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Abstract Given a simple, undirected graph G, Budinich (Discret Appl Math
127:535–543, 2003) proposed a lower bound on the clique number of G by com-
bining the quadratic programming formulation of the clique number due to Motzkin
and Straus (Can J Math 17:533–540, 1965) with the spectral decomposition of the
adjacency matrix of G. This lower bound improves the previously known spectral
lower bounds on the clique number that rely on the Motzkin–Straus formulation. In
this paper, we give a simpler, alternative characterization of this lower bound. For
regular graphs, this simpler characterization allows us to obtain a simple, closed-form
expression of this lower bound as a function of the positive eigenvalues of the adja-
cency matrix. Our computational results shed light on the quality of this lower bound
in comparison with the other spectral lower bounds on the clique number.

Keywords Maximum clique · Maximum stable set · Stability number ·
Clique number · Graph spectra
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1 Introduction

Let G = (V, E) be a simple, undirected graph with a vertex set V = {1, 2, . . . , n}
and an edge set E consisting of m edges. A clique C ⊆ V is a set of mutually adjacent
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vertices. The clique number of G, denoted by ω(G), is the size of the maximum
clique in G. A set S ⊆ V is a stable set of G if each pair of vertices in S is mutually
nonadjacent. The cardinality of the maximum stable set of G is called the stability
number of G and is denoted by α(G). The maximum clique problem is equivalent to
the maximum stable set problem on G, the complement of G. We denote the n × n
adjacency matrix of G by AG .

It is well-known that computing (or even approximating) the clique number of a
graph is in general an NP-hard problem (Hastad 1999). The recent survey paper by
Bomze et al. (1999) provides an account of the fairly rich literature including appli-
cations, formulations, exact algorithms, heuristics, bounds, and estimates. However,
the clique number and a maximum clique can be computed in polynomial time for
certain classes of graphs such as perfect graphs and complements of t-perfect graphs
(Grötschel et al. 1988; Yıldırım and Fan-Orzechowski 2006).

In the literature, several connections have been established between the clique or
stability number of a graph and the spectral properties of the adjacency matrix or of
the Laplacian matrix of G (see e.g., Cvetković et al. 1979; Wilf 1986; Budinich 2003;
Nikiforov 2006; Lu et al. 2007; Godsil and Newman 2008; Nikiforov 2009). In partic-
ular, Budinich (2003) proposed a lower bound on the clique number of a given graph
G by combining the quadratic programming formulation of the clique number due to
Motzkin and Straus (1965) and the spectral decomposition of the adjacency matrix AG .
He established that this lower bound improves the previously known spectral lower
bounds that rely on the Motzkin–Straus formulation. In this paper, we give a simpler,
alternative characterization of this lower bound. In contrast with the characterization
of the lower bound in Budinich (2003), our characterization requires the solution of a
much simpler quadratic linesearch problem. For regular graphs, this simpler charac-
terization allows us to obtain a simple, closed-form expression of this lower bound as
a function of the positive eigenvalues of AG . Our computational results shed light on
the quality of the proposed lower bound in comparison with the other spectral lower
bounds on the clique number.

This paper is organized as follows. In the remainder of this section, we define our
notation. Section 2 discusses the continuous formulation of Motzkin and Straus (1965)
and reviews several known lower bounds on the clique number. Section 3 presents the
simpler, alternative characterization of the lower bound due to Budinich (2003). The
closed-form expression of this lower bound for the class of regular graphs is the topic
of Sect. 4. The computational results are presented in Sect. 5. Section 6 concludes the
paper.

1.1 Notation

R
n and Sn denote the n-dimensional Euclidean space and the space of n × n real

symmetric matrices, respectively. For u ∈ R
n, ui denotes the i th component of u. The

complete graph on n vertices is denoted by Kn . We reserve e to denote the vector of
all ones in the appropriate dimension. The (n − 1)-dimensional unit simplex in R

n is
denoted by ∆n , i.e., ∆n := {x ∈ R

n : eT x = 1, x ≥ 0}. For a graph G = (V, E)

with V = {1, . . . , n}, AG ∈ Sn denotes the adjacency matrix of G. For a nonempty
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A simpler characterization of a spectral lower bound on the clique number 269

subset C ⊆ V , we use χC to denote the characteristic vector of C scaled by 1/|C | so
that χC ∈ ∆n .

2 Formulation and lower bounds

Given a simple, undirected graph G = (V, E) with |V | = n, Motzkin and Straus (1965)
established that

1 − 1

ω(G)
= max

x∈∆n
xT AG x, (1)

which is a continuous formulation of a combinatorial optimization problem. In addi-
tion to paving the way for the use of continuous optimization methods to solve the
maximum clique problem, this formulation plays a central role in the derivation of
lower bounds on the clique number of G. By (1),

ω(G) ≥ µ(x̃) := 1

1 − x̃ T AG x̃
, for all x̃ ∈ ∆n . (2)

Using the fact that x̃ = (1/n)e ∈ ∆n , it follows that

ω(G) ≥ n2

n2 − 2m
≥ 1, (3)

where m = |E | is the number of edges of G. This bound matches the clique number
for complete graphs Kn and their complements.

In addition to computing the clique number, the formulation (1) can in some cases
be used to identify a maximum clique. For any maximum clique C ⊆ V, χC is a global
optimal solution of (1). However, a drawback of the Motzkin–Straus formulation (1) is
the existence of global optimal solutions that do not correspond to characteristic vec-
tors of maximum cliques of G. For instance, if G is the 4-cycle C4, then χV = (1/4)e
is a global optimal solution of (1) despite the fact that V is not a clique of G.

In an attempt to circumvent this drawback of the Motzkin–Straus formulation,
Bomze (1997) proposed the following regularized continuous formulation:

1 − 1

2ω(G)
= max

x∈∆n

(
xT AG x + 1

2
xT x

)
. (4)

In contrast with (1), each local maximizer is strict and corresponds to the character-
istic vector of a maximal clique (maximal with respect to inclusion). Also, each global
maximizer is strict and corresponds to the characteristic vector of a maximum clique.
Similarly to (1), this alternative formulation can be used to derive a lower bound on
the clique number of G:

ω(G) ≥ β(x̃) := 1

2
(
1 − x̃ T AG x̃ − (1/2)x̃ T x̃

) , for all x̃ ∈ ∆n . (5)
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Despite the fact that the alternative formulation (4) has more appealing properties in
terms of identifying cliques, the following lemma establishes that the Motzkin–Straus
formulation actually yields better lower bounds.

Lemma 1 Let G = (V, E) be a simple, undirected graph such that |V | = n. For each
x̃ ∈ ∆n, µ(x̃) ≥ β(x̃), i.e., the lower bound (2) obtained from the Motzkin–Straus
formulation (1) is at least as good as the lower bound (5) obtained from the Bomze
formulation (4).

Proof Let x̃ ∈ ∆n . Note that x̃ T (I + AG)x̃ ≤ x̃ T (eeT )x̃ = (eT x̃)2 = 1, where we
used the fact that x̃ ≥ 0 and I + AG is a matrix consisting only of zeroes and ones.
Therefore,

1

β(x̃)
= 2

(
1 − x̃ T AG x̃ − 1

2
x̃ T x̃

)
,

= 2 − x̃ T AG x̃ − x̃ T (I + AG)x̃,

≥ 1 − x̃ T AG x̃ = 1

µ(x̃)
,

which completes the proof. ��
By Lemma 1, we henceforth restrict our attention to the Motzkin–Straus formula-

tion (1). Most of the other lower bounds in the literature are obtained by combining
the formulation (1) with the spectral theory of graphs. From this point on, we assume
that G = (V, E) is a connected graph without loss of generality, since the maximum
clique problem can otherwise be decomposed into smaller problems on each connected
component of G. We now collect some results about the spectra of such graphs. The
reader is referred to Cvetković et al. (1979) for further details.

Theorem 1 Let G = (V, E) be a connected graph with the adjacency matrix AG ∈
Sn such that |V | = n ≥ 2 and let λ1 ≥ λ2 ≥ · · · ≥ λn denote the spectrum of AG.

1.
∑n

i=1 λi = 0.
2. 1 ≤ λ1 ≤ n − 1 and −λ1 ≤ λn ≤ −1, i.e., λ1 is the spectral radius of AG.
3. AG is irreducible, which implies that there exists a positive eigenvector u1 ∈ R

n,
called the Perron eigenvector, corresponding to the simple eigenvalue λ1, called
the Perron root.

4. e ∈ R
n is an eigenvector of AG corresponding to λ1 if and only if G is a regular

graph.
5. AG has exactly one positive eigenvalue λ1 if and only if G is a complete multi-

partite graph.

Given a graph G, let λ1 > 0 and u1 ∈ R
n denote the Perron root and the positive

Perron eigenvector of AG , respectively. Using the feasible solution x̂ := (1/s1)u1 ∈
∆n of (1), where s1 := eT u1, Wilf (1986) established that

ω(G) ≥ µ(x̂) = s2
1

s2
1 − λ1

= λ1

s2
1 − λ1

+ 1, (6)
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with equality if G is a complete graph. The lower bound (6) is an improvement over
the lower bound (3).

More recently, Budinich (2003) proposed a new lower bound that makes use of
all the eigenvectors of AG . In particular, if u1, u2, . . . , un denote the eigenvectors of
AG of unit Euclidean norm corresponding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ,
respectively, where u1 > 0, one can construct a family of unit vectors

yi (β) = β ui +
√

1 − β2 u1 ∈ R
n, i = 2, 3, . . . , n, (7)

where β ∈ (−1, 1). Then, zi (β) := (1/eT yi (β))yi (β) is a feasible solution of (1) for
i = 2, 3, . . . , n as long as β ∈ [li , ui ], where

li := max
j :ui

j >0

−u1
j√

(u1
j )

2 + (ui
j )

2
< 0, i = 2, 3, . . . , n, (8a)

ui := min
j :ui

j <0

u1
j√

(u1
j )

2 + (ui
j )

2
> 0, i = 2, 3, . . . , n. (8b)

Let

gi := max
β∈[li ,ui ]

zi (β)T AG zi (β), (9a)

= max
β∈[li ,ui ]

β2λi + (1 − β2)λ1(
β(eT ui ) + √

1 − β2 s1

)2 , i = 2, 3, . . . , n. (9b)

and let

g∗ := max
i=2,3,...,n

gi . (10)

It follows from (1) that

ω(G) ≥ 1

1 − g∗ . (11)

Unless G is a complete multipartite graph, Budinich shows that (11) strictly
improves upon (6).

A comparison of the three lower bounds reveals that (3) is the easiest to compute
and is provably the weakest one. While (6) requires only the computation of the Per-
ron root and the Perron eigenvector, one needs the full spectrum and the full set of
eigenvectors to compute (11).
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3 A simpler characterization

Given a simple, connected, undirected graph G = (V, E) with |V | = n, recall the
Motzkin–Strauss formulation:

1 − 1

ω(G)
= max

x∈∆n
xT AG x .

Let u1, u2, . . . , un denote the eigenvectors of AG of unit Euclidean norm corre-
sponding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn , respectively, where u1 > 0. For
τ ∈ R, let us define the following family of solutions:

wi (τ ) :=
(

1

s1

)
u1 + τ

(
ui −

(
si

s1

)
u1

)
, i = 2, 3, . . . , n, (12)

where

si := eT ui , i = 1, 2, . . . , n. (13)

It is easy to verify that eT wi (τ ) = 1, i = 2, 3, . . . , n for all τ ∈ R. Furthermore,
since u1 > 0, it follows that wi (τ ) ∈ ∆n if and only if τ ∈ [τ i

l , τ i
u], where

τ i
l := max

j :di
j >0

−u1
j

s1(di
j )

< 0, τ i
u := min

j :di
j <0

−u1
j

s1(di
j )

> 0, i = 2, 3, . . . , n, (14)

where

di := ui −
(

si

s1

)
u1, i = 2, 3, . . . , n. (15)

Therefore, we can define the following linesearch problems:

νi := max
τ∈[τ i

l ,τ i
u ]

wi (τ )T AGwi (τ ), (16a)

= max
τ∈[τ i

l ,τ i
u ]

(
λ1

(
1 − si τ

s1

)2

+ λi τ 2

)
, (16b)

= max
τ∈[τ i

l ,τ i
u ]

{(
λ1

s2
1

)
−

(
2λ1(si )

s2
1

)
τ

+
(

λi + λ1(si )
2

s2
1

)
τ 2

}
, i = 2, 3, . . . , n. (16c)

Let us define

ν∗ := max
i=2,3,...,n

νi . (17)
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Since wi (τ ) ∈ ∆n for τ ∈ [τ i
l , τ i

u], i = 2, 3, . . . , n, it follows that

ω(G) ≥ 1

1 − ν∗ . (18)

The next proposition establishes that the lower bound (18) is exactly the same as
the improved bound (11) due to Budinich.

Proposition 1 Let G = (V, E) be a simple, undirected, connected graph. The lower
bounds (18) and (11) agree.

Proof We prove the assertion by establishing a one-to-one correspondence between the
feasible solutions of the linesearch problems (9) and (16). Let us fix i∗ ∈ {2, 3, . . . , n}.
Let β∗ ∈ [li∗ , ui∗ ], where li∗ and ui∗ are given by (8). Therefore,

zi∗(β
∗) = 1

eT yi∗(β∗)
yi∗(β

∗), (19a)

= 1

β∗(si∗) + √
1 − (β∗)2 s1

(
β∗ ui∗ +

√
1 − (β∗)2 u1

)
, (19b)

where yi∗(β∗) is given by (7), is a feasible solution of the linesearch problem (9). We
will show that zi (β

∗) corresponds to a feasible solution of the line search problem
(16) for i = i∗.

Let us define

τ ∗ := β∗

β∗(si∗) + √
1 − (β∗)2 s1

. (20)

Consider the linesearch problem (16) corresponding to i = i∗. By (12),

wi∗(τ
∗) = τ ∗ui∗ +

(
1 − τ ∗(si∗)

s1

)
u1,

= β∗

β∗(si∗) + √
1 − (β∗)2 s1

ui +
√

1 − (β∗)2

β∗(si∗) + √
1 − (β∗)2 s1

u1,

= zi∗(β
∗),

where we used (20) in the penultimate line and (19) in the last one. Since zi∗ (β∗) ∈ ∆n ,
it follows that τ ∗ ∈ [τ i∗

l , τ i∗
u ], where τ i∗

l and τ i∗
u are given by (14). This implies that

νi∗ ≥ gi∗ .
Conversely, let τ̂ ∈ [τ i∗

l , τ i∗
u ]. By (12) and (14),

wi∗(τ̂ ) = τ̂ ui∗ +
(

1 − τ̂ (si∗)

s1

)
u1
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is a feasible solution of the linesearch problem (16) corresponding to i = i∗. Let us
define

β̂ := τ̂(
(τ̂ )2 +

(
1−τ̂ (si∗ )

s1

)2
)1/2 . (21)

Then,

√
1 − (β̂)2 =

⎛
⎜⎝1 − (τ̂ )2

(τ̂ )2 +
(

1−τ̂ (si∗ )

s1

)2

⎞
⎟⎠

1/2

= 1 − τ̂ (si∗)

s1

(
(τ̂ )2 +

(
1−τ̂ (si∗ )

s1

)2
)1/2 ,

where we used the fact that 1 − τ̂ (si∗) ≥ 0 since otherwise wi∗(τ̂ ) will necessarily
have a negative component by (12). It follows that

zi (β̂) = 1

β̂(si∗) +
√

1 − (β̂)2 s1

(
β̂ ui∗ +

√
1 − (β̂)2 u1

)
,

= 1

τ̂ (si∗) +
(

1−τ̂ (si∗ )

s1

)
s1

(
τ̂ui∗ +

(
1 − τ̂ (si∗)

s1

)
u1

)
,

= wi∗(τ̂ ).

Since wi∗(τ̂ ) ∈ ∆n , it follows that µ̂ ∈ [li∗ , ui∗ ], which implies that gi∗ ≥ νi∗ .
Since i∗ is arbitrary, we have gi = νi , i = 2, 3, . . . , n. Therefore, g∗ = ν∗, which

implies that 1/(1 − ν∗) = 1/(1 − g∗). ��
Note that each linesearch problem (16) has a quadratic objective function and

is therefore considerably simpler compared to its counterpart (9) required for the
computation of (11). Furthermore, this alternative characterization leads to a simple,
closed-form expression for regular graphs, which is the topic of the next section.

4 Regular graphs

A graph G = (V, E) is said to be k-regular if each vertex in V has exactly k neighbors.
In this section, we turn our attention into the special class of regular graphs. We first
establish certain properties of the lower bounds on such graphs. Then, we present
a closed-form expression of the lower bound (11) on this class of graphs using the
simpler characterization outlined in Sect. 3.

First, we establish that the lower bounds (3) and (6) coincide on this class of graphs.

Lemma 2 Let G = (V, E) be a connected, k-regular graph with |V | = n vertices.
Then, each of the lower bounds (3) and (6) is equal to n/(n − k).
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A simpler characterization of a spectral lower bound on the clique number 275

Proof Since 2m = nk, the lower bound (3) is given by n2/(n2−2m) = n2/(n2−nk) =
n/(n −k). Let us consider the lower bound (6). Since G is a regular graph of degree k,
we have AGe = ke, which implies that k ∈ R is the Perron root with the corresponding
Perron eigenvector u1 = (1/

√
n)e. Since s1 = eT u1 = √

n, it follows that the lower
bound (6) is given by s2

1/(s2
1 − λ1) = n/(n − k), which establishes the assertion. ��

Next, we establish that each of the three lower bounds (3), (6), and (11) (or, equiv-
alently (18)) coincides with the clique number ω(G) on connected, regular, complete
multipartite graphs.

Proposition 2 Let G = (V, E) be a connected, k-regular, complete multipartite graph
with |V | = n. Then, each of the three lower bounds (3), (6), and (11) [or, equivalently
(18)] coincides with ω(G).

Proof Note that the vertices of G can be partitioned into t subsets such that each
subset contains exactly n/t mutually nonadjacent vertices. Since G is a k-regular,
complete multipartite graph, we have k = (t − 1)(n/t). Clearly, ω(G)= t since each
subset can contribute at most one vertex to any clique and there exists a clique of size
t . By Lemma 2, the lower bounds (3) and (6) are equal to n/(n − k)= n/(n − (t −
1)(n/t))= t = ω(G). Since G is a regular, connected, complete multipartite graph, it
follows from Budinich (2003, Proposition 3) that the lower bounds (11) and (6) agree,
which completes the proof. ��

4.1 Closed-form expression of Budinich’s lower bound

In this section, we present a simpler, closed-form expression of the lower bound (11)
for regular graphs relying on the alternative, simpler characterization of this lower
bound given by (18).

Proposition 3 Let G = (V, E) be a connected, k-regular graph with |V | = n. Let
λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of AG with the corresponding eigen-
vectors u1, u2, . . . , un of unit Euclidean norm, where u1 > 0, and let P = {i ∈
{2, 3, . . . , n} : λi > 0}. Then, the lower bound (11) [or, equivalently (18)] is given by

ω(G) ≥ max

{
n

n − k
, max

i∈P
1

1 − k
n − (τi )2λi

}
, (22)

where

τi := max

{
min

j :ui
j <0

1

n|ui
j |

, min
j :ui

j >0

1

nui
j

}
, i ∈ P. (23)

Proof Note that P = ∅ if and only if G is a complete, regular multipartite graph by
Theorem 1. In this case, the lower bound (18) is given by n/(n − k) and coincides
with the clique number ω(G) by Proposition 2.
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Suppose that G is not a complete multipartite graph. Since G is a regular graph,
it follows that u1 = (1/

√
n)e is the Perron eigenvector of AG corresponding to the

Perron root λ1 = k with s1 = eT u1 = √
n. Therefore, si = eT ui = 0, i = 2, 3, . . . , n,

which implies that di = ui , i = 2, 3, . . . , n by (15). By (14),

τ i
l = max

j :ui
j >0

−1

nui
j

= − min
j :ui

j >0

1

nui
j

, τ i
u = min

j :ui
j <0

1

n|ui
j |

, i = 2, 3, . . . , n.

Therefore, we have, by (16), that

νi = max
τ∈[τ i

l ,τ i
u ]

(
k

n
+ (τ 2)λi

)
, i = 2, 3, . . . , n.

Clearly,

νi =
{

k
n + (τi )

2λi if i ∈ P,

k
n otherwise,

where τi is defined as in (23). The assertion follows from (18) and (17). ��
We remark that Proposition 3 improves Wilf’s lower bound for regular graphs given

in Wilf (1986, Theorem 3).
Using the correspondence between the stability number of a graph and the clique

number of its complement, we next establish a closed-form expression of the corre-
sponding lower bound for the stability number of a regular graph. Let G = (V, E)

be a connected, k-regular graph and let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigen-
values of AG with the corresponding eigenvectors u1, u2, . . . , un of unit Euclidean
norm. It follows that AG = UΛU T , where U = [u1, u2, . . . , un] ∈ R

n×n and
Λ = Diag(λ1, λ2, . . . , λn) ∈ Sn is a diagonal matrix having λ1, λ2, . . . , λn as its
diagonal entries. Therefore, the complement graph Ḡ is (n − k − 1)-regular and its
adjacency matrix AḠ satisfies

AḠ = eeT − I − AG,

= n u1 (u1)T − I − UΛU T ,

= U Diag(n − k − 1,−λ2 − 1, . . . ,−λn − 1)U T ,

where we used the facts that u1 = (1/
√

n)e and λ1 = k. It follows that the eigenvalues
of Ḡ are given by λ̄1 := n − k − 1 ≥ λ̄2 := −λn − 1 ≥ λ̄3 := −λn−1 − 1 ≥ · · · ≥
λ̄n := −λ2 − 1 with the corresponding eigenvectors ū1 := u1 and ūi := un−i+2

for i = 2, 3, . . . , n. Using the fact that α(G) = ω(Ḡ), we immediately obtain the
following result.

Corollary 1 Let G = (V, E) be a connected, k-regular graph with |V | = n. Let λ1 ≥
λ2 ≥ · · · ≥ λn denote the eigenvalues of AG with the corresponding eigenvectors
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A simpler characterization of a spectral lower bound on the clique number 277

u1, u2, . . . , un of unit Euclidean norm, where u1 > 0. Let Q = {i ∈ {2, 3, . . . , n} :
λi < −1}. Then, the stability number of G satisfies

α(G) ≥ max

{
n

k + 1
, max

i∈Q
1

k+1
n + (τi )2(λi + 1)

}
, (24)

where

τi := max

{
min

j :ui
j <0

1

n|ui
j |

, min
j :ui

j >0

1

nui
j

}
, i ∈ Q. (25)

In a similar fashion, Corollary 1 improves Wilf’s lower bound for regular graphs
given in Wilf (1986, Theorem 4).

We close this section by relating Corollary 1 to a recent alternative characterization
of the stability number of a regular graph due to Nikiforov (2009, Theorem 5). For a
k-regular graph, Nikiforov established that

α(G) = 1
k+1

n + (τ (u))2 minu{uT Au + 1 : eT u = 0, ‖u‖ = 1} ,

where

τ(u) := max

{
min

j :u j <0

1

n|u j | , min
j :u j >0

1

nu j

}
.

Since each ui , i ∈ Q is a feasible solution of the minimization problem in the
denominator, it follows that this characterization yields an alternative proof of Corol-
lary 1. While this characterization may be useful in terms of establishing lower bounds
for the stability number of regular graphs, it does not offer any computational advan-
tages since the nonconvex minimization problem in the denominator is still NP-hard
in general.

5 Computational results

Recently, using an upper bound on the smallest eigenvalue λn of AG , Nikiforov (2009)
established that

ω(G) ≥ 1 + 2m(
n − 2m

n

) ( 2m
n − λn

) , (26)

with equality if and only if G is a complete regular multipartite graph.
In an attempt to assess and compare the quality of the four lower bounds (3), (6),

(18) [or, equivalently (11)], and (26), we evaluated each bound on graphs from two
different data sets. The first data set consists of the DIMACS collection of clique

123



278 E. A. Yıldırım

Table 1 Several statistics about the average approximation ratios

(3) (6) (18) (26)

Average 0.1867 0.1901 0.2780 0.2231

Standard deviation 0.1562 0.1555 0.2673 0.1609

Maximum 0.6696 0.6709 1.0000 0.6782

Minimum 0.0127 0.0127 0.0177 0.0174

problems1 and the second set is composed of random graphs with different sizes and
different edge densities.

We first evaluated each bound on each of the sixty six instances in the DIMACS col-
lection of clique problems using MATLAB. The major work in computing each of the
lower bounds (6), (18), and (26) was the computation of the eigenvalue decomposition
of the adjacency matrix AG .

As shown in Budinich (2003), the lower bound (18) [or, equivalently (11)] is an
improvement over each of the lower bounds (3) and (6), which is also confirmed by
our computational results. The lower bound (3), which is the easiest to compute, is
always the weakest one among all four lower bounds. The lower bound (6) is tighter
than (3). The lower bounds (18) and (26) always outperform (3) and (6). Our results
reveal that the lower bounds (18) and (26) are generally incomparable. Among the
four lower bounds, the lower bound (26) was the sharpest on thirty nine instances
while Budinich’s bound (18) outperformed the other bounds in the remaining twenty
seven instances.

Rather than presenting the bounds for each instance, we report our computational
results in terms of several statistics since they provide much more insight about the
quality of each lower bound.

To this end, we computed, for each instance, the ratio of each lower bound to the
corresponding clique number. This ratio can be viewed as an approximation factor.
We restricted our analysis to the fifty five instances in the DIMACS collection whose
clique numbers are known. For each lower bound (3), (6), (18), and (26), we report sev-
eral statistics related to these approximation ratios in Table 1. Each boldface number
denotes the largest one in its row.

Table 1 reveals that Budinich’s lower bound (18) achieves the best average approx-
imation ratio among all the lower bounds despite the fact that Nikiforov’s lower bound
(26) was the sharpest on the majority of the instances. Furthermore, while Budinich’s
lower bound agrees with the clique number on the DIMACS instances hamming6-2,
hamming8-2, and hamming10-2, the lower bound (26) is at most within about 68%
of the clique number among all instances.

The distribution of the approximation ratios for each lower bound is depicted in
Fig. 1. The horizontal axis represents the approximation ratios in ten equal intervals
given by (0, 0.1], (0.1, 0.2], . . . , (0.9, 10] and the vertical axis denotes the number of
DIMACS instances whose approximation ratio falls into the corresponding interval.

1 http://mat.gsia.cmu.edu/challenge.html.
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Fig. 1 Distribution of approximation ratios

Each of the four lower bounds is denoted by a different color as stated in the figure.
A close examination of Fig. 1 reveals that Budinich’s lower bound (18) achieves larger
approximation ratios on more instances in comparison with the other lower bounds.
We remark that the lower bound (18) is within 90% of the clique number on five
instances whereas none of the other lower bounds achieves an approximation ratio of
more than 0.7 on any of the instances.

In an attempt to assess the quality of the lower bounds on graphs with different edge
densities, we generated random graphs with the number of vertices n ∈ {100, 200} and
edge densities δ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. For each choice of n and δ, we generated
twenty random graphs. For each graph, we evaluated each of the four lower bounds
and we computed the clique number using an integer programming solver. Similar to
the DIMACS instances, we computed the approximation ratio for each bound. Table 2
presents the approximation ratios averaged over twenty instances for each choice of
n and δ. The average clique number is denoted by ω̄.

Our computational results on random graphs reveal that the lower bound (3) is
always the weakest, followed by (6). The lower bounds (18) and (26) outperform
(3) and (6) on each instance. Similar to our results on DIMACS graphs, the bounds
(18) and (26) are generally incomparable. An interesting observation is that Nik-
iforov’s bound (26) outperforms Budinich’s bound (18) on each instance with δ ∈
{0.1, 0.25, 0.5, 0.75}. However, Budinich’s bound is sharper than Nikiforov’s bound
on each instance with δ = 0.9. These results, which are summarized in Table 2, sug-
gest that Budinich’s bound is better on random graphs with high edge densities while
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Table 2 Computational results on random graphs

δ ω̄ (3) (6) (18) (26)

n = 100

0.1 4.00 0.2793 0.2859 0.2926 0.4272

0.25 5.65 0.2377 0.2431 0.2510 0.3557

0.5 9.30 0.2132 0.2176 0.2286 0.2853

0.75 17.05 0.2291 0.2336 0.2515 0.2631

0.9 30.80 0.2967 0.3023 0.3348 0.3084

n = 200

0.1 4.15 0.2690 0.2721 0.2755 0.4312

0.25 6.60 0.2039 0.2061 0.2098 0.3168

0.5 11.00 0.1806 0.1825 0.1879 0.2489

0.75 21.25 0.1853 0.1873 0.1959 0.2179

0.9 40.85 0.2313 0.2336 0.2496 0.2444

Nikiforov’s bound is sharper on sparser random graphs. We remark that Nikiforov’s
bound achieves very good approximation ratios for δ = 0.1.

For fixed n, Table 2 indicates that the approximation ratios do not seem to follow a
well-defined pattern with respect to the edge density of graphs for any bound. For fixed
δ, the approximation ratios usually deteriorate as the number of vertices n increases,
with the sole exception of Nikiforov’s bound (26) for δ = 0.1.

For each fixed value of n and δ, the approximation ratios were very close to one
another as indicated by standard deviations around 0.01. Therefore, reporting aver-
age approximation ratios seems meaningful. We remark that the computational results
reported in Budinich (2003) are generally consistent with our results on random graphs.

In our computational experiments, we used each of the two characterizations (11)
and (18) to compute Budinich’s lower bound. While both bounds agree in theory, our
computational results revealed that the original characterization (11) always yields
slightly smaller values in comparison with the simpler characterization (18) presented
in this paper. This might be due to the fact that the original characterization is more
prone to numerical errors. It follows that the simpler characterization seems to be more
appealing also from a computational point of view.

6 Concluding remarks

In this paper, we presented a simpler, alternative characterization of a spectral lower
bound on the clique number due to Budinich (2003). Our characterization leads to
a closed-form expression of this lower bound on regular graphs. Our computational
results shed light on the quality of this lower bound in comparison with other spectral
lower bounds on the clique number.

Given the hardness of any nontrivial approximation of the clique number, the con-
struction of efficiently computable lower bounds may have significant implications
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towards the computation of clique number on larger graphs. For instance, good lower
bounds can lead to a considerable reduction in the running time of search algorithms
such as branch-and-bound. In the near future, we intend to continue our work on
obtaining efficient upper and lower bounds by considering various tractable inner and
outer approximations to the continuous formulation (1) of the clique number.
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