1, and the optimal
detector becomes the MAP decision rule that decides symbol
1 if 𝜋1𝑝

opt
s1 (y) ≥ 𝜋0𝑝

opt
s0 (y) and decides symbol 0 otherwise.

Finally, it should be noted for symmetric signaling, that is,
when s01 = −s11, s02 = −s12 and 𝜆0 = 𝜆1, the optimization
in (9) can be performed over s11, s12 and 𝜆1 only.

III. NUMERICAL RESULTS AND CONCLUSIONS

A numerical example is presented to illustrate the improve-
ments that can be obtained via the joint design of the signaling
structure and the decision rule for scalar observations. The
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Fig. 1. Average probability of error versus 𝐴/𝜎2 for the three algorithms.

noise in (1) is modeled by a Gaussian mixture as in [2] with its

PDF being given by 𝑝𝑛(𝑦) =
1√

2𝜋 𝜎𝐿

∑𝐿
𝑖=1 e

− (𝑦−𝝁𝑖)
2

2𝜎2 , where
𝐿 = 6 and 𝝁 = [0.27 0.81 1.08 − 1.08 − 0.81 − 0.27]
are used. Note that the average power of the noise can be
calculated as E{𝑛2} = 𝜎2 + 0.6318. In addition, the average
power limit in (5) is set to 𝐴 = 1 and equally likely symbols
are considered (𝜋0 = 𝜋1 = 0.5).

In the following, three different approaches are compared.
Gaussian Solution: In this case, the transmitter is assumed

to have no information about the noise PDF and selects the
signals as s0 = −√

𝐴 and s1 =
√
𝐴 , which are known to be

optimal in the presence of zero-mean Gaussian noise [1]. On
the other hand, the MAP decision rule is used at the receiver.

Optimal – Stochastic: This approach refers to the solution
of the most generic optimization problem in (6), which can
also be obtained from (9) as studied in the previous section.

Optimal – Deterministic: This is a simplified version of
the optimal solution in (9). It assumes that the signals are
deterministic; i.e., they are not randomization of two different
signal levels. Hence, the optimization problem in (9) becomes

min
s0,s1

∫
ℝ𝐾

min{𝜋0𝑝n(y − s0) , 𝜋1𝑝n(y − s1)} 𝑑y
subject to ∣s0∣2 ≤ 𝐴 , ∣s1∣2 ≤ 𝐴 . (12)

In other words, this approach provides the optimal solution
when the signals are deterministic.

In Fig. 1, the average probabilities of error are plotted versus
𝐴/𝜎2 for the three algorithms above by considering symmetric
signaling. In obtaining the optimal stochastic solution from
(9), the PSO algorithm is employed with 50 particles and
1000 iterations. Please refer to [5] for the details of the
PSO algorithm1. On the other hand, the optimal deterministic
solution in (12) can be obtained via a one-dimensional search
due to symmetric signaling. From Fig. 1, it is observed
that the Gaussian solution performs significantly worse than
the optimal approaches for small 𝜎 values. In addition, the
optimal approach based on stochastic signaling has the best
performance.

In order to explain the results in Fig. 1, Table I presents the
solutions of the optimization problems in (6) and (12) for the
optimal stochastic and the optimal deterministic approaches,

1The other parameters are set to 𝑐1 = 𝑐2 = 2.05 and 𝜒 = 0.72984, and
the inertia weight 𝜔 is changed from 1.2 to 0.1 linearly with the iteration
number [5].

TABLE I
OPTIMAL STOCHASTIC AND DETERMINISTIC SIGNALS FOR SYMBOL 1.

Stochastic Deterministic
𝐴/𝜎2 (dB) 𝜆1 s11 s12 s1

15 N/A 1 1 1
20 0.1836 1.648 0.7846 0.7927
25 0.2104 1.614 0.7576 0.7587
30 0.2260 1.586 0.7475 0.7476
35 0.2347 1.568 0.7441 0.8759

respectively. Note that the results for symbol 1 are listed
in Table I, and the results for symbol 0 are the negatives
of the signal values in the table since symmetric signaling
is considered. For small 𝐴/𝜎2 values, such as 15 dB, the
optimal solutions are the same as the Gaussian solution, that
is, s11 = s12 = s1 =

√
𝐴 = 1. However, for large 𝐴/𝜎2’s,

the Gaussian solution becomes quite suboptimal and choosing
the largest possible deterministic signal value, 1, results in
higher average probabilities of error, as can be observed
from Fig. 1. For example, at 𝐴/𝜎2 = 30 dB, the optimal
deterministic solution sets s1 = −s0 = 0.7476 and achieves
an error rate of 7.66× 10−3, whereas the Gaussian one uses
s1 = −s0 = 1, which yields an error rate of 0.0146. This
seemingly counterintuitive result is obtained since the average
probability of error is related to the area under the overlaps
of the two shifted noise PDFs as in (12). Although optimal
deterministic signaling uses less power than permitted, it
results in a lower error probability than Gaussian signaling by
avoiding the overlaps between the components of the Gaussian
mixture noise more effectively. On the other hand, optimal
stochastic signaling further reduces the average probability of
error by using all the available power and assigning some
of the power to a large signal component that results in less
overlapping between the shifted noise PDFs. For example, at
𝐴/𝜎2 = 30 dB, the optimal stochastic signal is a randomiza-
tion of s11 = −s01 = 1.586 and s12 = −s02 = 0.7475 with
𝜆0 = 𝜆1 = 0.226 (cf. (7)), which achieves an error rate of
5.95× 10−3.

The results in this letter can be extended to 𝑀 -ary com-
munications systems as well by noting that the average
probability of error expression in (11) becomes Pe = 1 −∫
max{𝜋0𝑝0(y), . . . , 𝜋𝑀−1𝑝𝑀−1(y)}𝑑y for 𝑀 -ary systems.

Then, an optimization problem similar to that in Proposition
1 can be obtained, where the optimization is performed over
{𝜆𝑖, s𝑖1, s𝑖2}𝑀−1

𝑖=0 .
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