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A comparative study of light field representation and
integral imaging

E Sahin* and L Onural

Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey

Abstract: Light field representation is a model for three-dimensional (3D) image representa-

tion and integral imaging is an optical 3D imaging and representation method. A comparative

investigation of light field representation and integral imaging is given in this paper. The

practical integral imaging is shown to be equivalent to the discrete light field representation if

some restrictions are imposed on the light field. On the other hand, it is shown that the integral

imaging is not equivalent to the continuous light field representation. In any case, physical

realisation of an arbitrary abstract light field representation may not be possible due to

restrictions associated with the uncertainty principle related to the spatial and angular

resolutions.

Keywords: light field representation, integral imaging

1 INTRODUCTION

The appearance of the world at any time from any

given point through any given direction can be

represented with the so called plenoptic (plenty of

optic) function, P(x,y,z,h,w,l,t).1 In other words, the

plenoptic function corresponds to the radiance

associated with the light ray, at time t, with wave-

length l, which passes from a three-dimensional (3D)

point (x,y,z) towards the direction (h,w). In order to

ease the notation, we will omit the variation with

respect to t and l. With further assumption of free

space propagation and by keeping the viewing posi-

tions outside the convex hull of the scene, one can

also reduce the dimension of the plenoptic function to

four since the radiance associated with the light ray

along its path will be constant in this case.2

2 LIGHT FIELD REPRESENTATION

The four-dimensional plenoptic function is called light

field.2 The light field is an abstract representation of

the optical power flow associated with the light rays.

Let us define the infinitesimal power emanating from

differential surface dA1 (on an arbitrary surface W1)

and reaching to the differential surface dA2 (on

another arbitrary surface W2) as dP (Fig. 1). We then

associate a power density (for the power flow between

W1 and W2 surfaces) to the ray crossing the two

surfaces at (x1,y1) and (x2,y2) and define it as

L x1,y1,x2,y2ð Þ~ dP

dA1dA2
(1)

We call L(x1,y1,x2,y2) as the light field which can also

be called ray power density by taking into account

physical quantities into consideration.

Instead of using the second surface and the

differential area dA2 on it, it is quite common to

adopt a solid angle model in the literature,1,3 and the

density in that case is called the radiance. However,

we prefer the definition as given by equation (1) for

our purposes. Incidentally, it is straightforward to

establish the relation between the density given in

equation (1) and the radiance by first noting that the

differential solid angle is related to the differential

area dA2 as dV5dA2cos a2/D2, where a2 is the angle

between the ray and the outward normal to the W2

surface at (x2,y2) and D is the distance between (x1,y1)
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and (x2,y2) (Fig. 1). And then the radiance associated

with the ray crossing the two surfaces at (x1,y1) and

(x2,y2) becomes

~
L x1,y1,x2,y2ð Þ~ dP

dA1cosa1dV
(2)

where dP is the radiant power emanating from dA1

and propagating along the cone represented by the

solid angle dV, dA1cos a1 is the projected differential

area on W1 along the direction of the ray and dV is

the solid angle subtended by dA2. Therefore, L and
~
L

are closely related to each other with a normalisation

as

L x1,y1,x2,y2ð Þ~
~
L x1,y1,x2,y2ð Þ

D2
cosa1cosa2 (3)

Discretisation of L(x1,y1,x2,y2) is necessary for digital

processing. Instead of arbitrary surfaces, we assume

the simple two-parallel plane model2,4 where the P1

and P2 planes are usually defined as the camera and

image planes at z5z1 and z5z2, respectively. Let us

assume that the index arrays [m1,n1] and [m2,n2]

represent the locations (m1M1,n1N1,z1) and

(m2M2,n2N2,z2) on the two parallel planes, respec-

tively, where M1, N1, M2 and N2 are the sampling

intervals. Therefore, [m1,n1] represents the centres of

cameras (ideal pinhole camera model), and [m2,n2]

represents the sample points of the images that are

taken by the cameras. We define the discrete power

density of the ray crossing the P1 and P2 planes,

following the definition given by equation (1), as

Ld m1,n1,m2,n2½ �~ P m1,n1,m2,n2½ �
S1S2

(4)

where S1 and S2 are the areas of the pixels on the P1

and P2 planes, respectively, P[m1,n1,m2,n2] is the

power emanating from the pixel represented by

[m1,n1] and reaching to the pixel represented by

[m2,n2] (Fig. 2). Therefore, Ld represents the power

flow between the two pixels: [m1,n1] on P1 and [m2,n2]

on P2. The subscript d denotes that the field is

discrete.

3 INTEGRAL IMAGING

Integral imaging is a 3D imaging method. It provides

autostereoscopic images (allows 3D viewing without

wearing glasses) of 3D scenes.5 The image is captured

on a two-dimensional sensor array by a two-dimen-

sional microlens array where the sensor array is

placed behind the microlens array in a parallel

fashion. Each microlens takes its own image of the

3D scene. The image that is formed behind each

microlens is called elemental image. Therefore, the

parameterisation of the integral imaging is the same

as the two-plane parameterisation of the light field

representation. P1 is the plane on which the microlens

array is placed and P2 is the plane of the two-

dimensional sensor array.

The display stage of integral imaging is constructed

by placing the same microlens array used at the

imaging stage in front of the two-dimensional display

device displaying the elemental images captured by

the two-dimensional sensor array. The integral

imaging renders a pseudoscopic 3D reconstruction

to the observer. There are several ways to convert the

pseudoscopic images to orthoscopic ones.6 Here in

this paper, we consider only the recording stage. It is

trivial to include the display phase in the discussion.

4 RELATION OF LIGHT FIELD

REPRESENTATION TO INTEGRAL IMAGING

The counterpart of two parallel planes of light field

representation in integral imaging is the microlens

1 The relation of solid angle dV with the differential

area dA2

2 Representation of the ray power density in the dis-

crete case
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array plane P1 and the sensor array plane P2.

However, the P2 plane can be easily replaced by its

image P3 which is a hypothetical plane intersecting

the 3D object volume (Fig. 3). It is assumed that the

captured elemental images are all in focus; by the

way, this is necessary for a successful result in integral

imaging. We will include both (P1,P2) and (P1,P3)

plane pairs in the discussion.

Let the light field between P3 and P1 planes be

parameterized via the discrete light field representa-

tion L̂Ld m3,n3,m1,n1½ �. Let the [m1,n1] array represent

the locations of the microlenses where the aperture of

each microlens corresponds to a pixel on the P1

plane. Following the definition given by equation (4),

one can find the power density of the light emanating

from (x0,y0,z0) on the object surface and crossing the

P3 plane at [m3,n3] and reaching the microlens at

[m1,n1] as

Îd m3,n3,m1,n1½ �~ P m3,n3,m1,n1½ �
S1S3

(5)

where S3 is the area of a pixel on P3, S1 is the area

of the aperture of the microlens on P1 and

P[m3,n3,m1,n1] is the total power emanating from

the pixel [m3,n3] and reaching the aperture of the

microlens at [m1,n1]. We used the notation Î to

represent the power density in integral imaging

associated with the points on P3 and P1 planes; I is

reserved for the power density between P1 and P2

planes; similar notation is used for L and L̂.

We place P3 plane at z3 and adjust the locations of

P1 and P2 planes such that P1 and P3 planes become

images of each other due to microlenses. Therefore,

according to the lens magnification equation

z1{z3

z2{z1
~

S3

S2

� �1=2

(6)

where z1, z2 and z3 are again the z-coordinates of the

P1, P2 and P3 planes, respectively, and S2 is the area

of the pixel [m2,n2] which is the image of the pixel

[m3,n3] (Fig. 3).

Since the light power reaching to the microlens

[m1,n1] from an object point (x0,y0,z0) via the pixel

[m3,n3] on P3 flows to the point [m2,n2] on P2

unchanged (lossless lenses), where [m2,n2] is the image

of [m3,n3], using equation (5), we can write

Îd ½m3,n3,m1,n1�~^Id m3, n3,m1, n1½ �S1S3

~P m3, n3,m1, n1½ �

~Id m1, n1,m2, n2½ �S1S2: (7)

Hence we can write

Îd m3,n3,m1,n1½ �~Id m1,n1,m2,n2½ � S2

S3

� �
(8)

and this is consistent, as expected, with the lens

magnification between the P2 and P3 planes.

Together with equation (8), the two equations

L̂d m3,n3,m1,n1½ �~Îd m3,n3,m1,n1½ �

Ld m1,n1,m2,n2½ �~Id m1,n1,m2,n2½ �
(9)

establish the desired equivalence either between

(P1,P3) plane pairs or (P1,P2) plane pairs.

Therefore, the integral imaging can be represented

as a discrete light field either between P3 and P1 or

between P1 and P2 plane pairs, provided that the

depth of focus of the microlenses is large enough to

focus any point on the 3D object into a pixel on P2

plane.7 Please also note that this equivalence is valid

under the assumption that there is no cross-talk

between the elemental images from different micro-

lenses. In other words, we restrict the set of light

frustum within a finite propagation angle behind each

microlens such that overlaps are prevented. This can

simply be achieved by partitioning the sensor array

plane to non-overlapping regions such that each

partition corresponds to the elemental image of a

particular microlens and the leakage from a micro-

lens to the elemental image of any other microlens is

prevented.8

In order to relate the integral imaging to the light

field representation in the continuous case, we need

infinitely many infinitesimal microlenses on the

infinite extent P1, and infinitely many infinitesimal

sensors on the infinite extent P2 plane. Let us assume

that the microlenses still possess the properties of an

ideal lens even when their aperture sizes tend to zero.

In this case, elimination of the cross-talk is practically

impossible since each elemental image size will also

be infinitesimally small. Hence, the integral imaging

3 Parameterisation of the light power density in inte-

gral imaging
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is not equivalent to the continuous light field

representation.

In all previous discussions, we assumed that

microlenses provide a sufficient angular resolution

for our purposes. However, physically a microlens

having an infinitesimal aperture size behaves like a

point light source and diffracts the incoming ray in an

equally weighted manner to all angles. Hence, its

angular resolution will be zero. In other words, our

ability to assign an arbitrary propagation angle

distribution is lost. This practical issue is a direct

consequence of the uncertainty principle which states

that we cannot achieve infinite resolution in both time

and frequency of a signal.9 Time-frequency represen-

tation corresponds to space–angle representation in

our context. Therefore, the representation of the ray

power densities with infinite resolution in both space

and angle variables is impossible via the light field

representation due to physical nature of light.

5 CONCLUSION

In conclusion, the integral imaging is equivalent to

the discrete light field representation provided that

the light rays are restricted within a finite propaga-

tion angle so that there is no cross-talk between the

elemental images from different microlenses. The

apertures of the microlenses and sensors correspond

to pixels on the P1 and P2 planes, respectively, of the

discrete light field representation. In the continuous

case, the integral imaging is not equivalent to the light

field representation since the elimination of the cross-

talk between the elemental images becomes practi-

cally impossible. Furthermore, in this case, an

infinitesimal microlens cannot keep its lens properties

and does not provide infinite resolution in both space

and angle since it behaves like a point light source

and thus diffracts the incoming ray by equally

distributing the incoming power in all directions. It

is impossible to get infinite resolution in both space

and angle due to physical nature of the light. These

facts are the direct consequences of the uncertainty

principle. At that point, it is necessary to incorporate

the uncertainty principle into the formulation to

obtain a more accurate model. Relating the light field

representation to the integral imaging may result in

important developments in integral imaging by

linking the computer graphics approaches to it, and

vice versa. The established link is also useful in

understanding the limits of practical implementation

of light fields.
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