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Abstract

The subset complex �(G) of a finite group G is defined as the simplicial complex whose simplices
are non-empty subsets of G. The oriented chain complex of �(G) gives a ZG-module extension
of Z by Z̃, where Z̃ is a copy of integers on which G acts via the sign representation of the regular
representation. The extension class ζG ∈ Ext|G|−1

ZG
(Z, Z̃) of this extension is called the Ext class

or the Euler class of the subset complex �(G). This class was first introduced by Reiner and
Webb [The combinatorics of the bar resolution in group cohomology, J. Pure Appl. Algebra 190
(2004), 291–327] who also raised the following question: What are the finite groups for which ζG

is non-zero?
In this paper, we answer this question completely. We show that ζG is non-zero if and only if

G is an elementary abelian p-group or G is isomorphic to Z/9, Z/4 × Z/4 or (Z/2)n × Z/4 for
some integer n ≥ 0. We obtain this result by first showing that ζG is zero when G is a non-abelian
group, then by calculating ζG for specific abelian groups. The key ingredient in the proof is an
observation by Mandell which says that the Ext class of the subset complex �(G) is equal to the
(twisted) Euler class of the augmentation module of the regular representation of G.

We also give some applications of our results to group cohomology, to filtrations of modules
and to the existence of Borsuk–Ulam type theorems.

1. Introduction

Let G be a finite group and let X be a finite G-set, say of order n + 1. The subset complex of X is
defined as the simplicial complex �(X) whose simplices are non-empty subsets of X. One can choose
an orientation on �(X) by choosing an ordering x0 < · · · < xn for elements of X. The oriented chain
complex of �(X) augmented by a copy of the trivial module gives an exact sequence of ZG-modules

εX : 0 −→ Z̃ −→ Cn−1(�(X)) −→ · · · −→ C0(�(X)) −→ Z −→ 0,

where Z̃ is a copy of the trivial module on which G acts via the sign representation of X. Associated
to this exact sequence, there is an extension class ζX ∈ Extn

ZG(Z, Z̃). This class was first introduced
by Reiner and Webb [14] and is called the Ext class of the subset complex of X.

In [14], it is shown that the extension class ζX is an essential class when X = G/1 is the transitive
G-set with a point stabilizer. In this case, �(X) is the subset complex of the group G, and we denote
the associated Ext class by ζG. Note that if ζG is a non-trivial class, then this means that the group G has
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44 A. GÜÇLÜKAN AND E. YALÇIN

non-trivial essential cohomology. On the other hand, if ζG is zero, then the hypercohomology spectral
sequence associated to the subset complex collapses at the E2-page. Because of these consequences,
Reiner and Webb asked for which finite groups ζG �= 0.

In this paper, we give a complete answer to this question. Our starting point is the observation
that the extension class ζG is, in fact, the (twisted) Euler class of the augmentation module IG =
ker{RG → R}. In their paper, Reiner and Webb [14] attribute this observation to Mandell, but they
do not provide a proof. Since our arguments are based on this observation, we give a proof of this
fact in Section 2. Because of this observation, we sometimes call the Ext class ζG, the Euler class of
the subset complex to emphasize that it is an Euler class.

It has been shown in [14] that ζG is zero when G is not a p-group. Therefore throughout the paper
we consider only p-groups. The main result of the paper is the following:

THEOREM 1.1 If G is a finite non-abelian group, then ζG = 0.

The proof follows from a reduction argument. We show that if ζG is non-zero then ζH/K is non-zero
for every subquotient H/K of G. Thus the minimal counterexample to Theorem 1.1 should have all
proper subquotients abelian. It is easy to classify non-abelian p-groups whose proper subquotients
are all abelian. Such p-groups are either of order p3 or isomorphic to the modular group Mpk with
k ≥ 4. By direct calculation, we show that the Euler classes of the augmentation modules of these
groups are all zero. This proves Theorem 1.1.

In the rest of the paper, we consider abelian p-groups. First we show that ζG is zero when G is
isomorphic to Z/8 or (Z/4)2 × Z/2, and hence conclude that any group which has a subquotient
isomorphic to one of these groups has zero Euler class. This shows that if G is a 2-group with
ζG �= 0, then G is either elementary abelian or is isomorphic to Z/4 × Z/4 or (Z/2)n × Z/4 for
some n ≥ 0. Then, we show that the Euler class ζG for these groups is non-zero. For p > 2, we use
similar arguments and obtain that ζG is non-zero if and only if G is elementary abelian or isomorphic
to Z/9. Hence, we conclude the following:

THEOREM 1.2 Let G be a finite abelian group. Then, ζG is non-zero if and only if G is either an
elementary abelian p-group or is isomorphic to Z/9, Z/4 × Z/4 or (Z/2)n × Z/4 for some integer
n ≥ 0.

There are many consequences of Theorems 1.1 and 1.2. In Section 6, we discuss some immediate
consequences such as the classification of p-groups for which the mod p-reduction of ζG is zero. We
also give a complete list of p-groups which has (ζG)2 �= 0. In Section 7, we give some applications of
our results to filtrations of modules. Another application of our results is to the existence of Borsuk–
Ulam type theorems which are in turn related to the Tverberg problem in combinatorics. We discuss
these in Section 8.

In Section 9, we consider the hypercohomology spectral sequences associated to the boundary
of the subset complex. When G is not one of the groups listed in Theorem 1.2, the cohomology
spectral sequence collapses at the E2-page. In particular, the edge homomorphism H ∗

G(pt, Z) →
H ∗

G(∂�(G), Z) induced by the constant map ∂�(G) → pt is injective. Since the G-complex ∂�(G)

has no fixed points, this gives, for example, that the essential ideal is nilpotent with nilpotency degree
≤ |G|. The collapsing of the cohomology spectral sequence also allows one to look at the isotropy
spectral sequence to obtain information about the integral cohomology of G.

In Section 10, we consider the barycentric subdivision of the subset complex. The reason for
introducing the barycentric subdivision is that as a G-complex, the subset complex is not admissible.
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THE EULER CLASS OF A SUBSET COMPLEX 45

This causes problems when we want to calculate the product structure of the cohomology ring using
the hypercohomology spectral sequence associated to the subset complex. Our main result in this
section is a formula for the permutation modules appearing on the chain complex of the barycentric
subdivision. We use a power series approach which was introduced by Webb in [20] and later used
in [14].

2. The twisted Euler class of a real representation

The main purpose of this section is to show that the Ext class ζX is equal to the twisted Euler class of
the augmentation module IX = ker{RX → R} after suitable identifications. By twisted Euler class,
we mean the Euler class of a not necessarily orientable real vector bundle. We first discuss the notion
of the twisted Euler class of a real representation.

Given a real representation V of a finite group G, we can form a real vector bundle EG ×G V →
BG using the Borel construction. The Euler class of V is defined as the Euler class of this vector
bundle. In general this bundle is not orientable, but there is a notion of orientation for non-orientable
bundles and depending on the choice of orientation, one defines a twisted Euler class in a similar
way the usual Euler class is defined. Although the definition and the properties of a twisted Euler
class are standard, it is hard to find in the literature. A short note on the twisted Euler class of a real
representation is given in [6, Appendix]. We include some of this material here for the convenience
of the reader and also to introduce the notation.

Let B be a connected (pointed) CW -complex and ξ : V → E
π−→ B be an n-dimensional real

vector bundle over B. The Stiefel–Whitney class w1(ξ) ∈ H 1(B, Z/2) can be considered as a homo-
morphism π1(B) → {±1}. Let Z(ξ) denote the one-dimensional integral representation of π1(B),
where the action is given by w1(ξ). When w1(ξ) is trivial the bundle is called orientable. If w1(ξ)

is not trivial, then we say the bundle is non-orientable. In this case, Hn(π−1(b0), π
−1(b0) \ {0}) is

isomorphic to Z(ξ) as a π1(B)-module.An orientation of ξ is defined as a π1(B)-module isomorphism

ω : Hn(π−1(b0), π
−1(b0)\{0}) → Z(ξ).

For each vector bundle, there are two orientations, ω and −ω, which are opposite to each other. A
bundle ξ on which the orientation ω is fixed is denoted by ξω. We sometimes call such a bundle
oriented, although it may not be an orientable bundle in the above sense. For an oriented bundle ξω,
the Thom isomorphism

φL : Hr(B, L) −→ Hr+n(E, E0; L ⊗ Z(ξ))

is given by φL(x) = π∗(x) · U , where U is the Thom class and L is a coefficient bundle over B. Here
the map π∗ : H ∗(B, L) → H ∗(E, L) is induced from the projection π : E → B. The Euler class of
ξω is defined by

e(ξω) = φ−1
Z(ξ)(U

2) ∈ Hn(B, Z(ξ)).

Sometimes this Euler class is referred to as the twisted Euler class to emphasize that the coefficients
are twisted, but we will not make this distinction here. The following are some basic properties of
the Euler class.

LEMMA 2.1 Let ξω and ην be two oriented real vector bundles of dimension n and m, respectively.
Then,
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46 A. GÜÇLÜKAN AND E. YALÇIN

(1) e(ξω) = −e(ξ−ω).

(2) The mod 2 reduction of e(ξω) is equal to the top Stiefel–Whitney class of ξ.

(3) e(ξω)e(ην) = e((ξ ⊕ η)ω⊕ν).

Proof . The proofs of these statements are standard and can be found, for example, in [11]. Note that
in the third statement to get the equality the cup product on the left is defined as the composition

Hn(B, Z(ω)) ⊗ Hm(B, Z(ν)) → Hn+m(B, Z(ω) ⊗ Z(ν)) → Hn+m(B, Z(ω ⊕ ν)),

where the second map is induced by the canonical isomorphism Z(ω) ⊗ Z(ν) ∼= Z(ω ⊕ ν), and ω ⊕ ν

is the orientation of ξ ⊕ η given by w1(ξ) + w1(η).

For a real representation V of G, the first Stiefel–Whitney class of V is defined as the first
Stiefel–Whitney class of the bundle ξV : EG ×G V → BG and is given by the composition

sgn(V ) : G → GL(V )
det−→ R

×.

This one-dimensional representation is usually called the sign representation of V . The bundle ξV

associated to V is orientable if and only if the sign representation of V is trivial. Note that choosing
an orientation ω : Hn(V, V \{0}) → Z(ξV ) for a (not necessarily orientable) bundle ξV is the same
as choosing an orientation for V . If V is a real representation with a fixed orientation, then we denote
the module Z(ξV ) by Z̃, and the associated Euler class by e(V ).

The Euler class can also be defined as the first obstruction to the existence of a non-zero section.
Let us choose an arbitrary G-invariant inner product on V and let S(V ) be the set of all unit vectors
in V with respect to this inner product. Associated to the G-space S(V ), there is a sphere bundle
EG ×G S(V ) → BG with fibers S(V ).

LEMMA 2.2 Let V be an n-dimensional real representation of G with a fixed orientation. The Euler
class e(V ) ∈ Hn(BG, Z̃) is the first obstruction for an existence of a section for the sphere bundle
EG ×G S(V ) → BG associated to S(V ). Equivalently, the Euler class e(V ) is the first obstruction
on ∈ Hn

G(EG, Z̃) for finding a G-map f : EG → S(V ).

Proof . See Milnor and Stasheff [11].

Given a finite G-CW -complex Y which has the homology of a sphere, say of dimension n − 1,
there is a concept of polarization which is commonly used to fix a k-invariant for the complex. A
polarization of Y is a pair of isomorphisms ϕ : H0(Y ) → Z and ψ : Hn−1(Y ) → Z̃, and associated
to each polarization there is a unique k-invariant ζ ∈ Hn(BG, Z̃) defined as follows: Note that given
a polarized G-CW -complex Y with polarizations ϕ and ψ , we get an extension of ZG-modules of
the form

εV : 0 → Z̃ → Cn−1(Y ) → · · · → C0(Y ) → Z → 0,

using the polarizations at the ends of the extension to get Z and Z̃. This defines a unique extension
class ζ(Y, ϕ, ψ) ∈ Extn

ZG(Z, Z̃). The k-invariant is defined as the corresponding class in Hn(BG, Z̃).
It is easy to see that if one fixes the polarization ϕ : H0(Y ) → Z to be the one given by augmentation

map C0(Y ) → Z, then the choice of the second polarization corresponds to the choice of orientation
for the chain complex. In the case of the unit sphere S(V ) of a real representation V , the polarization
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THE EULER CLASS OF A SUBSET COMPLEX 47

ψ : Hn−1(S(V )) → Z corresponds to an orientation of V . If V comes with a fixed orientation, then
there is a unique extension class ζV ∈ Extn

ZG(Z, Z̃) associated to S(V ). The following is a standard
result known by experts in the field.

PROPOSITION 2.3 Let V be an n-dimensional real representation of G with a fixed orientation. Let Z̃

denote the one-dimensional integral representation induced from the sign representation of V (see
the definition given above). Consider the exact sequence

εV : 0 −→ Z̃ −→ Cn−1(S(V )) −→ · · · −→ C0(S(V )) −→ Z −→ 0

obtained by applying the polarizations coming from the fixed orientation of V. Let ζV ∈ Extn
ZG(Z, Z̃)

be the extension class of this extension. Then, the image of ζV is equal to the Euler class e(V ) under
the canonical isomorphism Extn

ZG(Z, Z̃) ∼= Hn(G, Z̃).

Proof . Since πi(S(V )) = 0 for i ≤ n − 1, we can construct a G-map fn−1 : EG(n−1) → S(V ) in
such a way that the induced map on the 0th homology is identity. By Lemma 2.2, the obstruction to
extending fn−1 to a G-map fn : EG(n) → S(V ) is the Euler class e(V ). By obstruction theory, this
obstruction class is represented by a cocycle in HomG(Cn(EG), Hn−1(S(V ))) which is defined by
the composition

on : Cn(EG) = ⊕σn
Hn(σn, ∂σn)

∂−→ ⊕σn
Hn−1(∂σn)

Hn−1(f )−−−−→ Hn−1(S(V )).

Now, consider the following commutative diagram:

It is clear from this diagram that on is the lifting of the identity, so e(V ) corresponds to the extension
class of the bottom extension under the isomorphismHn(G, Hn−1(S(V ))) ∼= Extn

ZG(Z, Hn−1(S(V ))).
Note that since V has a fixed orientation, there is a canonical isomorphism Hn−1(S(V ), Z) ∼= Z̃ which
we can use to replace Hn−1(S(V ), Z) with Z̃ in the above argument. So, e(V ) corresponds to ζV under
the isomorphism Extn

ZG(Z, Z̃) ∼= Hn(G, Z̃).
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48 A. GÜÇLÜKAN AND E. YALÇIN

Now, we are ready to show that the extension class ζX is the same as the Euler class of the
augmentation module IX = ker{RX → R}. Recall that in Section 1 we defined ζX as the extension
class of the extension

εX : 0 −→ Z̃ −→ Cn−1(�(X)) −→ · · · · · · −→ C0(�(X)) −→ Z −→ 0,

where �(X) is the subset complex of X. It is easy to see that this extension is equivalent to the
extension

0 −→ Hn−1(∂�(X)) −→ Cn−1(∂�(X)) −→ · · · −→ C0(∂�(X)) −→ Z −→ 0,

where ∂�(X) denotes the boundary of the subset complex �(X). For the boundary of the subset
complex, we have the following observation.

LEMMA 2.4 ([2, Lemma 2.2]) Let G be a finite group and X be a finite G-set. Suppose that S(IX)

denotes the unit sphere of the augmentation ideal IX = ker{RX → R} and |∂�(X)| denotes the
realization of the boundary of the subset complex �(X). Then, there is a G-homeomorphism between
the topological spaces S(IX) and |∂�(X)|.

Proof . Let {x0, . . . , xn} be the set of elements of X. We can regard IX as the normal space of the
vector (1, . . . , 1) and xi as the ith unit vector. Let vi be the unit vector of the projection of xi into
IX. Then the set {v0, . . . , vn} is an affinely independent set of vectors in S(IX). Let �′(X) be the
n-simplex with vertex set {v0, . . . , vn}. Let us define a map φ : �(X) → �′(X) by φ(xi) = vi . It is
easy to see that φ is a G-homeomorphism and it sends ∂�(X) to the boundary of �′(X), hence it
induces a G-homeomorphism between the associated topological spaces S(IX) and |∂�(X)|.

Now, we are ready to prove our main theorem in this section.

THEOREM 2.5 Let G be a finite group and X be a finite G-set. Then the Ext class ζX is equal to the
Euler class e(IX) of the augmentation module IX under the canonical isomorphism Extn

ZG(Z, Z̃) ∼=
Hn(G, Z̃).

Proof . Fix an ordering of elements in X so that we have a fixed orientation throughout. By Lemma 2.4,
the chain complexes of ∂�(X) and S(IX) are chain homotopic. This means that the extension class
ζX also represents the following exact sequence

0 −→ Z̃ −→ Cn−1(S(IX)) −→ · · · −→ C0(S(IX)) −→ Z −→ 0.

However by Proposition 2.3, this extension is represented by the Euler class e(IX). Therefore, the
image of ζX is equal to e(IX) under the isomorphism Extn

ZG(Z, Z̃) ∼= Hn(G, Z̃).

The above theorem reduces Reiner and Webb’s question to a question about the Euler class of the
augmentation module. Since the augmentation module decomposes to irreducible real representations,
this observation makes it much easier to calculate the Ext class of the subset complex. In fact, from
now on we will call the Ext class, the Euler class of the subset complex to emphasize on the fact that
it is actually an Euler class.
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THE EULER CLASS OF A SUBSET COMPLEX 49

Finally, we would like to note that, although in our calculations we use the group cohomology
with twisted coefficients, the Euler class itself often lies in the integral cohomology of G (with no
twisting). In fact, Reiner and Webb showed that ζG lies in the cohomology with twisted coefficients
if and only if G has a non-trivial cyclic Sylow 2-subgroup (see [14, Lemma 5.4]). In particular, if
G is a p-group, then the Euler class is twisted only when G is a cyclic 2-group in which case the
coefficients are given by the unique non-trivial map G → Z/2.

3. Proof of Theorem 1.1

The key ingredient in the proof of Theorem 1.1 is the following reduction argument.

PROPOSITION 3.1 If the Euler class ζG is non-zero, then the Euler class ζH/K is non-zero for every
subquotient H/K of G.

Proof . In [14], it is shown that for any subgroups K ≤ H ≤ G, the extension class ζG/K is equiv-
alent to the cup product of ζG/H and N G

H (ζH/K), where N denotes the Evens’ norm map (see, [14,
Proposition 7.13]). Therefore, for subgroups 1 ≤ K ≤ H ≤ G we have

ζG = ζG/H · N G
H (ζH/K · N H

K (ζK)).

From this it follows immediately that if ζH/K = 0 for some subquotient H/K of G, then ζG = 0.

Proposition 3.1 implies that a minimal counterexample to Theorem 1.1 must be a non-abelian p-
group whose proper subquotients are all abelian. First we classify such groups and then we show that
ζG = 0 for all groups in the list. This means that there cannot be any counterexamples to Theorem 1.1,
hence it completes the proof. The classification of all non-abelian p-groups whose proper subquotients
are all abelian is given as follows:

PROPOSITION 3.2 Let G be a non-abelian p-group whose proper subquotients are all abelian. Then
either G has order p3 or G is isomorphic to the modular p-group Mpk for some k ≥ 4.

Proof . Since every group of order p2 is abelian, non-abelian groups of order p3 obviously satisfy
the assumption of the theorem. So, let us assume that G is a non-abelian p-group of order |G| > p3

whose proper subquotients are all abelian. Let c be a central element of order p in G. Since G/〈c〉
is abelian and G is non-abelian, 〈c〉 is the commutator group of G. Similarly, any central subgroup
of order p is the commutator group and hence G has only one central subgroup of order p. This
means that the center Z(G) of G is cyclic. Note that G has an element of order p which is not central
because otherwise G has a unique subgroup of order p which implies that G is either cyclic or a
generalized quaternion group (see, [3, Theorem 4.3]). But these groups do not satisfy our starting
assumption. So, G has an element of order p which is not central, say a. Let s be an element of G

which does not commute with a. Since the subgroup generated by s and a is non-abelian, we must
have G = 〈a, s〉. Note that asa−1s−1 = ct for some t �≡ 0 mod p. This gives aspa−1 = ctpsp = sp,
so sp is central in G. This forces the Frattini subgroup of G to be the subgroup generated by c and
sp. Thus, the Frattini subgroup is central, and hence cyclic. Since |G| > p3, the element sp cannot
be trivial. So, we have cr = spk−2

for some r �≡ 0 mod p, where pk−1 is the order of s. Note that we
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50 A. GÜÇLÜKAN AND E. YALÇIN

can also assume r = t = 1 by replacing a and c with appropriate powers of themselves. Therefore,
G has a presentation

G = 〈a, s|ap = spk−1 = 1, asa−1 = spk−2+1〉.
Hence, it is isomorphic to the modular group of order pk with k ≥ 4.

In order to prove Theorem 1.1, we need to show that the Euler class ζG is zero for all the groups
listed in Proposition 3.2. We will use different arguments for p is odd and p = 2. Let us first deal
with the case where p = 2.

LEMMA 3.3 The Euler class ζG is zero when G ∼= Q8 or G ∼= M2k with k ≥ 3.

Proof . In both cases the Frattini subgroup �(G) of G is cyclic and central, and the quotient G/�(G)

is isomorphic to the elementary abelian group of order 4. Therefore G has a central extension of the
form

0 −→ �(G) −→ G −→ Z/2 × Z/2 −→ 0.

Let us consider the Lyndon–Hochschild–Serre spectral sequence corresponding to this extension. By
Proposition 7.2 in [21], the generator μ of the group H 3(Z/2 × Z/2, Z) ∼= Z/2 is in the image of
the differential d3. This means that infG

G/�(G)(μ) is zero in H 3(G, Z).
If {x1, x2} is a set of generators for the mod 2 cohomology of G/�(G), then the mod 2

reduction of μ is x1x2(x1 + x2) which is the top Stiefel–Whitney class of IG/�(G). Since the
mod 2 reduction is injective for elementary abelian groups, this gives μ = e(IG/�(G)). Therefore
ζG/�(G) = InfG

G/�(G)e(IG/�(G)) = InfG
G/�(G)(μ) = 0, and hence ζG = 0 by Proposition 3.1.

Now, we consider the case p > 2. The modular p-group Mpk with k ≥ 4 has an abelian subgroup
isomorphic to Z/p2 × Z/p. Thus, the fact that ζG = 0 for G = Mpk with k ≥ 4 is a consequence of
the following lemma.

LEMMA 3.4 The Euler class ζG is zero when G ∼= Z/p2 × Z/p and p is odd.

Proof . Let G = 〈a, b|ap2 = bp = 1, ab = ba〉. Then H ∗(G, Z) = Z[α, β] ⊗ ∧ (χ), where degα =
degβ = 2, degχ = 3 and p2α = pβ = pχ = 0 (see [8]). Since the Chern class c1 defines an isomor-
phism Hom(G, C

×) ∼= H 2(G, Z), we can consider the generators α and β of H 2(G, Z) as the Chern
classes of the representations V1 : a → ω, b → 1 and V2 : a → 1, b → ωp, where ω is the primi-
tive p2th root of unity. With this notation, the Chern class c1(V3) of the one-dimensional complex
representation V3 : a → ωp, b → 1 is equal to pα.

Let W2 and W3 be the underlying two-dimensional real representations of V2 and V3, respectively.
Then we have

e(W2 ⊕ W3) = e(W2)e(W3) = c1(V2)c1(V3) = pαβ = 0.

Since W2 ⊕ W3 is a direct summand of the augmentation module IG, this gives ζG = 0.

Now it remains to consider the non-abelian groups of order p3 for p > 2. The following lemma
solves the problem for this case and hence completes the proof of Theorem 1.1.

LEMMA 3.5 Let G be a non-abelian p-group of order p3 with p > 2. Then, the Euler class ζG is zero.

Proof . If G is a p-group of order p3 with p > 2, then G is either isomorphic to the extra-special
group Ep3 of exponent p or to the modular group Mp3 of exponent p2. In both cases, the exponent
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THE EULER CLASS OF A SUBSET COMPLEX 51

of Hi(G, Z) is p when i is not divisible by 2p (see [8]). Therefore, the mod p reduction map
Hp3−1(G, Z) → Hp3−1(G, Fp) is injective. So, it is sufficient to show that the mod p reduction of
ζG is zero.

In the mod p cohomology of the groups Ep3 and Mp3 , there are relations of the form xy = 0 and
β(x) + xy = 0, respectively, where x, y denote the generators of one-dimensional cohomology for
each group. Consider the operator βPβ, where P denotes the Steenrod reduced pth power operator
and β denotes the Bockstein operator. If we apply βPβ to these relations, then we obtain

β(x)

p−1∏
j=0

β(jx + y) = 0.

This product is a factor of the mod p reduction of ζG. Hence, ζG = 0.

4. Calculations for some abelian 2-groups

In this section we calculate the Euler class ζG for some small abelian 2-groups. This allows us to
narrow the range for the search of abelian 2-groups with non-zero Euler class.

PROPOSITION 4.1 The Euler class ζG is zero when G ∼= Z/8.

Proof . Let H be the maximal subgroup of G. We have ζG = ζG/H · e(W) where W is the direct sum
of all irreducible two-dimensional representations of G. The Euler class ζG/H is represented by the
extension

0 −→ Z̃ −→ Z[G/H ] −→ Z −→ 0.

Consider the long exact sequence associated with this short exact sequence:

· · · −−−−→ H 6(G, Z̃) −−−−→ H 6(H, Z)
tr−−−−→ H 6(G, Z)

·ζG/H−−−−→ H 7(G, Z̃) −−−−→ · · ·∥∥∥ ∥∥∥
Z/|H |Z ×2−−−−→ Z/|G|Z

It is clear from the above diagram that to show that ζG = 0, it suffices to show that e(W) ∈ H 6(G, Z)

is divisible by 2. Note that W = W1 + W2 + W3, where Wi is the two-dimensional real representation
such that the action is given by 2πi/8 degree rotation. Also note that if α = e(W1), then e(Wj ) = jα

for all j = 1, 2, 3. This gives e(W) = 6α3 which is divisible by 2 as desired.

The calculation above shows that the Euler class ζG is zero for all cyclic 2-groups with order greater
or equal to 8. An easy calculation shows that the Euler class for Z/4 is not zero. We will show later
that ζG is not zero also when G = Z/4 × Z/4. The next group we consider is G = (Z/4)2 × Z/2.
We show that the Euler class for this group is zero. For this calculation, we need the structure of the
cohomology of the group Z/4 × Z/4 with integer coefficients. In [18], Townsley completely describes
the integral cohomology of all abelian groups. We quote the result from [18], but since what we need
is a very special case of Townsley’s calculations, we provide a proof for the convenience of the
reader.
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52 A. GÜÇLÜKAN AND E. YALÇIN

PROPOSITION 4.2 (Townsley [18]) Let G = Z/4 × Z/4. Then,

H ∗(G, Z) ∼= Z[μ1, μ2, μ12]
/〈4μ1 = 4μ2 = 4μ12 = 0, μ2

12 = 2μ1μ2(μ1 + μ2)〉.
Proof . Let us consider the Lyndon–Hochschild–Serre spectral sequence with E2-page

E
p,q

2
∼= Hp(G/K, Hq(K, Z)) ⇒ Hp+q(G, Z),

where K is a cyclic subgroup of G of order 4. Let t1 and t2 be the generators of H ∗(K, Z) and
H ∗(G/K, Z). Since H 2(G, Z) ∼= H 2(G/K, Z) ⊕ H 2(K, Z), we have d2(t1) = 0, which implies that
d2 = 0. By dimension reasons di = 0 for any i ≥ 2, hence the spectral sequence collapses at E2-page.
Thus, the Poincaré series of H ∗(G, Z) is given by

PH ∗(G,Z)(t) = 1 + t3

(1 − t2)2
.

Since E
1,2
2 = H 1(G/K, H 2(K, Z)) ∼= Z/4, the cohomology ring H ∗(G, Z) has at least three

generators. Let μ1 and μ2 be the generators of degree 2 and let μ12 be the generator of degree 3.
Without loss of generality, we can assume resG

Kμ1 = t1 and InfG
G/Kt2 = μ2. We claim that μ1 and μ2

are algebraically independent. Indeed, if

f (μ1, μ2) =
k∑

i=0

aiμ
i
1μ

k−i
2

is a relation with the smallest degree then the restriction of f (μ1, μ2) to the subgroup K gives
akt

k
1 = 0 and hence ak = 0. Therefore, f (μ1, μ2) = μ2g(μ1, μ2) for some polynomial g(μ1, μ2)

with smaller degree. Since μ2 is a non-zero divisor, this gives g(μ1, μ2) = 0 which contradicts the
minimality of f (μ1, μ2). Therefore, μ1 and μ2 are algebraically independent as claimed.

Let us assume for the moment that μ2
12 = 2μ1μ2(μ1 + μ2) is the only relation for the generators

μ1, μ2 and μ12 aside from the modular relations. It implies that

S = Z[μ1, μ2, μ12]
/〈4μ1, 4μ2, 4μ12, μ2

12 − 2μ1μ2(μ1 + μ2)〉
is a subring of H ∗(G, Z). On the other hand, S and H ∗(G, Z) have the same Poincaré series. So,
we obtain H ∗(G, Z) = S as desired. Now we prove that μ2

12 = 2μ1μ2(μ1 + μ2) is the only relation.
Since μ12 has an odd degree, we have 2μ2

12 = 0. This implies that (μ12)
2 = 2f (μ1, μ2) for some

polynomial f (μ1, μ2) ∈ H 6(G, Z). It is easy to show that μ2
12 is not zero by considering the spectral

sequence associated to the extension

0 → Z/2 × Z/2 → G → Z/2 × Z/2 → 0.

So, we can assume f (μ1, μ2) = a1μ
3
1 + a2μ

3
2 + a3μ

2
1μ2 + a4μ1μ

2
2, where at least one of the ai is

non-zero. Since the restriction of μ12 to any cyclic subgroup H of G is zero, we get a1 = a2 = 0 and
a3 = a4 = 1. So, μ2

12 = 2μ1μ2(μ1 + μ2). Suppose now that there is another relation. Then, it must
be of the form

μ12 · g(μ1, μ2) + h(μ1, μ2) = 0,

but this is impossible since the degree of μ1 and μ2 are 2 and the degree of μ12 is 3.
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THE EULER CLASS OF A SUBSET COMPLEX 53

Now we are ready to do the following calculation.

PROPOSITION 4.3 The Euler class ζG is zero when G ∼= (Z/4)2 × Z/2.

Proof . The Euler class ζG includes infG
G/�(G)ζG/�(G) as a factor. So, it is enough to prove that this

factor is zero. The cohomology ring H ∗(G/�(G), Z) is generated by the elements uI , where the
indices I run through the subsets of {1, 2, 3}. The mod 2 reduction of uI is given by the formula

m2(uI ) = ( ∏
i∈I

xi

)( ∑
i∈I

xi

)
,

where x1, x2 and x3 are the generators of H ∗(G/�(G), Z/2). By direct calculation, one can show
that the mod 2 reduction of u2

1u23 + u2
2u13 + u2

3u12 is equal to the product of all non-trivial one-
dimensional classes, hence it is equal to the top Stiefel–Whitney class of IG/�(G). Since the reduction
modulo 2 is an injective map for elementary abelian groups, we conclude that

ζG/�(G) = u2
1u23 + u2

2u13 + u2
3u12.

Now we show that the inflation of this element is zero. Let a, b, c be the generators of G with
a4 = b4 = c2 = 1. Suppose μ1, μ2 and μ3 are the generators of H 2(G, Z) = Hom(G, C

×) which
are dual to a, b, c, respectively. We can choose the generators u1, u2, u3 for H 2(G/�(G), Z) in a
compatible way and assume that InfG

G/�(G)ui = 2μi for i = 1, 2 and InfG
G/�(G)u3 = μ3. Since the

exponent of H ∗(G, Z) is 4, we get InfG
G/�(G)u

2
i = 0 for i = 1, 2. Hence

InfG
G/�(G)

(
u2

1u23 + u2
2u13 + u2

3u12
) = μ2

3 · InfG
G/�(G)u12.

On the other hand, we have

InfG
G/�(G)u12 = InfG

G
InfG

G/�(G)
u12 = InfG

G
2μ12 = 2InfG

G
μ12,

where G = G/〈c〉 ∼= Z/4 × Z/4 and μ12 is the generator of H 3(G, Z) = Z/4. Since 2μ3 = 0, we
get InfG

G/�(G)

(
u2

1u23 + u2
2u13 + u2

3u12
) = 0. This completes the proof.

5. Proof of Theorem 1.2

We first consider abelian 2-groups. In the previous section we showed that if G is isomorphic to Z/8
or (Z/4)2 × Z/2, then the Euler class of the augmentation module IG is zero. This implies that ζG

is zero if G has a subquotient isomorphic to Z/8 or (Z/4)2 × Z/2. But, the only abelian 2-groups
that do not have any such subquotients are either elementary abelian or isomorphic to Z/4 × Z/4
or (Z/2)n × Z/4 for some n. This proves one direction of Theorem 1.2 for 2-groups. For the other
direction, we need to show that ζG is non-zero for these groups. We start with the calculation of ζG

for G = Z/4 × Z/4.

PROPOSITION 5.1 Let G = Z/4 × Z/4. Then, the Euler class ζG is non-zero.
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54 A. GÜÇLÜKAN AND E. YALÇIN

Proof . Let G = 〈a, b〉, and let μ1, μ2 be the generators of H 2(G, Z) dual to a and b, respectively, and
let μ12 be a generator of H 3(G, Z). We have IG

∼= InfG
G/�(G)IG/�(G) ⊕ W , where W is the direct sum

of all irreducible two-dimensional real representations of G. Since G/�(G) is an elementary abelian
group of order 4, it follows from an argument similar to that used in the proof of Proposition 4.3 that
ζG/�(G) = u12. Hence we get

e(InfG
G/�(G)IG/�(G)) = InfG

G/�(G)ζG/�(G) = InfG
G/�(G)u12 = 2μ12.

Now, we calculate the Euler class of W . Every two-dimensional real representation of G is the
underlying real representation of a one-dimensional complex representation. If θ is the real represen-
tation associated to the complex representation ρ : G → C

×, then e(θ) = c1(ρ). Note that for each
two-dimensional real representation, the kernel is a cyclic group of order 4. In fact, there is a one-to-
one correspondence between two-dimensional real representations of G and its cyclic subgroups of
order 4. The cyclic subgroups of G are 〈a〉, 〈ab2〉, 〈ab〉, 〈ab3〉, 〈a2b〉 and 〈b〉. Therefore

e(W) = μ2(2μ1 + μ2)(μ1 + μ2)(μ1 + 3μ2)μ1(μ1 + 2μ2) = μ2
1μ

2
2(μ1 + μ2)

2

and hence ζG = 2μ12μ
2
1μ

2
2(μ1 + μ2)

2. It is clear from Proposition 4.2 that this class is not zero in
H ∗(G, Z).

It remains to show that the Euler class is non-zero when G is either elementary abelian or iso-
morphic to (Z/2)n × Z/4 for some n ≥ 0. For these groups we show that the Euler class is non-zero
by showing that its mod 2 reduction is non-zero. Recall that the mod 2 reduction of the Euler class
of a real representation V is equal to the top Stiefel–Whitney class wtop(V ) of V . To conclude that
wtop(IG) is non-zero, we give an explicit formula for it in terms of the generators of the cohomology
ring of G. It is often more convenient to express the formula for wtop(IG) in terms of the polynomial
f where

f (a1, a2, . . . , am) =
∏

(α1,...,αm)∈(F2)m\{0}
(α1a1 + · · · + αmam)

for tuples (a1, . . . , am). The formula for the top Stiefel–Whitney class of an elementary abelian
2-group appears in many places (see, for example, Turygin [17]). In this case, we have

wtop(IG) = f (x1, . . . , xn)

where {x1, . . . , xn} is a set of generators of the cohomology ring H ∗(BG, F2). Note that this is the
top Dickson invariant of the polynomial algebra F2[x1, . . . , xn]. In particular, the Euler class ζG is
non-zero when G is an elementary abelian 2-group.

Now, we perform a similar calculation for the group G = (Z/2)n × Z/4. We should note that
it is possible to conclude that the top Stiefel–Whitney class is non-zero for these groups without
obtaining an explicit formula, but we believe that the formula itself might also be useful. Before stating
the result, we need some further notation. Let Vi be the one-dimensional non-trivial representation
inflated from the ith term in the product G/�(G) ∼= (Z/2)n+1 and let Wn+1 be the irreducible two-
dimensional representation inflated from the Z/4 term of the product G = (Z/2)n × Z/4. Notice that
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THE EULER CLASS OF A SUBSET COMPLEX 55

the cohomology of the group G with F2 coefficients is

H ∗(G, F2) ∼= F2[x1, . . . , xn, s] ⊗ ∧[t],
where wtop(Vi) = xi for 1 ≤ i ≤ n, wtop(Vn+1) = t and wtop(Wn+1) = s. With this notation the
formula for wtop(IG) can be expressed as follows:

PROPOSITION 5.2 Let G ∼= (Z/2)n × Z/4 with n ≥ 0. Then,

wtop(IG) = f (x1, . . . , xn, t)
f (x2

1 , . . . , x2
n, s)

f (x2
1 , . . . , x2

n)
.

In particular, wtop(V ) is non-zero in H ∗(G, F2).

Proof . Let V be the direct sum of all the non-trivial one-dimensional real representations of G.
Since each non-trivial one-dimensional real representation is a tensor product of elements contained
in some non-empty subset of {V1, . . . , Vn+1}, we have wtop(V ) = f (x1, . . . , xn, t). On the other hand,
IG = V ⊕ W where

W =
⊕

(γ1,...,γn)∈Sn

V
γ1

1 ⊗ · · · ⊗ V γn

n ⊗ Wn+1.

Here Sn is the set of n-tuples (γ1, . . . , γn) such that γi ∈ {1, 2} for all i. By the tensor product formula
for one-dimensional real vector bundles, we have

w(V
γ1

1 ⊗ · · · ⊗ V γn

n ) = 1 + α1x1 + · · · + αnxn,

where αi denotes the mod 2 reduction of γi for each i. Using the splitting principle, we can regard
the rth Stiefel–Whitney class of the vector bundle Wn+1 as the rth elementary symmetric function of
indeterminates a1 and a2 so that w1(Wn+1) = a1 + a2 = 0 and w2(Wn+1) = a1a2 = s. Then, we have

w(V
γ1

1 ⊗ · · · ⊗ V γn

n ⊗ Wn+1) =
2∏

i=1

(1 + α1x1 + · · · + αnxn + ai)

= 1 + α1x
2
1 + · · · + αnx

2
n + s.

Thus, the top Stiefel–Whitney class of W is given by

wtop(W) =
∏

(γ1,...,γn)∈Sn

wtop(V
γ1

1 ⊗ · · · ⊗ V γn

n ⊗ Wn+1)

=
∏

(α1,...,αn)∈(F2)n

(α1x
2
1 + · · · + αnx

2
n + s) = f (x2

1 , . . . , x2
n, s)

f (x2
1 , . . . , x2

n)
.

The formula for wtop(IG) follows from the identity wtop(IG) = wtop(V )wtop(W). Note that since
t2 = 0, we can rewrite the top Stiefel–Whitney class as

wtop(IG) = t
(
f (x1, . . . , xn)

)2 f (x2
1 , . . . , x2

n, s)

f (x2
1 , . . . , x2

n)
.

From this it is clear that wtop(IG) is non-zero in H ∗(G, F2).
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56 A. GÜÇLÜKAN AND E. YALÇIN

This completes the proof of the Theorem 1.2 for 2-groups. Now, we consider the case p > 2. We
begin with the calculations for cyclic groups. Let G = 〈g〉 be a cyclic group of order pn with p > 2.All
non-trivial representations of G are two-dimensional which are the underlying real representations of
one-dimensional complex representations. A complete list of corresponding complex representations
can be given as Vj : g → ωj , where ω is the pnth root of unity and 1 ≤ j ≤ (pn − 1)/2. We can take
α = c1(V1) as the generator of H 2(G, Z) ∼= Z/pn, then we have c1(Vj ) = jα for all j . This gives

e(IG) =
(pn−1)/2∏

j=1

c1(Vj ) =
(

pn − 1

2

)
! α(pn−1)/2.

From this we conclude the following:

LEMMA 5.3 Let p be an odd prime and G be a cyclic p-group. Then the Euler class ζG is non-zero if
and only if G has order p or is isomorphic to Z/9.

Proof . Suppose that G has order pn. Then, H 2k(G, Z) ∼= Z/pn for all k ≥ 1. It follows that e(IG) = 0
if and only if (

pn − 1

2

)
! ≡ 0 (mod pn).

This is a consequence of the formula for e(IG) given above. It is easy to see that this equation holds
for all p and n except when n = 1 or when p = 3 and n = 2.

The above lemma implies that the Euler class ζG of an abelian p-group with p > 3 vanishes
if G is not elementary abelian. For p = 3, we need to be more careful. Since ζG is not zero for
Z/9, we need to consider the next possibility, which is Z/9 × Z/3. But, this is the special case of
Lemma 3.4, so ζG = 0 in this case as well. This proves one direction of Theorem 1.2 for p > 2. For
the other direction, we need to show that ζG is non-zero when G is an elementary abelian p-group
with p > 2. This follows easily from the structure of cohomology of elementary abelian p-groups
since the two-dimensional classes in H ∗((Z/p)n, Z) generate a polynomial subalgebra. So, the proof
of Theorem 1.2 is complete.

6. Some consequences of Theorems 1.1 and 1.2

In this section, we state and prove some corollaries of Theorems 1.1 and 1.2. We first consider the
mod p reduction of the Euler class. Since most of the group cohomology calculations are done in
mod p coefficients, it makes sense to consider the mod p reduction of ζG.

COROLLARY 6.1 Let G be a finite group and let ζG denote the mod p reduction of the Euler class
ζG. Then, ζG is non-zero if and only if G is an elementary abelian p-group or is isomorphic to
(Z/2)n × Z/4 for some n ≥ 0.

Proof . We only need to consider the groups where ζG is non-zero. We have already seen that when
G = Z/4 × Z/4 or G = Z/9, the Euler class is divisible by p. So, the mod p reduction of ζG is zero
in these cases. For groups isomorphic to (Z/2)n × Z/4, we have already shown that ζG is non-zero by
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THE EULER CLASS OF A SUBSET COMPLEX 57

showing that its mod 2 reduction is non-zero. For elementary abelian p-groups, the mod p-reduction
map is injective. So, the mod p-reduction of ζG is also non-zero for these groups.

For p > 2, the corollary above also follows from a theorem of Serre [16]. To see this, first observe
that to prove the corollary, it is enough to consider p-groups. When G is a p-group, the quotient
G/�(G) is an elementary abelian p-group and

infG
G/�(G)ζG/�(G) = λ

(∏
x∈S

β(x)

)(p−1)/2

,

where λ is a non-zero scalar, S is a set of representatives of non-zero elements on each line in
H 1(G, Fp), and β(x) is the image of x under the Bockstein operator. In [16], Serre proves that the
product

∏
x∈S β(x) is zero when G is not elementary abelian. This implies that when G is a p-group

which is not elementary abelian, infG
G/�(G)ζG/�(G) = 0, hence ζG = 0. It is clear that when G is an

elementary abelian p-group, ζG is non-zero.
The p = 2 case is slightly different, since in this case infG

G/�(G)ζG/�(G) is equal to the product
of all one-dimensional classes. Serre’s theorem in [16] only gives that the product of Bocksteins
of one-dimensional classes is zero, so the same argument does not work in this case. The p = 2
version of Serre’s theorem has been considered in [22] and it has been proved that the product of
one-dimensional classes is zero exactly when G is one of the 2-groups given in the above corollary.
So, the p = 2 case of the above corollary follows from the results in [22].

In the other direction, one can obtain Serre’s theorem as a consequence of Corollary 6.1. For
this one needs to reduce Serre’s theorem to extra-special p-groups and apply Corollary 6.1 together
with some other facts from group cohomology. For example, one needs to use the fact that if a
cohomology class is detected by a central subgroup of order p, then it is a non-zero divisor. Since
there are many different proofs for Serre’s theorem, this does not really provide a new way of looking
at this theorem. In fact, one can see that the proof of Theorem 1.1 has many similarities to the proof
of integer coefficient version of Serre’s theorem given by Evens (see, [7, Theorem 6.4.1]).

Now, we consider the square of the Euler class ζG. Note that (ζG)2 is the Euler class of the repre-
sentation IG ⊕ IG which can be considered as the underlying real representation of complexification
of IG. Note that the complexification of IG is the kernel of the augmentation map CG → C. This
shows that (ζG)2 is nothing but the top Chern class of the augmentation module of the regular complex
representation of G. So, it is interesting to find exactly when this class is zero.

COROLLARY 6.2 Let G be a finite group. Then, (ζG)2 �= 0 if and only if G is an elementary abelian
p-group or is isomorphic to (Z/2)n × Z/4 for some n ≥ 0. On the other hand, the mod p reduction
of (ζG)2 is non-zero if and only if G is an elementary abelian p-group.

Proof . The proof is similar to the proof of Corollary 6.1. The cases G = Z/4 × Z/4 and G = Z/9
do not appear here since in these cases ζG is divisible by p and both groups have cohomology
with exponent p2. The only group we have to be careful about is G = (Z/2)n × Z/4. Note that the
calculation given in Proposition 5.2 shows that the mod 2 reduction of (ζG)2 is non-zero. But, the same
calculation repeated for the top Chern class will give us that (ζG)2 �= 0. The elementary abelian case
is much easier to analyze. The square of ζG is the top Dickson invariant of the polynomial subalgebra
generated by two-dimensional classes in H ∗(G, Z). So, both (ζG)2 and its mod p reduction are
non-zero.
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58 A. GÜÇLÜKAN AND E. YALÇIN

From this we can conclude the following:

COROLLARY 6.3 Let G be a finite group. Then, ζG is nilpotent if and only if G is not an elementary
abelian p-group.

Recall that the Euler class ζG of a group G is a special case of the Euler class of a G-set X, denoted
by ζX. We defined the Euler class ζX as the Euler class of the subset complex of the G-set X. One can
state a similar problem: Find all G-sets X where ζX is non-zero. It is already given in [14] that ζX is
zero if X is not transitive. So, we can assume X = G/H for some subgroup H ≤ G. Note that if H

is normal in G, then ζG/H is the inflation of the Euler class of the quotient group G/H . In general,
we can use similar ideas to reduce the calculation of ζX to smaller subquotients and smaller G-sets.
The answer depends on X and the ring structure of the integral cohomology of G. At this point, we
do not know any general statements that hold for all X.

7. Filtrations of modules

In this section, we discuss some applications of our results to filtrations of modules. Suppose k

denotes a field of characteristic p and kG denotes the group algebra over k. Throughout the section,
we assume all kG-modules are finitely generated. For a kG-module M , we denote the j th Heller
shift of M by �j(M). Let Lζ denote the kG-module defined as the kernel of the homomorphism
�n(k) → k representing the class ζ . In [1], it has been shown that if ζ ∈ Hn(G, k) is represented by
the kG-module extension

E : 0 → k → Mn−1 → · · · → M0 → k → 0,

then there is a projective kG-module P such that Lζ ⊕ P has a filtration

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = Lζ ⊕ P

with Li/Li−1
∼= �n−i+1(Mi−1) for i = 1, . . . , n. When ζ = 0, the module Lζ is defined as the direct

sum �(k) ⊕ �n(k). So, if E is an extension whose extension class is zero, then there is a filtration
of the form

0 = K0 ⊆ K1 ⊆ · · · ⊆ Kn = k ⊕ �n−1(k) ⊕ P

with Ki/Ki−1
∼= �n−i (Mi−1) for i = 1, . . . , n where P is a projective kG-module. Tensoring this

sequence with a kG-module M , we get a filtration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nn = M ⊕ �n−1(M) ⊕ Q

with Ni/Ni−1
∼= �n−i (Mi−1 ⊗ M) for i = 1, . . . , n, where Q is a projective kG-module.

If the extension E is an extension with the property that all the Mi are permutation modules
with no trivial summands, then we say E is an extension of proper permutation modules. Split
extensions of proper permutation modules give rise to induction theorems. Using this method Carlson
[4] proved that any kG-module M is a direct summand of a module that is filtered by modules induced
from elementary abelian p-subgroups. He proved this result using specific split extensions of proper
permutation modules, where the permutation modules are induced from maximal subgroups. Such
extensions exist when G is not elementary abelian as a consequence of Serre’s theorem.
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Now, we will illustrate how the chain complex for the subset complex can be used to obtain similar
filtrations. Note that the chain complex of the subset complex of G with coefficients in k gives an
extension

0 → k → Cn−1(�(G)) ⊗Z k → · · · → C0(�(G)) ⊗Z k → k → 0

whose extension class is the image of ζG under the map Hn(G, Z) → Hn(G, k) induced by tensor
product with k. So, if G is a p-group which is not one of the groups listed in Theorem 1.2, then for
each kG-module M , there is a projective kG-module P and a filtration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nn = M ⊕ �n−1(M) ⊕ P

such that Li/Li−1
∼= �n−i (Ci−1(�(G)) ⊗Z M) for i = 1, . . . , n. Instead of the chain complex, we

could have used the cochain complex of the subset complex. In that case, we get the following:

COROLLARY 7.1 Let G be a finite group and let k be a field of characteristic p. If G is not one of the
groups listed in Theorem 1.2, then for every kG-module M, there is a projective kG-module P and
a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M ⊕ �n−1(M) ⊕ P

such that Mi/Mi−1
∼= �n−i (Cn−i (�(G)) ⊗Z M) for i = 1, . . . , n.

In [14], an explicit formula for permutation modules appearing in Cj(�(X)) is given. So, using
this formula we can give upper bounds for the dimension of a kG-module M in terms of the Heller
shifts of the projective free parts of the restrictions of M to its proper subgroups. This approach
was used to obtain upper bounds for essential endotrivial modules of extraspecial p-groups in [5].
For small groups our bounds are not as good as the bounds obtained in [5], but we expect that for
groups with large cohomology lengths, this method will give better bounds than the ones given in
[5]. Unfortunately, we were not able to verify this.

8. Borsuk–Ulam type theorems

In this section, we give some applications of our results to the existence of Borsuk–Ulam type
theorems. Recall that the Borsuk–Ulam theorem says that every continuous map f : Sn → R

m maps
some pair of antipodal points on Sn to the same point in R

m provided that m ≤ n. To generalize this
theorem, one defines the notion of coincidence set. Suppose that M is a topological manifold with a
free G-action, and let f : M → R

m be a continuous map. The coincidence set of f is defined as the set

A(f ) = {x ∈ M|f (x) = f (gx) for all g ∈ G}.
We say that M has a Borsuk–Ulam type theorem if there is an appropriate condition on m such that
the coincidence set is non-empty. The Borsuk–Ulam theorem corresponds to the case where M = Sn

and G = Z/2 acting with antipodal action on M . Another example is given recently by Turygin [17]
where M is a product of (mod p) homology spheres and G is an elementary abelian p-group acting
on M by a product action. Some other generalizations of these types of theorems are discussed in
[17]. It is interesting to note that one of these generalizations is related to the well-known theorem of
Milnor [10] which states that if a finite group G acts freely on a sphere, then every element of order
2 in G must be central.
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Now we will discuss a topological condition for the existence of a Borsuk–Ulam type theorem for
a manifold M with a free G action. Consider the real vector bundle

ξ : M ×G I⊕m
G → M/G

with classifying map q : M/G → BG, where IG denotes the augmentation module. It is easy to see
that there exists a continuous map f : M → R

m with empty coincidence set if and only if ξ has a
non-zero section (see, [17, Lemma 1.1]). So, to prove a Borsuk–Ulam type theorem for M , it is enough
to show that, under suitable conditions on m, the bundle ξ has a non-trivial Euler class. The Euler
class of this bundle is the image of the Euler class of the universal bundle ξ̂ : EG ×G I⊕m

G → BG

under the map q∗ : H ∗(BG, Z) → H ∗(M/G, Z). Note that the Euler class of ξ̂ is the same as the
mth power of ζG. We can summarize these in the following way:

PROPOSITION 8.1 (Sarkaria [15], Turygin [17]) Let M be a topological manifold with a free action of
a finite group G. Suppose that

(
q∗(ζG)

)m �= 0, where q∗ : H ∗(BG, Z) → H ∗(M/G, Z) is the map
induced by the classifying map q : M/G → BG. Then, every continuous map f : M → R

m has a
non-empty coincidence set.

This shows that we can find some Borsuk–Ulam type theorems for the groups listed in Theorem 1.2
if we choose the manifold M in an appropriate way. This is how Turygin [17] obtains a Borsuk–Ulam
type theorem for products of spheres with free elementary abelian group action. However, it is clear
that when ζG = 0, we cannot find any G-free space M satisfying the condition in Proposition 8.1.
So, we conclude the following.

COROLLARY 8.2 If G is not one of the groups listed in Theorem 1.2, then one cannot obtain Borsuk–
Ulam type theorems for any G-free topological manifold using the cohomological Euler class.

This does not say that there are no Borsuk–Ulam theorems since it is still possible to use some other
cohomology theory and conclude that the bundle ξ : M ×G I⊕m

G → M/G has no non-zero section.
Now, we explain another application of our results. For this we need to define the Borsuk–Ulam

property. Note that another way to state the Borsuk–Ulam theorem is the following: For every antipodal
preserving map f : Sn → R

n, there exists an x ∈ Sn such that f (x) = 0. Note that if we take G =
Z/2, then R

n can be thought of as the RG-module I⊕n
G and Sn can be thought of as the (n + 1)-fold

join G∗(n+1) with usual G-action. One generalizes this situation as follows:

DEFINITION 8.3 Let G be a finite group and let V be an n-dimensional real representation of G. The
representation V is said to have the Borsuk–Ulam property if any continuous G-map f : G∗(n+1) → V

has a zero.

The Borsuk–Ulam theorem is equivalent to the statement that I⊕n
G has the Borsuk–Ulam property

when G = Z/2. One can ask if the similar statement holds for other groups. In [15], Sarkaria shows
that an n-dimensional real representation V has the Borsuk–Ulam property if and only if the Euler
class e(V ) ∈ Hn(G, Z̃) is non-zero (see, [15, Theorem 1]).As a consequence of Theorems 1.1 and 1.2,
we obtain the following:
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COROLLARY 8.4 Let G be a finite group. The augmentation module IG has the Borsuk–Ulam property
if and only if G is one of the groups listed in Theorem 1.2.

The Borsuk–Ulam property is closely related to the continuous version of the Tverberg Theorem
in combinatorics. The Tverberg Theorem can be stated as follows:

THEOREM 8.5 (Tverberg) For any affine map f from the standard (q − 1)(d + 1)-simplex to an
affine d-space, there are q disjoint faces σ1, . . . , σq such that the intersection f (σ1) ∩ · · · ∩ f (σq) is
non-empty.

The continuous Tverberg theorem is a generalization of this theorem to continuous maps. It is
known that the continuous Tverberg theorem holds for all prime powers q = pk . There is a very
nice paper by Sarkaria [15], where the connection between the continuous Tverberg problem and
the Borsuk–Ulam property has been described. In this article, Sarkaria shows that the continuous
Tverberg theorem holds for some q and d , if there exists a group G of order q for which I

⊕(d+1)
G has

the Borsuk–Ulam property. There is a theorem by Özaydın [12], proved independently by Volovikov
[19], which states the following:

PROPOSITION 8.6 ([15, Theorem 4]) Every representation V of an elementary abelian group which
does not contain the trivial representation has the Borsuk–Ulam property.

The Özaydın–Volovikov theorem solves the topological Tverberg problem when q is a prime
power. Note that Corollary 6.3 not only implies the Özaydın–Volovikov theorem, but also shows that
elementary abelian p-groups are the only groups where the Özaydın–Volovikov theorem holds. It is
still an open problem to show if the Tverberg theorem holds when q is a composite number. For more
detailed discussion about this problem, we refer the reader to [9, 15].

9. Hypercohomology spectral sequences

In this section, we consider the hypercohomology spectral sequences associated to the subset complex.
Given a cochain complex C∗ of ZG-modules, we can form a double complex HomZG(P∗, C∗), where
P∗ is a projective resolution of Z over ZG. The cohomology of this cochain complex is called the
hypercohomology of G with coefficients in C∗ and usually denoted by H∗(G, C∗). Since this is the
cohomology of a double complex, there are two spectral sequences which converge to H∗(G, C∗).
The first spectral sequence, which is usually called the cohomology spectral sequence, has E2-page

E
p,q

2 = Hp(G, Hq(C∗, Z)) ⇒ Hp+q(G, C∗).

We have a second spectral sequence with E1-page

E
p,q

1 = Hq(G, Cp) ⇒ Hp+q(G, C∗)

which is called the isotropy spectral sequence. We refer the reader to the book by Brown [3] for more
information on hypercohomology spectral sequences.
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In [14], Reiner and Webb consider the spectral sequences which are isomorphic to the hyperco-
homology spectral sequences for C∗(�(G)). Since �(G) is contractible, the cohomology spectral
sequence gives

H∗(G, C∗(�(G))) ∼= H ∗(G, Z).

Reiner and Webb study the isotropy spectral sequence for this hypercohomology group to obtain
information about integral cohomology groups of G. For this, they obtain a formula which gives the
(signed) permutation modules appearing in Cn(�(G)) for each n. The formula is in the form of a
power series with coefficients in the Burnside ring B(G) of G. Once this power series is calculated,
it becomes possible to calculate the E1 page of the isotropy spectral sequence. Reiner and Webb
illustrate how this method works by giving estimates for the orders of some integral cohomology
groups of the Dihedral group of order 8. Theorems 1.1 and 1.2 have some immediate applications to
Reiner and Webb’s hypercohomology calculations. For example, by Corollary 7.7 in [14], we obtain
the following:

COROLLARY 9.1 Let G be a finite group which is not one of the groups listed in Theorem 1.2. Then,
E

r,|G|−1∞ = 0 for all r in the isotropy spectral sequence for the subset complex �(G).

Another hypercohomology calculation that is interesting to consider is the hypercohomology of
G with coefficients in the cochain complex of the boundary ∂�(G) of the subset complex. Since
∂�(G) is homeomorphic to a sphere, the E2-page of the cohomology spectral sequence is a two line
spectral sequence. If |G| = n + 1, then E

p,q

2 is non-zero only when q = 0 or q = n − 1. Moreover,
the differential dn is given by the multiplication with ζG ∈ Hn(G, Z̃). So, if G is not one of the groups
listed in Theorem 1.2, then the cohomology spectral sequence for ∂�(G) collapses at E2-page, and
we have

Hi (G, C∗(∂�(G))) ∼=
{

Hi(G, Z) if i < n − 1

Hi(G, Z) ⊕ Hi−n+1(G, Z) if i ≥ n − 1.

The collapsing of this spectral sequence is important for theoretical reasons as well as com-
putational reasons. Note that when the spectral sequence collapses at the E2-page, the edge
homomorphism

π∗ : H ∗(G, Z) −→ H∗(G, C∗(∂�(G)))

is injective. The hypercohomology of the chain complex C∗(∂�(G)) is isomorphic to the equivariant
cohomology of the G-complex ∂�(G). It is known that the equivariant cohomology of a finite G-
CW -complex X has an injective edge homomorphism if X has a fixed point. When G is an elementary
abelian p-group, the converse is also known to hold in mod p coefficients as a consequence of the
well-known Localization theorem. The boundary of the subset complex has no fixed points but its
edge homomorphism is zero when G is not one of the groups listed in Theorem 1.2. Therefore,
∂�(G) can be considered as a counterexample to the Localization theorem for arbitrary groups.
Other examples of such spaces are also known, for example, the projectivization of an irreducible
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THE EULER CLASS OF A SUBSET COMPLEX 63

complex representation has zero edge homomorphism but has no fixed points when the representation
is of dimension greater than 2.

In [13], Pakianathan and Yalçın show that if there exists a topological G-space Y which has no
G-fixed point and for which the edge homomorphism π∗ : H ∗(G) → H ∗

G(Y ) is injective, then the
essential ideal Ess∗(G) is nilpotent with nilpotency degree less than or equal to the dimension of Y .
Recall that the essential ideal of the group G is defined as

Ess∗(G) = Ker

{∏
resG

H : H ∗(G) −→
∏

H<G

H ∗(H)

}
.

Since ∂�(G) has no fixed points, our main theorem also implies the nilpotency of essential ideal for
non-abelian groups. The nilpotency of essential ideal has many consequences in group cohomology
such as Quillen’s F -injectivity theorem and Serre’s theorem.

Although the hypercohomology spectral sequence for the subset complex is a useful tool to obtain
information about the cohomology of the group, we believe that it would be very difficult to calculate
group cohomology using this method. One of the difficulties is that we do not know at which page the
isotropy spectral sequence converges. It is an interesting problem to find group theoretical conditions
which make the isotropy spectral sequence converge at a certain page.

Another problem with the isotropy spectral sequence of ∂�(G) is that the subset complex is not an
admissible simplicial complex. Recall that a simplicial complex with a G-action is called admissible
if it satisfies the condition that if a simplex is fixed by an element in G then its vertices are also fixed.
When the G-action is not admissible, the product structure on the spectral sequence is not compatible
with the product structure of the integral cohomology ring. That means that we can only calculate
cohomology groups of G, but not the cohomology ring of G. The following is an example of a subset
complex, where the product structure of the isotropy spectral sequence is not compatible with the
product structure of the group cohomology.

EXAMPLE 9.2 Let G = 〈a, b〉 be an elementary abelian group of order 4. Then the corresponding
complex ∂�(G) can be pictured as a tetrahedron and the Euler class of �(G) is ζG = μ12, where
μ12 is a generator of H 3(G, Z). Recall that in this case the integral cohomology ring of G has the
structure

H ∗(G, Z) ∼= Z[μ1, μ2, μ12]
/〈2μ1 = 2μ2 = 2μ12 = 0, μ2

12 = μ1μ2(μ1 + μ2)〉.

The differential d3 is given by multiplication with μ12 which is a non-zero divisor. This gives that
Hn(G, C∗) ∼= Hn(G, Z)

/〈μ12〉 for n �= 2 and H2(G, C∗) ∼= H 2(G, Z) ⊕ Z. On the other hand, the
chain complex of ∂�(G) is

0 −→ Z[G] −→ ⊕3
i=1Z̃[G/Hi] −→ Z[G] −→ 0,
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where H1, H2, H3 are the cyclic subgroups of order 2 in G. So, the E1-page of the isotropy spectral
sequence is as follows:

It is easy to see that all differentials di are zero for i ≥ 1 and hence E∞ = E1. This gives

H ∗(G, Z) ∼=
3⊕

i=1

H ∗(Hi, Z̃)

except at the dimensions 0 and 2. Note that the product E
1,1
1 ⊗ E

1,1
1 → E

2,2
1 is zero, so all the two-

dimensional classes are nilpotent with respect to the product in the spectral sequence, but this is
not true in the integral cohomology of the group. This shows that the product structure of spectral
sequence is not compatible with the product structure in the integral cohomology of the group.

It is known that when a simplicial complex has an admissible G-action, the cohomology structure
is compatible with the product structure of the associated isotropy spectral sequence (see [3]). The
induced action on barycentric subdivision of a simplicial complex is an admissible action. Therefore
to avoid problems arising with the product structure, one should consider the barycentric subdivision
of the complex ∂�(G).

10. Barycentric subdivision of the subset complex

In [14], Reiner and Webb give a formula which provides a complete description of the (signed)
permutation modules involved in the chain complex of �(G). Using this formula, one calculates the
E1-page of the isotropy spectral sequence for ∂�(G). To be able to do similar calculations with the
barycentric subdivision of ∂�(G), we need to find a similar formula for the barycentric subdivision
of ∂�(G). We first describe the formula given by Reiner and Webb and show how a similar formula
for the barycentric subdivision of ∂�(G) can be obtained.

A graded G-set is a G-set � partitioned as � = �(0) ∪ �(1) ∪ �(2) ∪ · · · , where each
component �(i) is a G-set. Given a graded G-set, one can form a Poincaré series

P�(t) =
∑
i≥0

[�(i)]t i ,

where [�(i)] denotes the isomorphism class of the set �(i). We can consider this series as a power
series with coefficients in the Burnside ring B(G). By using the properties of the Burnside ring and
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the Gluck idempotent formula, Reiner and Webb [14] give a formula for this Poincaré series as

P�(t) =
∑

K≤H≤G

[G/K]μ(K, H)fH (t)

|G : K| , (1)

where fH (t) = ∑
i≥0 |�(i)H |t i and μ denotes the Möbius function on the poset of subgroups of G.

Note that in the above formula [G/K] denotes the isomorphism class of the transitive G-set with
isotropy subgroup K .

For a G-simplicial complex �, the Poincaré series P�(t) associated to � is defined as the Poincare
series of the graded G-set

� = �(0) ∪ �(1) ∪ �(2) ∪ · · · ,

where �(0) = [G/G] and �(i) is the isomorphism class of the set of (i − 1)-simplices of � for i ≥ 1.
If we apply this definition to the subset complex �(X), we get a Poincaré series of the form

P�(X)(t) = �0(X) + �1(X)t + · · · + �n+1(X)tn+1,

where |X| = n + 1 and �i(X) is the ith exterior power of X. In [20], Webb simplifies the formula
in Equation (1) for this case and obtains the following:

PROPOSITION 10.1 ([20, Proposition 1.4]) Let X be a finite G-set. Then

P�(X)(t) =
∑

K≤H≤G

[G/K]μ(K, H)fH (t)

|G : K| ,

where fH (t) = ∏m
i=1(1 + t |Xi |) when X = X1 ∪ · · · ∪ Xm is the decomposition of X into H orbits.

For a G-set X, let Bary(X) denote the barycentric subdivision of ∂�(X). We are interested in
finding a similar formula for the Poincaré series of Bary(X). Let us call Bary(X)(i) the ith T -power
of the set X and denote it with T i(X). With this notation we have

PBary(X)(t) = T 0(X) + T 1(X)t + · · · + T n(X)tn,

where |X| = n + 1. We have the following alternative description for T -powers of a G-set.

LEMMA 10.2 For a G-set X, the ith T -power T i(X) is isomorphic to the set of surjective maps
f : X → {1, 2, . . . , i + 1}.

Proof . By definition, the ith T -power of X is the set of proper chains

∅ ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ X.

It is easy to see that this set is isomorphic to the set of sequences B1, B2, . . . , Bi+1 of non-
empty disjoint sets whose union is X. But, this is isomorphic to the set of surjections f : X →
{1, 2, . . . , i + 1}.
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Let us denote the size of the set T i({1, 2, . . . , m}) by
[

m

i

]
. This is analogous to the similar notation

|�i({1, 2, . . . , m})| = (
m

i

)
for exterior powers. Note that

[
m

i

]
= (i + 1)! S(m, i + 1),

where S(m, i + 1) denotes the Stirling number of second type, which is the number of ways to
partition the set {1, · · · , m} into i + 1 disjoint subsets. The Poincaré series for Bary(X) is given by
the following formula.

PROPOSITION 10.3 Let X be a G-set and let Bary(X) denote the barycentric subdivision of the
boundary of the subset complex �(X). Then,

PBary(X)(t) =
∑

K≤H≤G

[G/K]μ(K, H)F|X/H |(t)
|G : K|

where Fm(t) = [
m

0

] + [
m

1

]
t + · · · + [

m

m−1

]
tm−1 for m ≥ 1.

Proof . By Equation (1), it is enough to show that |T i(X)H | = [ |X/H |
i

]
. Note that by Lemma 10.2,

the fixed point set T i(X)H is in one-to-one correspondence with surjective maps f : X/H →
{1, 2, . . . , i + 1}. So, the result follows.

The polynomials Fm(t) can be easily calculated using the induction formula

[
m

i

]
=

([
m − 1

i

]
+

[
m − 1

i − 1

])
(i + 1).

The first six terms of the series Fm(t) are as follows:

F1(t) = 1

F2(t) = 1 + 2t

F3(t) = 1 + 6t + 6t2

F4(t) = 1 + 14t + 36t2 + 24t3

F5(t) = 1 + 30t + 150t2 + 240t3 + 120t4

F6(t) = 1 + 62t + 540t2 + 1560t3 + 1800t4 + 720t5.

We conclude this section with an example that illustrates how one can obtain information about
the product structure using the complex Bary(X).

EXAMPLE 10.4 Let G be an elementary abelian group of order 4, and let H1, H2, H3 denote its
subgroups of order 2. Consider Bary(G), the barycentric subdivision of ∂�(G). The cohomology
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spectral sequence for this complex is the same as the one given in Example 9.2. Let us look at the
isotropy spectral sequence closely. By Proposition 10.3, the coefficient of [G/Hi] in PBary(X)(t) is

1

2
[F2(t) − F1(t)] = 1

2
[(1 + 2t) − 1] = t

for each i = 1, 2, 3 and the coefficient of [G/1] is

1

4
[F4(t) − 3F2(t) + 2F1(t)] = 2t + 9t2 + 6t3.

This means that the chain complex for Bary(X) is given by

0 −→ ⊕6Z[G/1] −→ ⊕9Z[G/1] −→ ⊕iZ[G/Hi] ⊕ (⊕2Z[G/1]) −→ 0.

The differential d1 on the E1-page is non-zero only on the bottom line and can easily be calculated.
We obtain that the E2-page looks like the following:

Since there are no further differentials, the spectral sequence collapses at the E2-page. Note that if
u1 and u2 are generators of H 2(G, Z) corresponding to projections on each factor, then they map to
(1, 1, 0) and (0, 1, 1) in E

0,2
3 . So, we obtain the relation u1u2(u1 + u2) = 0 as a consequence of the

product structure on E3. This shows that the product structure of the spectral sequence is compatible
with the product structure of the group cohomology.
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