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Detection Delay Penalty Cost Functions
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Abstract: The quickest detection of the unknown and unobservable disorder time, when
the arrival rate and mark distribution of a compound Poisson process suddenly changes,
is formulated in a Bayesian setting, where the detection delay penalty is a general smooth
function of the detection delay time. Under suitable conditions, the problem is shown to be
equivalent to the optimal stopping of a finite-dimensional piecewise-deterministic strongly
Markov sufficient statistic. The solution of the optimal stopping problem is described in
detail for the compound Poisson disorder problem with polynomial detection delay penalty
function of arbitrary but fixed degree. The results are illustrated for the case of the quadratic
detection delay penalty function.

Keywords: Bayesian sequential change detection; Compound Poisson disorder problem;
Optimal stopping; Piecewise-deterministic Markov processes.

Subject Classifications: 62L10; 62L15; 62C10; 60G40.

1. INTRODUCTION

Suppose that the arrival rate and mark distribution of a compound Poisson process
changes at some unknown and unobservable disorder time. We would like to detect
the disorder time by a stopping rule that depends only on the observations of the
point process and that minimizes the total risk arising from frequent false alarms
and long detection delay times.

The disorder time is assumed to follow a zero-modified exponential distribution.
The formulation of the problem is Bayesian, and for each stopping time of point
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process observations, the Bayes risk is the expected sum the false alarm frequency
and detection delay penalty, which is a general smooth function of the detection
delay time.

The compound Poisson disorder problems arise in homeland security to detect
and analyze the abnormal flow of passengers and commodities at the ports of
entries, in computer network security to identify attempts to gain unauthorized
control of services from incoming packet flows to various communication ports
of Web servers, and in public health to determine the onset of an epidemic in
a geographical area from the fluctuations in the emergency room visits to the
hospitals.

Several non-Bayesian formulations and solutions of the quickest change-
detection problems have been studied by Baron and Tartakovsky (2006), Hadjiliadis
(2005), Hadjiliadis and Moustakides (2005), Moustakides (2004, 2008), and Shiryaev
(1996) in continuous time, and by Lorden (1971), Moustakides (1986), Pollak
(1985), Tartakovsky (2008), and Tartakovsky and Veeravalli (2004) in discrete
time. Shiryaev (1963) introduced and solved the Bayesian formulation of quickest
detection problem for general distributions in discrete time and for a change in
the drift of a Brownian motion in continuous time. Galchuk and Rozovskii (1971)
formulated simple Poisson disorder problem and provided partial solution, which
has been completed by Peskir and Shiryaev (2002). Gapeev (2005) solved compound
Poisson disorder problem with exponentially distributed jumps. The solution for
the general case was provided by Dayanik and Sezer (2006). Bayesian sequential
detection of a change in the local characteristics of a finite-activity Lévy process
has been formulated and solved by Dayanik et al. (2008). Basseville and Nikiforov
(1993), Peskir and Shiryaev (2006), and Poor and Hadjiliadis (2008) give a detailed
review of the literature on both non-Bayesian and Bayesian sequential change
detection problems.

Higher moments of detection delay time were shown by Baron and Tartakovsky
(2006) and Tartakovsky and Veeravalli (2004) to be asymptotically minimized by
the Shiryaev’s procedure in Bayesian setting. The solution of Bayesian sequential
change detection problems with exponential detection delay penalties were found
by Poor (1998) in discrete time, by Beibel (2000) in detecting a change in the
drift of a Brownian motion, by Bayraktar and Dayanik (2006) and Bayraktar
et al. (2005) in simple Poisson disorder problem, and by Dayanik and Sezer (2006)
in compound Poisson disorder problem. Shiryaev (1964, 2008) and Shiryaev and
Zryumov (2009) derived the sufficient statistics for sequential change detection
problems with nonlinear detection delay penalty costs, which include as special
cases the higher moments and exponential functions of detection delay time. Gapeev
(2006) studied nonadditive Bayesian problems of detecting a change in the drift rate
of an observed diffusion.

We give the precise description of the compound Poisson disorder problem in
Section 2, where we show that for infinitely continuously differentiable detection
delay penalty functions, there are countably infinitely many piecewise deterministic
strongly Markov sufficient statistic for the problem. Our derivation is different
from that of Shiryaev (2008) in that we use a suitable reference probability
measure, change of measure, and change-of-variable formula to systematically
“complete” minimal sufficient statistic to a Markov sufficient statistic. The
detection delay penalty functions, which are the solutions of homogeneous m+ 1st
order constant coefficient ordinary differential equations, are shown to lead to
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an m-dimensional sufficient statistic, which is a piecewise deterministic strong
Markov process. Therefore, any penalty function that is a linear combinations
of products of exponential, polynomial, and sinusoidal functions is a solution of
some homogeneous constant-coefficient ordinary differential equation and leads
to a finite-dimensional sufficient statistic that is a piecewise deterministic strongly
Markov process. In the meantime, the disorder problem can be reduced to an
optimal stopping problem, and with a finite-dimensional piecewise deterministic
strongly Markov process, one can solve it by using dynamic programming and
successive approximations.

In Section 3, we explain the solution methodology in detail by specializing
to polynomial disorder detection penalty function with arbitrary but fixed degree.
By means of suitable dynamic programming operator, the continuous-time optimal
stopping problem is reduced to an essentially discrete-time optimal stopping
problem. This approach is based on the stochastic dynamic optimization theory
for piecewise deterministic Markov processes; see, for example, Gugerli (1986) and
Davis (1993). The dynamic programming operator maps every bounded function to
another bounded function, whose value at every point in the domain is obtained as
the solution of a straightforward deterministic optimization problem. The repeated
applications of the dynamic programming operator to constant zero mapping result
in successive approximations of the key optimal stopping problem’s value function,
which turns out to be unique bounded fixed point of the dynamic programming
operator. In the meantime, the solutions of deterministic optimization problems
naturally lead to nearly-optimal detection alarm times. We show that optimal alarm
time exists and can be characterized as the first hitting time of the Markov sufficient
statistic to a closed convex subset, which can be approximated arbitrarily well by the
zero sets of the successive approximations of the value function. We also show that
successive approximations converge to the value function over state space uniformly
and exponentially fast, and explicit error bound allows one to set the accuracy of
nearly-optimal alarm times to any desired level.

In Section 4, we illustrate some of the findings on the compound Poisson
problem with quadratic detection delay penalty cost function. We described
qualitatively, but quite explicitly, the form of optimal stopping time of the auxiliary
optimal stopping problem, which is also the optimal alarm time for the compound
Poisson disorder problem. Finally, the long proofs of selected results are deferred
to the Appendix.

2. PROBLEM DESCRIPTION

Let �Tn� Zn�, n ≥ 1 be a compound Poisson process whose arrival rate � and
mark distribution � on some measurable space �E� �� changes from ��0� �0� to
��1� �1� at some unobservable disorder time �, which has zero-modified exponential
distribution

��� = 0	 = p and ��� > t	 = �1− p�e−�t� t ≥ 0

for some known constants �0 > 0, �1 > 0, � > 0, 0 ≤ p < 1, and known probability
distributions �0 and �1 on �E� ��. We want to detect the disorder time � by
means of a stopping time 
 of the observation filtration �t = ���Tn� Zn�� n ≥ 1
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such that Tn ≤ t	, t ≥ 0 so as to minimize the expected total risk of false alarms and
detection delay time. For every ��t�t≥0-stopping time we define the Bayes risk as

R
�p� = ��1�
<�	 + f�
−��1�
≥�	�

for some general sufficiently smooth penalty function f  �+ �→ � of detection
delay time �
−��+. We would like to (i) calculate the smallest Bayes risk

inf

∈S

R
�p� for every 0 ≤ p < 1�

where the infimum is taken over the collection � of all ��t�t≥0-stopping times; and
(ii) find a stopping time in � which attains the infimum, if one such stopping time
exists.

It is always possible to construct a probability space ���� ���� with a reference
probability measure �� under which (i) �Tn� Zn�n≥1 is a compound Poisson process
with arrival rate �0 and mark distribution �0 on �E� ��, and � is an independent
random variable with zero-modified exponential distribution. Suppose that �1 is a
positive constant and �1 is a probability distribution on �E� �� absolutely continuous
with respect to �0, and either �0 �= �1 or �0 �≡ �1. Let �t = ���� ∨ �t, t ≥ 0 be
the filtration obtained by augmenting ��t�t≥0 with the information about � and
define the probability measure � locally on ������ through the Radon–Nikodym
derivatives

d�
d��

∣∣∣∣
�t

= Zt = 1�t<�	 + 1�t≥�	

Lt

L�

� t ≥ 0�

where

Lt = e−��1−�0�t
∏

nTn≤t

(
�1
�0

d�1
d�0

�Zn�

)

= exp
{
−��1 − �0�t +

∫ t

0

∫
E

(
log

�1
�0

�1
�0
�z�

)
N�ds� dz�

}
�

and N�ds� dz� is the Poisson random measure on ��+ × E����+�× �� with mean
measure �0ds �0�dz� under ��. Girsanov’s change-of-measure theorem guarantees
that �Tn� Zn�n≥1 and � have jointly the same statistical law under � as they
are described in the introduction. Therefore, we will work in the remainder
with � obtained by a change-of-measure from the reference probability measure
�� on ������. The change-of-variable formula gives the dynamics of process
L= �Lt��t� t ≥ 0	 as

L0 = 1 and dLt = Lt−
∫
E

(
�1
�0

d�1
d�0

�z�− 1
)
�N�dt� dz�− �0dt �0�dz��� t ≥ 0� (2.1)

For every stopping time 
 ∈ � , we have

��f�
−��1�
≥�	�− f�0���
 ≥ �	

= ���f�
−��− f�0��1�
≥�	� = �
[
1�
≥�	

∫ 
−�

0
f ′�t�dt

]
= �

[
1�
≥�	

∫ 


�
f ′�t −��dt

]
= �

[ ∫ �

0
f ′�t −��1��≤t	1�
>t	dt

]
�
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Because 
 ∧� is ��-a.s. finite stopping time of ��t�t≥0 and Z�∧
 = Z� = 1 on
��≤ 
	, we have

��
 ≥ �	 = ���Z
∧�1�
≥�	� = ���
 ≥ �	 = p+ �1− p���

[ ∫ 


0
�e−�tdt

]
�

Since Zt1��>t	 = 1��>t	 for every t ≥ 0, the independence of � and �t under ��
implies that we have ���Zt1��>t	 ��t� = ���� > t	 = �1− p�e−�t for every t ≥ 0,
and

�
[ ∫ �

0
f ′�t −��1��≤t	1�
>t	dt

]
= ��

[ ∫ �

0
���Ztf

′�t −��1��≤t	 ��t�1�
>t	dt
]

= ��

( ∫ 


0
���Zt1��>t	 ��t�

���Ztf
′�t −��1��≤t	 ��t�

���Zt1��>t	 ��t�
dt
)

= �1− p���

[ ∫ 


0
e−�t�

�1�
t dt

]
in terms of the first element of the sequence of processes

�
�n�
t = ���Ztf

�n��t −��1��≤t	 ��t�

���Zt1��>t	 ��t�
= ��f �n��t −��1��≤t	 ��t�

��� > t ��t	
� t ≥ 0� n ≥ 1�

where we denote by f �n� the nth derivative of f�·�, and the last equality follows
from Bayes formula. Therefore, the Bayes risk of every stopping time 
 ∈ S can be
written as

R
�p� = ��
 < �	+ f�0���
 ≥ �	+�
[ ∫ �

0
f ′�t −��1��≤t	1�
>t	dt

]
= 1− p+ pf�0�+ �1− p���

[ ∫ 


0
e−�t
(
�

�1�
t + �f�0�− ��dt

]
�

Proposition 2.1. If the detection delay penalty function f�·� is continuously
differentiable, then the Bayesian sequential quickest detection problem is equivalent to
solving

inf

∈�

R
�p� = 1− p+ pf�0�+ �1− p� inf

∈�

��

[∫ 


0
e−�t
(
�

�1�
t + �f�0�− ��dt

]
� 0≤p< 1�

If the optimal stopping problem on the righthand side admits an optima ��t�t≥0-stopping
time, then it is also a Bayes-optimal change-detection alarm time for the compound
Poisson disorder problem.

In the remainder, we will develop and use methods to solve the optimal stopping
problem of Proposition 2.1 and identify optimal and nearly-optimal stopping times.
The process ��1� = ��

�1�
t ��t� t ≥ 0	, is a sufficient statistic for the quickest detection

problem in the sense that ���1�
s � 0 ≤ s ≤ t	 summarizes all of the information
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contained in the observations �t up to and including time t for a decision to be made
at time t between raising an alarm and waiting for at least some more infinitesimal
amount of time. However, ��1� is in general not a Markov process under ��.

In general, if f�·� is �m+ 1�-times continuously differentiable for some m ≥ 1,
then the processes ��n� = ��

�n�
t ��t� t ≥ 0	, 1 ≤ n ≤ m follow the dynamics

�
�n�
0 = p

1− p
f �n��0��

d��n�
t = [��f �n��0�+�

�n�
t �+�

�n+1�
t

]
dt +�

�n�
t−
∫
E

(
�1
�0

d�1
d�0

�z�− 1
)

× �N�dt� dz�− �0dt �0�dz��� t ≥ 0� 1 ≤ n ≤ m� (2.2)

the derivation of which is a straight-forward application of Itô rule. For
every 1≤ n ≤ m, the drift of ��n� depends on ��n+1�, and the process
���

�1�
t � � � � � �

�m�
t ���t� t ≥ 0	 is in general not a Markov process. If f�·�

is infinitely continuously differentiable, then under suitable conditions
���

�1�
t � �

�2�
t � � � � ���t� t≥ 0	, will be an infinite-dimensional Markov process. The

finite system of stochastic differential equations in (2.2) is “closable,” for example, if
��m+1� can be expressed in terms of ��1�� � � � � ��m�, in which case the m-dimensional
process ����1�

t � � � � � �
�m�
t ���t� t ≥ 0	 is a Markov sufficient statistic for the sequential

change detection problem.
In attacking general sequential statistical problems for processes with stationary

and independent increments, the importance and the explicit form of Markov
sufficient statistics were noticed first in discrete time by Shiryaev (1964) and then in
continuous time by Shiryaev (2008, Theorem 1 and Remark 4), who recently derived
them for the generalized Bayesian nonlinear quickest detection of an abrupt change
in the drift of a Brownian motion and in the arrival rate of a simple Poisson process.

Example 2.1. In each of the following examples, the system in (2.2) is closable, and
the m-dimensional process ���

�1�
t � � � � � �

�m�
t ���t� t ≥ 0	 is a piecewise deterministic

strong Markov process.

(1) Suppose that f�t� = a0 + a1�t − b1�+ a2�t − b2�
2 + · · · + am�t − bm�

m for
every t ≥ 0 for some constants a0, b0� � � � � am� bm. Then f �m+1��·� ≡ 0 and ��-a.s.
�

�m+1�
t = 0 for every t ≥ 0. The simple Poisson disorder problem (i.e., �0 �= �1 and

�1 ≡ �0) with linear detection delay penalty function f�t� = t was formulated and
partially solved by Galchuk and Rozovskii (1971). The complete solution was later
given by Peskir and Shiryaev (2002) by using method of variational inequalities.
Later, Dayanik and Sezer (2006) described the solution of compound Poisson
disorder problem with linear detection delay penalty by first reducing the original
problem to a discrete-time optimal stopping problem, which is then solved with
successive approximations.

(2) Suppose that f�t� = aebt + c, t ≥ 0 for some constants a� b �= 0, and c.
Then f �1��t� = abebt and f �2��t� = ab2ebt = bf �1��t�. Therefore, ��2�

t = b�
�1�
t for every

t ≥ 0, and m = 1 because

�
�1�
0 = abp

1− p
�
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d��1�
t = [����1�

t + ab�+ b�
�1�
t

]
dt +�

�1�
t

∫
E

(
�1
�0

d�1
d�0

�z�− 1
)

× �N�dt� dz�− �0dt dz�� t ≥ 0

is autonomous, and the sufficient statistic ��
�1�
t ��t� t ≥ 0	 for the sequential change

detection problem is a one-dimensional piecewise deterministic strong Markov
process. The simple Poisson disorder problem with exponential detection delay
penalty and a = −c = 1 was solved by Bayraktar et al. (2005) ? by the method
of variational inequalities. The compound Poisson disorder problem with the same
exponential detection delay penalty function was later solved by Dayanik and Sezer
(2006) with successive approximations applied to an equivalent essentially discrete-
time optimal stopping problem.

(3) Suppose that the detection delay penalty function f is �m+ 1�-times
continuously differentiable, and that f �1� solves mth order constant coefficient
homogeneous ordinary differential equation

0 = c1f
�1��t�+ c2f

�2��t�+ · · · + cmf
�m��t�+ f �m+1��t� for every t ≥ 0�

Then we have ��-a.s. �
�m+1�
t = −∑m

n=1 cn�
�n�
t for all t ≥ 0, and the system of m

stochastic differential equations in (2.2) is autonomous. Hence, the m-dimensional
process ���

�1�
t � � � � � �

�m�
t ���t� t ≥ 0	 is a strong Markov sufficient statistic for the

sequential change detection problem. For suitable constants �n� an� �n� bn� �n� �n for
1 ≤ n ≤ m, the general solution of the mth order constant coefficient homogeneous
ordinary differential equation is

f�t� =
m∑

n=1

�an cos �nt + bn sin �nt�t
�ne�nt� t ≥ 0�

In the remainder, we will specialize to the detection delay penalty function
f�t� = tm, t ≥ 0 for an arbitrary but fixed m ≥ 1 and describe in detail the solution
of compound Poisson disorder problem. The method easily extends other cases with
finite-dimensional Markov sufficient statistics. For every a > 0,

lim
m→�

(
t

a

)m

=


0� if 0 ≤ t < a�

1� if t = a�

�� if t > a�

and for large m, t �→ �t/a�m is a reasonable penalty function for the sequential
change detection problems, where detection delay less than a is tolerable, but
detection delay more that a is completely unacceptable. For convenience, we take
a = 1. Proposition 2.2 now follows from Proposition 2.1 and (2.2).

Proposition 2.2. Suppose that the detection delay penalty function is f�t� = tm for
every t ≥ 0 for some m ≥ 1. Then the minimum Bayes risk equals

inf

∈�

R
�p� = 1− p+ �1− p�V

(
0� � � � � 0�

pm!
1− p

)
� 0 ≤ p < 1
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in terms of the value function of the discounted optimal stopping problem

V��� = inf

∈�

��
�

[ ∫ 


0
e−�tg��t�dt

]
� � ∈ �m

+ =
m-times︷ ︸︸ ︷

�+ × · · · ×�+ (2.3)

with running cost function g  �m
+ �→ � defined by g��� = eT1�− � ≡ �1 − �

for the m-dimensional piecewise deterministic Markov process � = ��t =
��

�1�
t � � � � � �

�m�
t ���t� t ≥ 0	, whose dynamics are

d��n�
t = [���n�

t +�
�n+1�
t

]
dt +�

�n�
t−
∫
E

(
�1
�0

d�1
d�0

�z�− 1
)

× �N�dt� dz�− �0dt �0�dz��� t ≥ 0�

�
�n�
0 = p

1− p
f �n��0� = 0 for every n = 1� � � � � m− 1� and

d��m�
t = �

(
�

�m�
t +m!)dt +�

�m�
t−
∫
E

(
�1
�0

d�1
d�0

�z�− 1
)
�N�dt� dz�− �0dt �0�dz��� t≥ 0�

�
�m�
0 = p

1− p
f �m��0� = pm!

1− p
�

where for every � ∈ �m
+ expectation ��

� is taken under �� such that ����0 = �	 = 1.

The jumps and deterministic evolution between jumps of process � can be
separated, and its dynamics can be written compactly as

�0 =
pm!
1− p


0
���
0
1


m×1

� d�t = �A�t + b�dt +�t−
∫
E

(
�1
�0

d�1
d�0

�z�− 1
)
N�dt� dz�� t ≥ 0�

�t =
�

�1�
t

���

�
�m�
t

 � A = −



�̄ 1 0 0 · · · 0
0 �̄ 1 0 · · · 0
���

� � �
� � �

� � � · · · ���

0 · · · �̄ 1 0
0 · · · 0 �̄ 1
0 · · · 0 0 �̄


m×m

�

b =


0
���
0

�m!


m×1

� �̄ = �1 − �0 − ��

Proposition 2.3. The process � = ��t = ��
�1�
t � � � � � �

�m�
t ���t� t ≥ 0	 is an

m-dimensional piecewise deterministic strong Markov process under ��, and ��-a.s.
for every t ≥ 0

�t =
��t − Tn��Tn

�� if t ∈ �Tn� Tn+1� for some n ≥ 0�

��Tn+1 − Tn��Tn
��

�1
�0

d�1
d�0

�Zn+1� if t = Tn+1 for some n ≥ 0�
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where T0 ≡ 0, and mapping �t� �� �→ ��t� �� = ��1�t� ��� � � � � �m�t� ���  �+ ×
�m

+ �→�m
+ defined by

��t� �� =


eAt��+ A−1b�− A−1b� if �̄ �= 0

eAt�+
( ∫ t

0
eAsds

)
b� if �̄ = 0

 for every t ≥ 0 and � ∈ �m
+�

is the solution of the system of m linear ordinary differential equations
dx�t�=Ax�t�+ b, t ≥ 0 with initial condition x�0� = �. If �̄ > 0, then limt→� ��t� �� =
−A−1b for every � ∈ �m

+. If �̄ ≤ 0, then t �→ �n�t� �� is strictly increasing and
limt→� �n�t� �� = +� for every 1 ≤ n ≤ m and � ∈ �m

+.

3. A DYNAMIC PROGRAMMING OPERATOR AND THE SOLUTION

Let us define for every bounded function w  �m
+ �→ �

�Kw���� =
∫
E
w

(
�
�1
�0

d�1
d�0

�z�

)
�0�dz�� � ∈ �m

+� (3.1)

�Jw���� r� =
∫ r

0
e−��+�0�t�g + �0�Kw�����t� ���dt� r ≥ 0� � ∈ �m

+� (3.2)

�Jtw���� = inf
r≥t

�Jw���� r�� t ≥ 0� � ∈ �m
+� (3.3)

Operators J and Jt naturally appear in the optimality equation satisfied by the value
function of the optimal stopping problem in (2.3). This important connection is the
result of the special characterization of stopping times 
 ∈ � as described below by
Proposition 3.1, the proof of which essentially follows from the arguments of Liptser
and Shiryaev (2001, pp. 270–271).

Proposition 3.1. For all 
 ∈ � and n ≥ 0, there is an �Tn
-measurable nonnegative r.v.

Rn such that ��-a.s.

1�
≥Tn	
�
 ∧ Tn+1� = 1�
≥Tn	

��Tn + Rn� ∧ Tn+1�� (3.4)

�
 ≥ Tn	 = �R0 ≥ T1� T1 + R1 ≥ T2� � � � � Tn−1 + Rn−1 ≥ Tn	� (3.5)

�Tn ≤ 
 < Tn+1	 = �R0 ≥ T1� T1 + R1 ≥ T2� � � � � Tn−1 + Rn−1 ≥ Tn� Tn + Rn < Tn+1	�
(3.6)

Toward a solution of the optimal stopping problem in (2.3) with detection delay
penalty function f�t� = tm, t ≥ 0 for arbitrary but fixed m ≥ 1, let us consider the
following policy: suppose that we agreed to stop at some fixed stopping time 
∈�
if 
 < T1, namely, if no mark (and therefore no new information) has arrived before
the alarm time set by the stopping rule, and otherwise take optimal action at time
T1 based on the value �T1

of sufficient statistic, which will then incorporate new
information contained in the mark just arrived at time T1. The strong Markov
property of process � at ��t�t≥0-stopping time 
 ∧ T1 suggests that the expected
value of this policy should equal

��

[ ∫ 
∧T1

0
e−�tg��t�dt + 1�
≥T1	

e−�T1V��T1
�

]
�



202 Dayanik

Let R0 ≡ R0��0� be �0-measurable random variable such that ��-a.s.

∧T1 = R0 ∧ T1 and �
 ≥ T1	 = �R0 ≥ T1	 as in the characterization of 
 by
Proposition 3.1. Because by Proposition 2.3 �t = ��t��0� for t ∈ �0� T1� and
�T1

= ��T1��0�
�1
�0

d�1
d�0

�Z1� and since �Tn� Zn�n≥1 is a compound Poisson process with
arrival rate �0 and mark distribution �0 on �E� ��, and since �0 and �T1� Z1� are
independent due to independent increments of �Tn� Zn�n≥1 under ��, we can rewrite
the expected value of the policy as

��

[ ∫ R0

0
1�T1≥t	e

−�tg���t��0��dt + 1�R0≥T1	
e−�T1V

(
��T1��0�

�1
�0

d�1
d�0

�Z1�

)]
=
∫ R0

0
e−��+�0�tg���t��0��dt +

∫ R0

0
�0e

−��+�0�t
∫
E
V

(
��t��0�

�1
�0

d�1
d�0

�z�

)
�0�dz�dt

=
∫ R0

0
e−��+�0�t�g + �0�KV�����t��0��dt ≡ �JV���0� R0��

Therefore, the minimum expected total discounted cost should be given by

inf

∈�

��

[ ∫ 
∧T1

0
e−�tg��t�dt + 1�
≥T1	

e−�T1V��T1
�

]
= inf

r≥0
�JV���0� r� ≡ �J0V���0��

Because V��0� is by definition the minimum expected total discounted cost, the
optimality principle of dynamic programming suggests that V��0� = �J0V���0� and
that J0 can be seen as a dynamic programming operator. We later show that V�·�
is indeed a solution of the optimality equation. In fact, V�·� is the unique bounded
fixed point of operator J0 and can be approximated successively by the elements of
the sequence

v0��� = 0� � ∈ �m
+ and vn��� = �J0vn−1����� � ∈ �m

+� n ≥ 1� (3.7)

Let us first introduce the finite-horizon problems

Vn��� = inf

∈�

��
�

[ ∫ 
∧Tn

0
e−�tg��t�dt

]
for every � ∈ �m

+ and n ≥ 0� (3.8)

obtained from the original problem in (2.3) by requiring a decision at or before
the arrival time Tn of the nth mark. The next lemma shows that V��� can
be approximated successively by the elements of sequence �Vn����n≥0 as n → �,
uniformly in � ∈ �m

+.

Lemma 3.1. The sequence �Vn����n≥0 decreases to V��� as n → � uniformly in
�∈�m

+. More precisely,

0 ≤ Vn���− V��� ≤
(

�

�+ �0

)n

for every � ∈ �m
+ and n ≥ 1�

Proof. The first inequality is obvious. On the other hand, because g��� ≥ −� for
every stopping time 
 ∈ � , and under �� the random variable Tn has Erlang
distribution with parameters n and �0, we have

��
�

[ ∫ 


0
e−�tg��t�dt

]
= ��

�

[ ∫ 
∧Tn

0
e−�tg��t�dt + 1�
≥Tn	

∫ 


Tn

e−�tg��t�dt
]
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≥ ��
�

[ ∫ 
∧Tn

0
e−�tg��t�dt

]
−��

�

[ ∫ �

Tn

�e−�tdt
]

≥ Vn���−��
��e

−�Tn � = Vn���−
(

�

�+ �0

)n

�
�

Propositions 3.2 and 3.3 show that Vn�·� = vn�·� for every n ≥ 0. Namely,
�Vn�·��n≥0 can be calculated iteratively by successive applications of the dynamic
programming operator J0 to function v0 ≡ 0. Since each vn�·� is obtained as the
solution of a straightforward deterministic optimization problem, Lemma 3.1 and
Propositions 3.2 and 3.3 suggest for the problem in (2.3) an effective numerical
solution method, which also turns out to be very useful to identifying the structural
properties of the solution.

Proposition 3.2. For every n ≥ 0 and � ∈ �m
+, we have Vn��� > vn���.

Proposition 3.3. For every � > 0, � ∈ �m
+, and n ≥ 1, let rn����� be a nonnegative

number such that �Jvn−1���� rn������ ≤ �+ �J0vn−1���� ≡ �+ vn���, and define


0�� ≡ 0 and 
n�� =
{
rn��/2��0�� if rn��/2��0� < T1�

T1 + Tn−1��/2  �T1� if rn��/2  �T1
≥ T1�

Then for every � > 0 and n ≥ 1, we have 
n�� ∈ � , and

��
�

[ ∫ 
n��∧Tn

0
e−�tg��t�dt

]
≤ vn���+ ��

Corollary 3.1. For every n ≥ 0 and � ∈ �m
+, we have Vn��� = vn���, and stopping

time 
n�� is �-optimal for the problem in (3.8): ��
�
[ ∫ 
n��∧Tn

0 e−�tg��t�dt
] ≤ Vn���+ �

for every � ∈ �m
+, � > 0, and n ≥ 1.

Proof. The last displayed equation of Proposition 3.3 implies Vn�·� ≤ vn�·�+ � for
every � > 0, and since � > 0 is arbitrary, we conclude that Vn�·� ≤ v�·�. Since the
opposite inequality is also true by Proposition 3.2, the equality Vn��� ≡ vn��� holds
for every � ∈ �m

+. Replacing vn��� with Vn��� in the last displayed equation of
Proposition 3.3 now shows that 
n�� is �-optimal for the problem in (3.8). �

Lemma 3.2 identifies important properties of the dynamic programming
operator J0. Particularly, J0 preserves boundedness, concavity, and monotonicity.
It may have at most one fixed point in the space of bounded functions defined
on �m

+. Corollary 3.2 below shows that J0 has one and only one bounded fixed
point, which is the value function V�·� of problem in (2.3).

Lemma 3.2. If w  �m
+ �→ � is concave and bounded between −1 and 0, then so

is �J0w�. If w1�·� ≤ w2�·�, then �J0w1��·� ≤ �J0w2��·�. Moreover, J0 is a contraction
mapping on the collection of bounded functions defined on �m

+, and for every bounded
w1�·� and w2�·�, we have �J0w1 − J0w2� ≤ �0

�+�0
�w1 − w2�.

Corollary 3.2. The functions Vn�·�, n ≥ 0 and V�·� are bounded between −1 and 0,
concave, and continuous on �m

+. Moreover, V�·� is the unique bounded fixed point of
operator J0.
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Proof. Because V0 ≡ 0 is bounded between −1 and 0 and concave on �m
+, an

induction on n ≥ 1, Corollary 3.1, and Lemma 3.2 show that Vn = J0Vn−1, n ≥ 1 are
bounded between −1 and 0 and concave. Since they are concave on �m

+, they are
also continuous on �m

++. Because V�·� is the uniform pointwise limit of �Vn�·��n≥0

by Lemma 3.1, V�·� is bounded between −1 and 0, concave on �m
+, and continuous

on �m
++. Finally, Lemmas 3.2 and 3.1 imply that

�J0Vn − J0V� ≤ �0
�+ �0

�Vn − V� ≤ �0
�+ �0

(
�

�+ �0

)n

→ 0 as n → ��

Hence, �J0V���� = limn→��J0Vn���� = limn→� Vn+1��� = V��� for every � ∈ �m
+ by

Corollary 3.1. If Ṽ �·� is another bounded fixed point of J0, then �V − Ṽ� = �J0V −
J0Ṽ� ≤ ��0/��+ �0���V − Ṽ� implies that �V − Ṽ� = 0; i.e., V�·� is the unique
bounded fixed point of operator J0. �

The next major result is Theorem 3.1, which states that for every � ≥ 0 the
��t�t≥0-stopping time 
� = inf�t ≥ 0� V��t� ≥ −�	 is �-optimal for the problem in
(2.3). For its proof, we will need the next few lemmas and their corollaries.

Lemma 3.3. For every bounded w  �m
+ �→ �, we have �Jw���� s�+ e−��+�0�s

�J0w����s� ��� = �Jsw���� for every � ∈ �m
+ and s ≥ 0. If �J0w����s� ��� < 0 for

every 0 ≤ s < t, then �Jsw���� = �Jtw���� for every 0 ≤ s ≤ t.

The second part of Corollary 3.3 implies that, as long as the value function V�·�
of the optimal stopping problem in (2.3) remains strictly negative along the path
t �→ ��t� ��, postponing the stopping decision does not cause any regrets. This is
the crucial result needed for the proof of the optimality of the stopping time 
0 =
inf�t ≥ 0� V��t� = 0	.

Corollary 3.3. If we take w = V in Lemma 3.3, then we have �JV���� s�+
e−��+�0�sV���s� ��� = �JsV���� for every s ≥ 0 and � ∈ �m

+, because V = J0V .
If V���s� ��� < 0 for every 0 ≤ s < t, then V��� = �JsV���� and �JV���� s�+
e−��+�0�sV���s� ��� = V��� for every 0 ≤ s ≤ t.

Lemma 3.4. Let us define ��t�t≥0-stopping time 
� = inf�t ≥ 0� V��t� ≥ −�	 for every
� ≥ 0. Then


� =
{
r���0�� if r���0� < T1

T1 + 
�  �T1� if r���0� ≥ T1

}
and


�1�Tn≤
�<Tn+1	
= �Tn + r���Tn

��1�Tn≤
�<Tn+1	

for every � ≥ 0 and n ≥ 0�

where r���� = inf�t ≥ 0� V���t� ��� ≥ −�	 for every � ∈ �m
+ and � ≥ 0.

Proposition 3.4 states that postponing the stopping decision until time 
�
does not cause any regrets, and this observation almost immediately leads to the
�-optimality of 
� for the problem in (2.3), which is established by Theorem 3.1.

Proposition 3.4. Let us define Mt =
∫ t

0 e
−�ug��u�du+ e−�tV��t� for every t ≥ 0. For

every n ≥ 0, ��t�t≥0-stopping time 
, and � ∈ �m
+, we have ��

��M
∧
�∧Tn � = ��
��M0� =

V���.
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Theorem 3.1. For every � ≥ 0, the ��t�t≥0-stopping time 
� of Lemma 3.4 is �-optimal
for problem in (2.3). Particularly, 
0 is an optimal ��t�t≥0-stopping time for problem
in (2.3).

Proof. By Proposition 3.4 for every � ≥ 0, n ≥ 0, and 
 ≡ Tn, we have

V��� = ��
��M
�∧Tn �

= ��
�

[ ∫ 
�∧Tn

0
e−�tg��t�dt + 1�
�<Tn	

e−�
�V��t�
�+ 1�
�≥Tn	

e−�TnV��Tn
�

]
≥ ��

�

[ ∫ 
�∧Tn

0
e−�tg��t�dt − �1�
�<Tn

	e
−�
� − 1�
�≥Tn	

e−�Tn

]
≥ ��

�

[ ∫ 
�∧Tn

0
e−�tg��t�dt

]
− �−��

��e
−�Tn ��

Since
∫ 
�∧Tn
0 e−�tg��t�dt, n ≥ 0 is bounded from below, and limn→� ��e−�Tn = 0,

Fatou’s lemma gives V��� ≥ limk→��
�
�
[ ∫ 
�∧Tn

0 e−�tg��t�dt
]− � ≥ ��

�
[ ∫ 
�

0 e−�t

g��t�dt
]− �. �

Since V�·� = limn→� Vn�·� can be calculated in the limit, optimal stopping rule

0 may not be implementable. In practice, V�·� is approximated by Vn�·� ≡ vn�·� for
some sufficiently large n ≥ 0, and optimal performance of 
0 can be approximated
arbitrarily closely by stopping times �n��� � > 0 of Theorem 3.2.

Theorem 3.2. Define �n�� = inf�t ≥ 0� Vn��t� ≥ −�	 for every � ≥ 0 and n ≥ 0.
If N��� = min�n ≥ 0� ��/��+ �0��

n ≤ �	 = ⌊ log �/ log �
�+�0

⌋
for every � > 0, then

��t�t≥0-stopping times �N��/2���/2 and �N����0 are �-optimal for every � > 0 for the
problem in (2.3).

Proof. Because Vn�·� ≥ V�·�, we have ��-a.s. �n�� ≤ 
�, and Proposition 3.4 with

 ≡ �n�� implies ��

��M�n��∧Tk = ��
��M�n��∧
�∧Tk � = ��

��M0�− V��� for every k ≥ 0.
Therefore,

V��� = ��
��M�n��∧Tk � = ��

�

[ ∫ �n��∧Tk

0
e−�tg��t�dt + e−���n��∧Tk�V���n��∧Tk�

]
= ��

�

[ ∫ �n��∧Tk

0
e−�tg��t�dt + 1��n��<Tk	

e−��n��V���n��
�+ 1��n��≥Tk	

e−�TkV��Tk
�

]
�

Lemma 3.1 gives 0 ≤ Vn���− V��� ≤ ��/��+ �0��
n for every � ∈ �m

+ and n ≥ 0, and
Vn�·� ≥ −1 by Corollary 3.2. Therefore, V��� is greater than or equal to

��
�

[ ∫ �n��∧Tk

0
e−�tg��t�dt + 1��n��<Tk	

e−��n��

(
Vn���n��

�−
(

�

�+ �0

)n)
− 1��n��≥Tk	

e−�Tk

]
�

The rest of the proof is similar to that of Theorem 3.1 and is completed by the
definition of N���. �

Theorem 3.3. Let us define stopping regions

� = �� ∈ �m
+� V��� = 0	 and �n = �� ∈ �m

+� Vn��� = 0	� n ≥ 1�
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Then the sets �m
+ = �0 ⊇ �1 ⊇ · · · ⊇ �n ⊇ · · · ⊇ � , which are closed and convex, and⋂

k≥0 �k = � . We have that 
0 = inf�t ≥ 0��t ∈ �	 and �n�0 = inf�t ≥ 0��t ∈ �n	 for
every n ≥ 0. Moreover, the sequence ��n�0�n≥0 increases ��-a.s. to 
0 as n → �.

Proof. Since Vn�·� decreases to V�·� as n → �, we have �0 ⊇ �1 ⊇ · · · ⊇ �n ⊇
· · · ⊇ � , which are closed and concave because Vn�·�, n ≥ 0 and V�·� are continuous,
concave, and nonpositive by Corollary 3.2. The stopping times 
0 and �n�0, n ≥ 0
of Theorems 3.1 and 3.2 are by definition the first hitting times of process � to
stopping sets � and �n, n ≥ 0. Because the sets �n, n ≥ 0 are decreasing, the hitting
times �n�0, n ≥ 0 are increasing with �0 = limn→� �n�0 ≤ 
0.

Because ��t� t ≥ 0	 has left-limits, the limit limn→� ��n�0
, exists. Since jump

times of process � are totally unpredictable, ����0 = Tn for some n ≥ 1	 = 0.
Therefore, ��-a.s. limn→� ��n�0

= ��0
.

On ��0 = �	, we obviously have ��-a.s. �0 = 
0. On ��0 < �	, we have
�n�0 <� for every n ≥ 0 and ��n�0

∈ �n ⊆ �k for every n ≥ k because �n, n ≥ 0 are
closed and t �→ �t is right-continuous. Therefore, ��0

= limn→� ��n�0
∈ �k for every

k ≥ 0, equivalently ��0
∈ ⋂k≥0 �k on ��0 < �	. Thus, we will have proved that �0 ≥


0 on ��0 < �	 as well, if we show that
⋂

k≥0 �k = � .
We already know that

⋂
k≥0 �k ⊇ � . To prove the opposite inclusion, take any

� ∈ ⋂k≥0 �k. Then 0 = Vk��� for every k ≥ 0. Therefore, V��� = limn→� Vk��� = 0
and � ∈ � . Hence,

⋂
k≥0 �k ⊆ � . �

Finally, Proposition 2.1 or the first part of Proposition 2.3 guarantee that 
0 is a
Bayes-optimal alarm time, and for every � > 0, stopping time �N����0 is an �-optimal
alarm time for the original compound Poisson disorder problem.

4. AN ILLUSTRATION

Consider the compound Poisson disorder problem with �0 �= �1, �0 ≡ �1, and m = 2;
namely, the detection delay penalty cost function is f�t� = t2. We shall use the results
of Section 3 to identify as explicitly as possible the structure of the optimal solution
of the auxiliary optimal stopping problem in (2.3).

The sufficient statistic is the two-dimensional piecewise deterministic strong
Markov process � = ��t = ��

�1�
t � �

�2�
t �� t ≥ 0	 which follows the dynamics

�t =
��t − Tn��Tn

�� if t ∈ �Tn� Tn+1�

��Tn+1 − Tn��Tn
��

�1
�0
� if t = Tn+1

 and

��t� �� = eAt�+
( ∫ t

0
eA�t−s�ds

)
b

for every t ≥ 0� � ∈ �2
+� and n ≥ 0�

where �̄ = �1 − �0 − �, and

A =
[−�̄ 1
0 −�̄

]
� b =

[
0
2�

]
� eAt = e−�̄t

[
1 t
0 1

]
A−1b = −

[
�̄−1 �̄−2

0 �̄−1

] [
0
2�

]
= −

[
2��̄−2

2��̄−1

]
if �̄ �= 0�
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��t� �� =


[
e−�̄t��1 − 2��̄−2 + t��2 − 2��̄−1��+ 2��̄−2

e−�t��2 − 2��̄−1�+ 2��̄−1

]
� if �̄ �= 0[

�1 + �2t + �t2

�2 + 2�t

]
� if �̄ = 0


for every t ≥ 0 and � = ��1� �2� ∈ �2

+�

Depending on the relationships between the parameters of the problem, the
sample paths of process � can take one of two major forms, and each can further
be divided into two subcases. We will describe qualitatively the form of the optimal
solution of the problem in (2.3) for each case. Note, however, that under all
circumstances it is never optimal to stop before the process � leaves the strip
C0 = �� = ��1� �2� ∈ �2

+� �1 < �	, because the integrand in (2.3) remains negative
until the first exit time 
0 = inf�t ≥ 0��t �∈ C0	 = inf�t ≥ 0���1�

t ≥ �	 of process �
from C0.

4.1. Case I: �̄ > 0

The solution x�t� = ��t� �� of the system of linear ordinary differential equations
dx�t�/dt− = Ax�t�+ b with initial condition x�0� = � ∈ �2

+ has unique equilibrium
point at −A−1b = �2��̄−2 2��̄−1�T . Since �̄ > 0, we have �1/�0 > 1, in which case at
each mark arrival time, the process � jumps away from the origin along the ray
emanating from the origin and passing through the position of � before jump; see
Figure 1. The structure of the optimal solution depends on the position of the root �
of the running cost function g��� = �1 − � in (2.3) relative to the first coordinate
2��̄−2 of the equilibrium point −A−1b�

Figure 1. Case I: �̄ > 0. The sufficient statistic � follows the integral curves of a system of
two linear ordinary differential equations, which have unique equilibrium point. Moreover,
since �1 > �0, at every arrival time of a mark, � jumps away from the origin.
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Case I(a). �̄ > 0 and � < 2��̄−2 (equivalently, 0 < �̄ <
√
2). Let �1 = �∗

1 ≥ 0
be the unique number such that � equals the unique minimum of the mapping
t �→ �1�t� ��1� 0��, which it is attained at t = t∗��1�. Let us denote by �∗

2 =
�2�t

∗��∗
1�� ��

∗
1� 0�� the second coordinate at time t∗��∗

1�, when the minimum value
of the first coordinate is attained and equals �, starting initially at ��∗

1� 0�; see
Figure 1(a). For every fixed �1 ≥ 0, taking the derivative of �1�t� ��1� 0�� =
e−�̄t��1 − 2��̄−2 − 2��̄−1t�+ 2��̄−2 with respect to t gives ��1�t� ��1� 0��/�t =
e−�t�−�̄�1 + �t�, and equating it to zero and solving for t leads to t∗��1� = �̄�−1�1

for every �1 ≥ 0. Therefore, � = �1�t
∗��∗

1�� ��
∗
1� 0�� = 2��̄−2�1− e−��̄2/���∗

1 � gives

�∗
1 = −��̄−2 ln

(
1− �̄2

2

)
and �∗

2 = ��̄�

Since �̄2/2 ∈ �0� 1�, we have 0 < �∗
1 < �. Moreover, (i) �∗

1 ≤ 2��̄−2 if and only if
�̄ ≤ √2�1− e−2�, (ii) �∗

2 < 2��̄−2, which is the second coordinate of the equilibrium
point −A−1b. Let us define

D = {��1� �2� ∈ �2
+� �1 = �1�t� ��

∗
1� 0��� �2 ≥ �2�t� ��

∗
1� 0��� 0 ≤ t ≤ t∗��∗

1�
}

∪ ���∗
1���×�+��

which is the dark shaded region in Figure 1(a). Because �1/�0 > 1 and
the equilibrium point −A−1b belongs to D, we have ��1/�0�D ⊆ D, and
��

���t ∈D for every t ≥ 0	 = 1 for every � ∈ D. Since g���− � ≥ 0 for every � ∈
D ⊂ �2

+\C0, we have �
�
��
∫ 


0 e
−�tg��t�dt� ≥ 0 for every 
 ∈ � and � ∈ D. Therefore,

V��� = 0 for every � ∈ D, and D is a subset of the optimal stopping region � = �� ∈
R2

+� V��� = 0	. Because D ⊂ � ⊆ �2
+\C0 and � is closed and convex, the optimal

stopping boundary �� coincides with the infinite line segment ���� �2�� �2 ≥ �∗
2	

and with some nondecreasing convex continuous curve �  ��� �∗
1� �→ � such that

����=�∗
2. There is also some � < �

�
1 ≤ �∗

1 such that ��·� is strictly decreasing on
��� �

�
1� and equals zero on ��

�
1� �

∗
1�; see Figure 1(a). All of those conclusions are

direct consequences of the convexity of the optimal stopping region region ��
In this subcase, starting initially at any �0 = � on the vertical axis (namely,

� = �0� �2� for any �2 ≥ 0), the process � never returns to C0 once it leaves that
region. Therefore, the first exit time 
0 of � from C0 is optimal for the problem in
(2.3) if �0 = �0� �2� for some �2 ≥ 0. Since by Proposition 2.2 we have

inf

∈�

R
�p� = 1− p+ �1− p�V

(
0�

2p
1− p

)
� 0 ≤ p < 1

depends on V��� evaluated on �� = �0� �2�� �2 ≥ 0	, the ��t�t≥0 stopping time 
0 is
an optimal change-detection alarm time if 0 < �̄ ≤ √

2.

Case I(b). �̄ > 0 and � ≥ 2��̄−2 (equivalently, �̄ ≥ √
2). We shall first state and

prove a comparison lemma for the sample paths of the process �.

Lemma 4.1. For every i = 1� 2, it we have ��-a.s. �
�i�
t ≥ �i�t��0� for every t ≥ 0.

Proof. Clearly, ��i�
t ≥ �i�t��0� for every 0 ≤ t < T1 and i = 1� 2. Suppose that for

some n ≥ 1, we have ��-a.s. �
�i�
t ≥ �i�t��0� for every 0 ≤ t < Tn and i = 1� 2. Let
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us prove that the same inequality also holds ��-a.s. for Tn ≤ t < Tn+1, and hence for
0 ≤ t < Tn+1, which will then complete the proof of the lemma since ��-a.s. Tn ↑ �
as n → �.

It is clear from the explicit form of ��·� ·� in (2.2) that, if x = �x1� x2� and y =
�y1� y2� are in �2

+ such that x1 ≤ y1 and x2 ≤ y2, then �i�t� x� ≤ �i�t� y� for every
t≥ 0 and i = 1� 2. Because �1/�0 > 1, we have �

�i�
Tn

= ��1/�0��
�i�
Tn− ≥ �

�i�
Tn− for i =

1� 2, and

�
�i�
t = �i�t − Tn��Tn

� = �i

(
t − Tn�

�1
�0
�Tn−

)
≥ �i�t − Tn��Tn−�� Tn ≤ t < Tn+1� i = 1� 2�

Since �
�i�
Tn− ≥ �i�Tn��0� for i = 1� 2 by the induction hypothesis, we have �

�i�
t ≥

�i�t − Tn��Tn−� ≥ �i�t − Tn� �i�Tn��0�� = �i�t − Tn + Tn��0� = �i�t��� for every
Tn ≤ t < Tn+1 and i = 1� 2. �

Lemma 4.1 implies that

V��� = inf

∈�

��
�

[ ∫ 


0
e−�tg��t�dt

]
= inf


∈�
��

�

[ ∫ 


0
e−�t��

�1�
t − ��dt

]
≥ inf


∈�
��

�

[ ∫ 


0
e−�t��1�t��0�− ��dt

]
= inf

r≥0

∫ 


0
e−�t��1�t� ��− ��dt = h���� � ∈ �2

+�

Therefore, �� ∈ �2
+� h��� = 0	 ⊆ �� ∈ �2

+� V��� = 0	 ≡ � . On the other
hand, for every � = ��1� �2� ∈ �2

+ such that �1 ≥ �, we have h��� =
min�0�

∫ �
0 e−�t��1�t� ��− ��dt	, and h��� = 0 if

0 ≤
∫ �

0
e−�t��1�t� ��− ��dt

=
∫ �

0
e−�t
[
e−�̄t��1 − 2��̄−2 + t��2 − 2��̄−1��+ 2��̄−2 − �

]
dt

= �1

�1 − �0
+ �2

��1 − �0�
2
− 2��̄−2

�1 − �0
− 2��̄−1

��1 − �0�
2
+ 2�̄−2 − 1�

and after multiplying both sides by ��1 − �0�
2 and rearranging the terms we obtain

�2 ≥ �̄��1� = −��1 − �0��1 + 2��̄−2��1 − �0�+ 2��̄−1 + �1− 2�̄−2���1 − �0�
2�

Hence, we have

D = ���1� �2� ∈ �2
+� �1 ≥ �� �2 ≥ �̄��1�	

⊆ �� ∈ �2
+� h��� = 0	 ⊆ �� ∈ �2

+� V��� = 0	 = ��

Lemma 4.2. Let �1 = �∗
1 be the root �̄��� = 0 and define �∗

2 = �̄���. Then

�∗
1 = �+ �∗

2

�1 − �0
> � and �∗

2 = 2��̄−1 + �1− 2�̄−2���1 − �0��̄ > 2��̄−1�
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Proof. Direct calculation gives �∗
2 = �̄��� = 2��̄−1 + �1− 2�̄−2���1 − �0��̄ > 2��̄−1,

because �̄ ≥ √
2 implies that 1− 2�̄−2 > 0� �1 − �0 > � > 0, �̄ > 0. Because �1 →

�̄��1� is a straight line with slope −��1 − �0�, we have �0− �∗
2�/��

∗
1 − ��

= −��1 − �0�.
Because optimal stopping region � is closed and convex, and D ⊆ � ⊆ �2

+\C0,
there exist some 2��̄−1 < �

�
2 < �∗

2, � < �
�
1 ≤ �∗

1, and some nondecreasing convex
continuous curve �  ��� �∗

1� �→ � such that optimal stopping boundary �� coincides
with the infinite line segment ���� �2�� �2 ≥ �

�
2	 and with ���1� ���1��� � ≤ �1 ≤ �∗

1	.
Moreover, �1 �→ ���1� is strictly decreasing on �1 ∈ ��� �

�
1� and equals zero on �1 ∈

��
�
1� �

∗
1�; see Figure 1(b).

4.2. Case II: �̄ < 0

The components of t �→ ��t� �� are strictly increasing for all � ∈ �2
+. Both �1 > �0

and �1 < �0 are possible.

Case II(a). �̄ < 0 and �1 > �0. The process � runs away from the origin both
at and between jump times. It never returns to region C0 once it leaves that region.
Therefore, optimal stopping region � coincides with �+\C0, optimal stopping
boundary �� is the straight line �1 = �, and the first exit time 
0 of process � from
region C0 is optimal for the problem in (2.3) and an optimal alarm time for the
compound Poisson disorder problem; see Figure 2(a).

Case II(b). �̄ < 0 and �1 < �0. The process � runs away from the origin
between jump times, but is pulled back toward the origin at every jump. Therefore,

Figure 2. Case II: �̄ ≤ 0. The process � follows integral curves, both coordinates of which
are strictly increasing. It jumps away from the origin if �1 > �0 and toward the origin if
�1 < �0.
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� may return to region C0 after a jump with positive probability; see Figure 2(b).
Since V�·� ≥ −1, for every � ∈ ��+ �0���×�+ we have V��� equals

�J0V���� = inf
r≥0

∫ r

0
e−��+�0�t�g + ��KV�����t� ���dt

≥ inf
r≥0

∫ r

0
e−��+�0�t��1�t� ��− �− �0�dt = 0�

which implies that ��+ �0���×�+ ⊆ � . Because the optimal stopping region
� ⊆ �+\C0 is closed and convex, there exist some � < �

�
1 ≤ �+ �0 and some

nonincreasing convex continuous curve �  ��� �+ �0� �→ � such that the optimal
stopping boundary �� coincides with ��·�, which is strictly decreasing on ��� �

�
1� and

vanishes on ��
�
1� �+ �0�.

APPENDIX: PROOFS OF SELECTED RESULTS

Proof of Proposition 3.2. From the definitions we immediately have V0��� =
v0��� = 0 for every � ∈ �m

+. For every n ≥ 1 and 
 ∈ � we shall prove that

��
�

[ ∫ 
∧Tk

0
e−�tg��t�dt + 1�
≥Tk	

e−�Tkvn−k��Tk
�

]
≥ ��

�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

e−�Tk−1vn−k+1��Tk−1
�

]
for every 1 ≤ k ≤ n�

(A.1)

which will then imply that

��
�

[ ∫ 
∧Tn

0
e−�tg��t�dt

]
= ��

�

[ ∫ 
∧Tn

0
e−�tg��t�dt + 1�
≥Tn	

e−�Tnv0��Tn
�

]
≥ ��

�

[ ∫ 
∧T0

0
e−�tg��t�dt + 1�
≥T0	

e−�T0vn��T0
�

]
= vn����

and taking the infimum of both sides over all 
 ∈ � gives Vn��� =
inf
∈� ��

��
∫ 
∧Tn
0 e−�tg��t�dt� ≥ vn��� for every � ∈ �m

+, which is the conclusion of
the proposition. Let us fix any n ≥ 1, 
 ∈ � and prove (A.1). For every 1 ≤ k ≤ n,
by Proposition 3.1, there is a nonnegative �Tk−1

-measurable random variable Rk−1

such that 1�
≥Tk−1	
�
 ∧ Tk� = 1�
≥Tk−1	

��Tk−1 + Rk−1� ∧ Tk� and we have

��
�

[ ∫ 
∧Tk

0
e−�tg��t�dt + 1�
≥Tk	

e−�Tkvn−k��Tk
�

]
= ��

�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

∫ 
∧Tk

Tk−1

e−�tg��t�dt + 1�
≥Tk	
e−�Tkvn−k��Tk

�

]
= ��

�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

e−�Tk−1

{ ∫ �Tk−1+Rk−1�∧Tk

Tk−1

e−��t−Tk−1�

× g���t − Tk−1��Tk−1
��dt + 1�Tk−1+Rk−1≥Tk	

e−��Tk−Tk−1�vn−k

×
(
��Tk − Tk−1��Tk−1

�
�1
�0

d�1
d�0

�Zk�

)}]
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= ��
�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

e−�Tk−1��
�

{ ∫ Rk−1∧�Tk−Tk−1�

0
e−�t

× g���t��Tk−1
��dt + 1�Rk−1≥Tk−Tk−1	

e−��Tk−Tk−1�vn−k

×
(
��Tk − Tk−1��Tk−1

�
�1
�0

d�1
d�0

�Zk�

) ∣∣∣∣�Tk−1

}]
�

Because Rk−1 and �Tk−1
are �Tk−1

-measurable, and Tk − Tk−1 and Zk are independent
of �Tk−1

and have the same distributions as T1 and Z1, respectively, under ��, the
conditional expectation becomes

��
�

{ ∫ Rk−1∧�Tk−Tk−1�

0
e−�tg���t��Tk−1

��dt

+ 1�Rk−1≥Tk−Tk−1	
e−��Tk−Tk−1�vn−k

(
��Tk − Tk−1��Tk−1

�
�1
�0

d�1
d�0

�Zk�

) ∣∣∣∣�Tk−1

}
= ��

�

{ ∫ r∧T1

0
e−�tg���t� ���dt + 1�r≥T1	

e−�T1vn−k

(
��T1� ��

�1
�0

d�1
d�0

�Z1�

)}∣∣∣∣ r=Rk−1
�=�Tk−1

=
{ ∫ r

0
e−��+�0�t�g + �0�Kvn−k�����t� ���dt

}∣∣∣∣ r=Rk−1
�=�Tk−1

= �Jvn−k���Tk−1
� Rk−1��

and substituting into previous displayed equation gives

��
�

[ ∫ 
∧Tk

0
e−�tg��t�dt + 1�
≥Tk	

e−�Tkvn−k��Tk
�

]
= ��

�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

e−�Tk−1�Jvn−k���Tk−1
� Rk−1�

]
≥ ��

�

[ ∫ 
∧Tk−1

0
e−�tg��t�dt + 1�
≥Tk−1	

e−�Tk−1vn−k+1��Tk−1
�

]
�

since �Jvn−k���� r� ≥ inf t≥0�Jvn−k���� t� = �J0vn−k���� = vn−k+1��� for every r ≥ 0
and � ∈ �m

+, and this completes the proof of (A.1) and Proposition 3.2. �

Proof of Proposition 3.3 (By Induction on n). For n = 0, the last displayed
equation of Proposition 3.3 becomes 0 ≤ 0+ �, which is obviously true for every
� > 0. Suppose now that the last inequality of Proposition 3.3 holds for every � > 0
for some n ≥ 0. Note that ��

�
[ ∫ 
n+1��∧Tn+1

0 e−�tg��t�dt
]
equals

��
�

[ ∫ 
n+1��∧T1

0
e−�tg��t�dt + 1�
n+1��≥T1	

∫ 
n+1��∧Tn+1

T1

e−�tg��t�dt

= ��
�

[ ∫ rn+1��/2��0�∧T1

0
e−�tg���t��0��dt

+ 1�rn+1��/2��0�≥T1	

∫ �T1+
n��/2�T1 �∧Tn+1

T1

e−�tg��t�dt
]
�
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By the strong Markov property of process � at the first jump time T1, the
conditional expectation of the last integral with respect to �T1

becomes

��
�

[ ∫ �T1+
n��/2�T1 �∧Tn+1

T1

e−�tg��t�dt

∣∣∣∣�T1

]
= e−�T1��

�

[( ∫ 
n��/2∧Tn

0
e−�tg��t�dt

)
 �T1

∣∣∣∣�T1

]
= e−�T1��T1�

[ ∫ 
n��/2∧Tn

0
e−�tg��t�dt

]
≤ e−�T1

(
vn��T1

�+ �

2

)

by the induction hypothesis. Therefore, ��
�
[ ∫ 
n+1��∧Tn+1

0 e−�tg��t�dt
]
equals

��
�

[ ∫ rn+1��/2��0�∧T1

0
e−�tg���t��0��dt + 1�rn+1��/2��0�≥T1	

e−�T1

(
vn��T1

�+ �

2

)]
≤ ��

�

[ ∫ rn+1��/2��0�∧T1

0
e−�tg���t��0��dt + 1�rn+1��/2��0�≥T1	

e−�T1vn��T1
�

]
+ �

2

= �Jvn���� rn+1��/2����+
�

2
≤ vn+1���+

�

2
+ �

2
= vn+1���+ ��

�

Proof of Lemma 3.2. Suppose that w  �m
+ �→ � is concave and bounded between

−1 and 0. Then �Jw���� r� = ∫ r

0 e−��+�0�t�g + �0�Kw�����t� ���dt ≥
∫ r

0 e−��+�0�t�−�−
�0�dt ≥ −1. Taking the infimum over r ≥ 0 gives −1 ≤ inf r≥0�Jw���� r� =
�J0w���� ≤ �Jw���� 0� = 0. Moreover, g�·� is affine and therefore concave. Because
� �→ ��t� �� is affine for every fixed t ≥ 0, and w�·� is concave, the mapping � �→
�Kw����t� ��� = ∫

E
w
(
��t� �� �1

�0

d�1
d�0

�z�
)
�0�dz� is concave. Therefore, � �→ �Jw���� r�

is concave for every fixed r ≥ 0. Because the pointwise infimum of every family of
concave functions is also concave, the mapping � �→ �J0w���� = inf r≥0�Jw���� r�

is concave. If w1�·� ≤ w2�·�, then �Kw1��·� ≤ �Kw2��·�, �Jw1��·� ·� ≤ �Jw2��·� ·�, and
�J0w1��·� ≤ �J0w2��·�.

Let w1�·� and w2�·� be two bounded functions on �m
+. Fix any � > 0 and

� ∈ �m
+. Then there are constants r�i�� ���, i = 1� 2 such that �Jwi���� r

�i�
� ���� ≤

�J0wi����+ � for every i = 1� 2. Then

�J0w1����− �J0w2���� ≤ �Jw1���� r
�2�
� �− �Jw2���� r

�2�
� ����+ �

=
∫ r

�2�
� ���

0
�0e

−��+�0�t�K�w1 − w2�����t� ���dt + �

≤ �w1 − w2�
∫ �

0
�0e

−��+�0�tdt + �

= �w1 − w2�
�0

�+ �0
+ ��

Similarly, �J0w1����− �J0w2���� ≥ −��w1 − w2� �0
�+�0

+ ��, and we have ��J0w1����−
�J0w2����� ≤ �0

�+�0
�w1 − w2� + � for every � > 0 and � ∈ �m

+. Letting first � ↓ 0 and
then taking the supremum over � ∈ �m

+ gives the desired inequality.
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Proof of Lemma 3.3. Note that, since ��u� ��s� ��� = ��s + u��� for every s� u ≥ 0
and � ∈ �m

+, we can write �J0w����s� ��� as

inf
r≥0

∫ r

0
e−��+�0�u�g + �0�Kw�����s + u����du

= e��+�0�s inf
r≥s

∫ r

s
e−��+�0�u�g + �0�Kw�����u� ���du�

and �Jw���� s�+ e−��+�0�s�J0w����s� ��� = inf r≥s

∫ r

0 e−��+�0�u�g + �0�Kw��
���u� ���du = �Jsw����. If �J0w����s� ��� < 0 for every 0 ≤ s < t, then �Jw���� s� >
�Jw���� s�+ e−��+�0�s�J0w����s� ��� = �Jsw���� = inf r≥s�Jw���� r� for every 0 ≤ s <
t. Therefore, �Jsw���� = inf r≥s�Jw���� r� = inf r≥t�Jw���� r� = �Jtw���� for every
0 ≤ s ≤ t.

Proof of Proposition 3.4. The result holds for n = 0. Suppose for some n ≥ 0
we have ��

��M
∧
�∧Tn � = ��
��M0� for every � ∈ �m

+, � ≥ 0, and ��t�t≥0-stopping
time 
. Fix � ∈ �m

+, � ≥ 0, and ��t�t≥0-stopping time 
. Then ��
��M
∧
�∧Tn+1

�

= ��
��M
∧
�∧Tn + 1�
∧
�∧Tn	�M
∧
�∧Tn+1

−MTn
�� = ��

��M0�+��
��1�
∧
�≥Tn	

�M
∧
�∧Tn+1
−

MTn
�� by induction hypothesis. We shall prove that second term equals zero.

Since by Proposition 3.1 there is an ��t�t≥0-measurable Rn such that �
 ∧ 
� ∧
Tn+1�1�
∧
�≥Tn	

= ��Tn + Rn� ∧ Tn+1�1�
∧
�≥Tn	
we can write ��

��1�
∧
�≥Tn	
�M
∧
�∧Tn+1

−
MTn

�� as

��
�

[
1�
∧
�≥Tn	

( ∫ 
∧
�∧Tn+1

Tn

e−�tg��t�dt + 1�
∧
�≥Tn+1	
e−�Tn+1V��Tn+1

�

+ 1�
∧
�<Tn+1	
e−��
∧
��V��
∧
� �− e−�TnV��Tn

�

)]
= ��

�

[
1�
∧
�≥Tn	

e−�Tn

( ∫ �Tn+Rn�∧Tn+1

Tn

e−��t−Tn�g���t − Tn��Tn
�dt

+ 1�Rn≥Tn+1−Tn	
e−��Tn+1−Tn�V���Tn+1 − Tn��Tn

�
�1
�0

d�1
d�0

�Zn+1��

+ 1�Rn<Tn+1−Tn	
e−�RnV���Rn��Tn

��− V��Tn
�

)]
�

Because the random variables 1�
∧
�≥Tn	
, Tn, Rn, �Tn

are �Tn
-measurable, and since

Tn+1 − Tn and Zn+1 are independent of �Tn
with exponential distribution with rate �0

and with distribution �0 under ��, respectively, taking the conditional expectation
with respect to �Tn

inside the above expectation gives

��
�

[
1�
∧
�≥Tn	

e−�Tn

( ∫ Rn

0
e−��+�0�tg���t��Tn

��dt

+
∫ Rn

0
�0e

−��+�0�t
∫
E
V

(
��t��Tn

�
�1
�0

d�1
d�0

�z�

)
�0�dz�︸ ︷︷ ︸

�KV����t��Tn
��

dt

+ e−��+�0�RnV���Rn��Tn
��− V��Tn

�

)]
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= ��
�

[
1�
∧
�≥Tn	

e−�Tn

( ∫ Rn

0
e−��+�0�t�g + �0�KV�����t��Tn

��dt

+ e−��+�0�RnV���Rn��Tn
��− V��Tn

�

)]
= ��

�

[
1�
∧
�≥Tn	

e−�Tn

(
�JV���Tn

� Rn�+ e−��+�0�RnV���Rn��Tn
��︸ ︷︷ ︸

�JRnV���Tn
� by Corollary 3.3

−V��Tn
�

)]

= ��
�
[
1�
∧
�≥Tn	

e−�Tn��JRn
V���Tn

�− V��Tn
��
]
�

Because �
 ∧ 
��1�Tn≤
∧
�<Tn+1	
= �Tn + Rn�1�Tn≤
∧
�<Tn+1	

and 
�1�Tn≤
∧
�<Tn+1	
=

�Tn + r���Tn
��1�Tn≤
�<Tn+1	

, where r��·� is defined as in Lemma 3.4, and since 
 ∧ 
� ≤

�, we have Rn ≤ r���Tn

� on �Tn ≤ 
 ∧ 
� < Tn+1	. However, since Rn and r���Tn
�

are �Tn
-measurable, we must also have Rn ≤ r���Tn

� on �
 ∧ 
� ≥ Tn	. Because
V���s��Tn

�� < −� ≤ 0 for every 0 ≤ s < r���Tn
�, we also have V���s��Tn

�� < −� ≤
0 for every 0 ≤ s < Rn on �
 ∧ 
� ≥ Tn	. Then Corollary 3.3 guarantees that
�JRn

V���Tn
� = V��Tn

� on �
 ∧ 
� ≥ Tn	 and we finally have ��
��1�
∧
�≥Tn	

�M
∧
�∧Tn+1
−

MTn
�� = ��

�
[
1�
∧
�≥Tn	

e−�Tn��JRn
V���Tn

�− V��Tn
��� = 0.
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