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Fractional quantum Hall states in the vicinity of Mott plateaus
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We perform variational Monte Carlo calculations to show that bosons in a rotating optical lattice will form
analogs of fractional quantum Hall states when the tunneling is sufficiently weak compared to the interactions,
and the deviation of density from an integer is commensurate with the effective magnetic field. We compare the
energies of superfluid and correlated states to one another and to the energies found in full configuration-interaction
calculations on small systems. We look at overlaps between our variational states and the exact ground state,
characterizing the ways in which fractional quantum Hall effect correlations manifest themselves near the Mott
insulating state. We explore the experimental signatures of these states.
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I. INTRODUCTION

We consider the interplay between three paradigmatic
quantum states of bosons in rotating lattices: Mott insulators,
superfluids, and fractional quantum Hall states. The Mott
insulator is found when there is an integer number of particles
per lattice site, and the tunneling is sufficiently suppressed
relative to the interactions. It is an incompressible state, where
interactions freeze the particles in place. In the standard
cartoon, when the density of such a system is tuned away
from commensurability, the excess particles (or holes) “skate”
across the frozen Mott sea, forming a superfluid. If the system
is rotating, one expects that the collective motion of this
superfluid will produce a vortex lattice. In 2007, Umucalılar
and Oktel [1] argued that, when the rotation rate is high enough
that the number of vortices is comparable to the number of
excess particles, then the superfluid will be unstable to forming
a correlated state of matter with particles bound to vortices—a
situation analogous to that found in the fractional quantum Hall
state. They supported this argument by estimating the energy
of the superfluid and the correlated state. Here we confirm this
scenario through more rigorous calculations. By using Monte
Carlo techniques, we compare the energy of variational states
describing fractional quantum Hall states and superfluid vortex
lattices with each other. We also compare these energies with
exact results calculated for small numbers of particles. We
find that there is a range of parameters for which the fractional
quantum Hall states are more favorable than superfluid states.
We note, however, that the energy differences between these
states scales as the tunneling energy and can be quite small.

Most previous studies of analogs of fractional quantum
Hall states in optical lattices have focused on the low-density
limit, where there are much fewer than one particle per site. In
the context of cold atoms, Hafezi et al. [2] gave an excellent
review of the basic physics of this limit (including symmetry
and topology arguments), and argued that one can continuously
deform a Mott insulating state into a fractional quantum Hall
state by varying the strength of an additional superlattice
potential [3]. They also proposed using Bragg spectroscopy
to probe these states. Palmer et al. [4] performed a number
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of calculations focused on the role of the trap, detection
schemes, and inhomogeneities that can spontaneously appear
in these systems. Bhat et al. [5] carried out full configuration-
interaction calculations for a small number of particles in a
rotating lattice with hard-wall boundary conditions. Möller
and Cooper analyzed the relevance of composite fermion wave
functions to describing these systems [6]. Cooper recently
produced a review of the physics of rotating cold atom clouds
including analogs of the quantum Hall effect in lattices [7].
These, and our present study, build on initial works motivated
by solid state systems [8].

Translation of these arguments to higher densities is not
completely trivial. The superfluid near the Mott state is more
complicated than the standard cartoon suggests. For example,
the mean-field description treats it as a two-component plasma
of particles and holes, with a small imbalance between the
densities of particles and holes. Despite these complications,
we find that, when the deviation of the particle density from
an integer value is commensurate with the magnetic flux, one
can indeed see analogs of the fractional quantum Hall effect.

We start our analysis with the well-known Bose-Hubbard
Hamiltonian in an effective magnetic field,

H0 = −t
∑
〈i,j〉

a
†
i aj e

iAij + U

2

∑
i

n̂i(n̂i − 1), (1)

where ai (a†
i ) is the bosonic annihilation (creation) operator at

site i and n̂i = a
†
i ai is the number operator. The tunneling

is parametrized by t and on-site interactions by U . We
use the Landau gauge A = (−By,0), so the phases Aij =
exp(ie/h̄c

∫ ri

rj
A · dl) acquired when hopping in the ± x

direction are ∓2παiy , where iy is the y coordinate scaled
by lattice constant a, and in the y direction Aij = 0. Here,
α = Ba2/(hc/e) = p/q is the flux quantum per plaquette, and
we take p and q to be relatively prime integers. The single-
particle spectrum for this problem is the famous Hofstadter
butterfly [9]. The phase boundary between the Mott insulator
and superfluid carries signatures of this single-particle physics
[1,10–12]. Away from the tips of the Mott lobes, the physics
of the superfluid-Mott transition of the nonrotating system is
in the universality class of the dilute Bose gas. Thus we expect
that phenomena which can be seen in the dilute Bose gas will
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occur there, including the analogs of fractional quantum Hall
physics which we are exploring here.

II. VARIATIONAL WAVE FUNCTION

A. Laughlin state

We consider the variational ansatz

|�〉 =
∑

z1,...,zN

ψ(z1, . . . ,zN )a†
z1

· · · a†
zN

|�MI〉, (2)

where |�MI〉 = ∏
j (a†

j )n0/
√

n0!|vac〉 is the Mott insulator state
with n0 particles per site and ψ is the Laughlin wave function
[13] with filling ν = 1/m. To describe bosons, m must be even.
The complex coordinate zi = xi + iyi specifies the location of
the ith particle, with i running from 1 to N , where N is the
number of excess particles. The sum over zi is a sum over all
lattice sites. To describe a state with excess holes, we replace
a† with a.

To minimize the role of boundaries, the model in (1) is
typically solved either on a sphere or a torus [8,14]. We
will work in an L × L torus geometry, corresponding to
quasiperiodic boundary conditions

ψ(. . . ,zk + L, . . .) = ψ(. . . ,zk, . . .),
(3)

ψ(. . . ,zk + iL, . . .) = e−i(2πmN/L)xkψ(. . . ,zk, . . .).

For these boundary conditions, the Laughlin wave function
can explicitly be written as [14]

ψ(z1, . . . ,zN )

= N exp

(
iKx

∑
i

xi

)
exp

(
−Ky

∑
i

yi

)

× exp

(
−πmN

L2

∑
i

y2
i

)
m∏

β=1

ϑ1

(
(Z − Zβ)

π

L

)

×
N∏

i<j

[
ϑ1

(
(zi − zj )

π

L

)]m

. (4)

Here, N is the normalization factor, Z = ∑
i zi is N times

the center-of-mass coordinate, and Zβ = Xβ + iYβ are the a
priori arbitrary locations of the center-of-mass zeros. To satisfy
the boundary conditions, one requires

∑
β Xβ = n1L (n1 ∈

Z), Kx = 2πn2/L (n2 ∈ Z), and Ky = −2π
∑

β Yβ/L2. The
quasiperiodic Jacobi ϑ functions are defined by

ϑ1(z,eiπτ ) =
∞∑

−∞
(−1)n−1/2eiπτ (n+1/2)2

e(2n+1)iz.

For our square geometry τ = i. This function is odd with
respect to z and has the following quasiperiodicity properties:
ϑ1(z + π ) = −ϑ1(z) and ϑ1(z + τπ ) = −e−iπτ e−2izϑ1(z).
The relation between the flux quantum per plaquette, α =
Nφ/L2, filling fraction ν = N/Nφ , and excess particle density
ε = N/L2 is succinctly given by αν = ε, where Nφ denotes
the number of flux quanta in the L × L lattice we consider.
In what follows, we will restrict ourselves to the ν = 1/2
Laughlin state (m = 2), so that the commensurability require-
ment between the magnetic flux and particle density becomes
α = 2ε.

B. Superfluid state

We will compare the Laughlin state introduced in Sec. II A
with a Gutzwiller mean-field state

|�MF〉 =
∏

i

(∑
n

f i
n |n〉i

)
, (5)

where f i
n are variational parameters. This wave function is

commonly used to describe the superfluid in the Bose-Hubbard
model [15]. It is exact in the noninteracting limit and captures
the effect of number squeezing. Its main deficit is that it
does not capture any of the short-range correlations in the
superfluid. Regardless, the energies it produces are good
estimates of the superfluid energy. In the nonrotating case, the
superfluid is translationally invariant, and the coefficients f i

n

are independent of i. In our case, where the lattice is rotating,
a vortex lattice forms, breaking translational invariance.

Near the Mott lobe, the site occupations are dominated by
n = n0 and n = n0 ± 1: that is, it is extremely unlikely to
have more than one extra particle or hole on a given site. We
therefore truncate our basis to only these three values of n.
This will also facilitate direct comparison with configuration-
interaction calculations using the same truncated basis. We
work in an L × L lattice, using the boundary conditions which
are equivalent to those in Eq. (3).

The numerical techniques for optimizing the f i
n are well

documented [10], and we will not repeat the detailed discussion
here. These can be described in terms of a variational calcula-
tion where one minimizes 〈�MF|H0|�MF〉 with the constraints
that the total number of particles M and normalization
〈�MF|�MF〉 are fixed: this involves introducing the chemical
potential µ and a number of other Lagrange multipliers. In
practice, it is more convenient to write H = H0 − µM and
follow an iterative procedure based upon mean-field theory.
These two approaches are completely equivalent. In comparing
energies with our other variational state, one must be cautious
and be sure to use 〈H0〉 = 〈H 〉 + µM .

III. EXACT RESULTS ON SMALL SYSTEMS

A. Approach and results

For small systems, we can exactly diagonalize the Hamil-
tonian in Eq. (1), taking a configuration-interaction approach
where we truncate the allowed number of particles on a given
site to be n0, n0 − 1, or n0 + 1. For definiteness we take
n0 = 1; changing this value just scales the hopping matrix
elements t . For these small system sizes, we can also directly
calculate 〈�|H0|�〉. In Sec. IV we will discuss larger systems
where we need to resort to a Monte Carlo algorithm for
calculating this energy.

We consider 12 particles in a 3 × 3 lattice, so that the excess
particle density is 1/3. We take ν = 1/2 and accordingly the
number of quanta of flux per plaquette is α = 2/3. Figure 1
displays the energies (measured in units of U ) of the first few
hundred exact energy eigenstates together with the energies
of our two variational wave functions Eqs. (2) and (5). We
emphasize that our ansatz for the fractional quantum Hall
state is not just the Laughlin state, where flux is bound to
each particle, but is rather the coexistence of a Mott state and
a Laughlin state, with flux bound only to the excess particles.
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FIG. 1. (Color online) Exact many-body spectrum for 12 particles
in a 3 × 3 lattice with α = 2/3, considering only 0, 1, and 2 atoms per
site (for ν = 1/2, the excess particle density is ε = αν = 1/3). Also
shown by the solid black line is our variational estimate of the energy
of a fractional quantum Hall state of excess particles in the pre-
sence of a Mott background. The dash-dotted blue line shows the
Gutzwiller mean-field superfluid energy for the same density (1 + ε),
corresponding to a vortex lattice where the cores are filled with Mott
insulator. The dashed red line is the estimate of the ground-state
energy from Eq. (6), first introduced in [1]. For low enough t , the
variational energy of the correlated state of excess particles is lower
than the superfluid energy.

In Fig. 1 we also show the estimate from Ref. [1], which
is supposed to describe the correlated state near the Mott
insulator,

�E = Un0ε − t(n0 + 1)f (α)ε, (6)

where the first term represents the on-site interaction of
excess particles with the Mott insulator and the second term
is the hopping energy of particles in the Hofstadter ground
state denoted by −tf (α), f (α) > 0 being the dimensionless
maximum eigenvalue of the Hofstadter spectrum. Note that
t is enhanced by a factor of (n0 + 1) owing to the Mott
background. No interaction energy is included, as it is expected
that in this regime the excess atoms avoid one another. It is
remarkable how closely this estimate matches the results of
the exact diagonalization for small t .

For t <∼ 0.13 the energy of our candidate fractional quantum
Hall state (with optimized Zβ) is lower than that of the
superfluid, while the opposite holds for larger t . Our physical
picture of this is that as t grows the Mott insulator melts, and
the density of mobile atoms is no longer commensurate with
the magnetic field.

For very small t , the fractional quantum Hall state’s energy
agrees very well with the exact ground-state energy; this is
shown more clearly in Fig. 2(b). In Fig. 2(a) we show the
overlap between our variational state and the exact ground
state. At low t the overlap is greater than 95%, but it falls
off with increasing t , presumably because of the increasing
importance of particle-hole excitations. The overlap between
the ground state and the mean-field superfluid [inset of
Fig. 2(a)] is never large, and their energies in Fig. 1 never

0 0.05 0.1 0.15
0.75

0.8

0.85

0.9

0.95

1

|<
Ψ

|g
.s

.>
|2

t (units of U)     

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

E
ne

rg
y 

pe
r 

si
te

 (
un

its
 o

f U
) 

 

t (units of U)     

0 0.05 0.1 0.15
0.06

0.07

0.08

ν = 1/2 FQH + MI
SF

Exact
ν = 1/2 FQH + MI

(a) 

(b) 

FIG. 2. (Color online) (a) Overlap between the ν = 1/2 FQH +
MI state [|�〉 from Eq. (2)] and the exact ground state [|g.s.〉, deter-
mined from diagonalizing Eq. (1) in a truncated basis] as a function
of tunneling strength t , using the same parameters as in Fig. 1. Also
shown in the inset is the overlap between a superfluid vortex lattice
and |g.s.〉. (b) Comparison of the variational and exact energies from
Fig. 1.

approach one another. We believe this is due in part to the
fact that the mean-field state breaks translational invariance
and consequently involves a superposition of many eigenstates
[16]. A quantum superposition of vortex lattices may in fact be
a good alternative description of the fractional quantum Hall
(FQH) state.

Given the small difference between the energies of our
two variational states, one must be somewhat cautious about
ascribing too much significance to the crossing at t ∼ 0.13.
One also might be concerned that at that value of t both
variational states have an energy that is significantly higher
than that of the ground state, suggesting that neither may
be particularly good descriptions of the true ground state. A
third concern is that there is no sign of a phase transition in
Fig. 2(a); the overlap between the fractional quantum Hall state
and the exact ground state remains above 75% out to t ∼ 0.15.
Despite these caveats, the large overlap at small t is convincing
evidence that the ground state at low t is a fractional quantum
Hall state of excess particles, and it would be surprising if the
system formed a correlated state at large t .

B. Variational parameters

In Fig. 3 we show how the energy of the variational
state depends on the parameters Zβ , which represent where
“vortices” can be found around which the center of mass flows.
The boundary conditions in Eq. (3) force the wave function
to have m = 1/ν of these zeros (in the present case m = 2).
In the absence of the lattice, the energy is invariant under
change in these parameters, leading to an m-fold degeneracy
of the ground state [17]. Here, this symmetry is absent and the
energy depends on Zβ . Not surprisingly, the overlap between
the variational state and the exact ground state is directly
correlated with the energy. This overlap has a maximum when
the variational energy has a minimum.
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FIG. 3. (Color online) Variational energy (in units of U) (a) and
the overlap with the exact ground state (b) as a function of
center-of-mass zeros Z1 = X1 + iY1, Z2 = L − Z1, measured in
units of the lattice constant. As with Fig. 1, we consider an
L × L cell with L = 3, flux per plaquette, α = 2/3, filling factor
ν = 1/2, and total particle number M = 12. We take Kx = 0,
Ky = 0, and t = 0.01U . The lower the variational energy, the
higher the overlap. The lowest energy occurs for X1 = Y1 = L/2,
where the overlap is 96.4%. At this point, the variational energy
is 0.3186U , which is very close to the exact ground-state energy
of 0.3176U .

IV. VARIATIONAL MONTE CARLO METHOD

Unfortunately, the maximum size of the system that can
be treated by the techniques of Sec. III is quite limited. Our
preceding results for small system size predominantly serve
as a guide for physical intuition and cannot quantitatively
describe the physics of the infinite system. Here we introduce
a variational Monte Carlo (VMC) algorithm [18] in order to
calculate the energy 〈�|H |�〉 = 〈�|H0 − µM|�〉, where M

is the total number of particles. This will allow us to make
a more solid comparison of the energies of the superfluid
and correlated states and draw the phase diagram in Fig. 4.
This phase diagram illustrates the regions of the t-µ plane
where either the superfluid or correlated state has a lower
energy.

We begin by introducing a basis |R = {z1, . . . ,zN }〉 where
the N excess particles are at sites z1 through zN . This allows
us to write

〈�|H |�〉 =
∑
RR′

〈�|R〉〈R|H |R′〉〈R′|�〉 =
∑
R

PRER,

(7)

PR = |〈R|�〉|2, ER =
∑
R′

〈R|H |R′〉〈R′|�〉
〈R|�〉 .

We use a Metropolis algorithm to sample the sum over R.
Starting from some configuration R0, we generate a new
one R1 by attempting to move a single particle by one site.
We accept the move with probability min{1,PR1/PR0}; we
then continue the procedure to generate R2,R3, . . .. In the
resulting Markov chain, each configuration R will appear with
probability PR . After S steps, the energy is then estimated
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FIG. 4. Phase diagram for α = 1/4 and ν = 1/2. Boundary
between Mott insulator (MI) and superfluid (SF) states is found
from a mean-field calculation. Excess particle (or hole) density is
ε = αν = 0.125. The boundary of the coexistent ν = 1/2 FQH state
of excess particles (holes) and n0 = 1 MI state centered around the
1.125 (0.875) constant-density line is determined from a comparison
of VMC and mean-field energies. We consider eight particles in an
8 × 8 lattice in the VMC calculation.

as ES = ∑S
i=1 ERi

/S. As is usual, we discard the first few
thousand steps so as not to bias the sum by our choice of
initial configuration. We use a binning analysis to estimate the
statistical error on our sum [19].

For each R, we calculate ER directly. The Hamiltonian
connects only a finite number of different configurations (those
that differ by moving one particle by one site), and the sum is
straightforward numerically.

As a further simplification we note that E(µ,t) =
E0(µ) − (1 + n0)tK , where E0 = Un0ε + U (n0 − 1)n0/2 −
µ(n0 + ε) is the expectation value of the on-site terms in H and
−(1 + n0)tK is the expectation value of the hopping energy. K
is independent of n0, as the only role of the Mott background
is to provide a Bose-enhancement term of (1 + n0). By using
the Monte Carlo algorithm to calculate K , rather than E, we
produce E(µ,t) for all n0, µ, and t at once.

Table I lists the parameters for which we have performed
VMC calculations. For the smallest system sizes (L = 3,4,5),
we find that the VMC results agree with the direct calculation
of the variational energy. From the table, we conclude that
finite-size effects are significant in the L = 3 cases, but for
larger L the differences between the energies of the two
systems are within a few percent. We have not extrapolated
to L = ∞.

Figure 4 illustrates our results for α = 1/4. Near the
constant-density line n = 1 + ε, there is a region where
our variational wave function has a lower energy than the
Gutzwiller mean-field vortex lattice. This corresponds to an
incompressible ν = 1/2 bosonic Laughlin state above the
n0 = 1 Mott insulator. The same argument can be advanced for
holes by just exchanging the creation operators in Eq. (2) with
annihilation operators, leading to a coexisting Mott insulator
and FQH state of holes near the 1 − ε line, although it is less
visible than in the particle case.
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TABLE I. Results of our variational Monte Carlo calculation. α is
the flux number per plaqette, ε is the density of excess particles, L is
the system size, N is the number of excess particles, and −(1 + n0)tK
is the hopping energy per site, where t is the hopping matrix element
and n0 is the number of particles per site in the underlying Mott state.
K is dimensionless. Our estimates of the statistical error in K from a
binning analysis of 80 000 samples are given by δK .

α ε L N K δK

2/3 1/3 3 3 0.7376 6 × 10−4

6 12 0.5187 4 × 10−4

4/9 2/9 3 2 0.4419 4 × 10−4

6 8 0.4455 2 × 10−4

8/25 4/25 5 4 0.3874 1 × 10−4

10 16 0.3873 5 × 10−5

1/4 1/8 4 2 0.3483 2 × 10−4

8 8 0.3375 4 × 10−5

V. CREATION AND OBSERVATION

Several laboratories currently have the technology to create
a rotating optical lattice [20,21], which can be directly used
to create the system described here. Those experiments still
are far from the Mott regime, but they are progressing
rapidly. An alternative approach to implementing Eq. (1) is
to use a nonrotating lattice, and generate the phases on the
hopping matrix elements by some other means [22]. The
most advanced demonstration of this technique was from Lin
et al. [23].

One of the more promising schemes for experimental
observation of the incompressible states described here is
through in situ imaging of the density profile of a trapped
gas [4,24]. The fractional quantum Hall states should appear
as extra steps in the density profile near the Mott insulator
plateaus. Moreover, as the magnitude of the effective magnetic
field increases, these steps move in predictable ways: the
density is set by the magnetic flux, and the size of the gap
(hence the spatial size of the plateau) increases with magnetic

field. One can even imagine that for a fixed flux there will
appear a sequence of FQH states with larger even denominators
and thus with smaller densities all the way up to the MI-SF
phase boundary; however, their size will be much smaller and
they may not be discernible at all. Other probes for the FQH
states may be noise correlations in time-of-flight experiments,
measurement of the Hall conductance for the mass current in
a tilted lattice, or Bragg spectroscopy [2–7,24].

A major impediment to observation of these states is the
need to reduce the temperature to below the scale of the gap,
which is a fraction of the hopping matrix element t . Such
temperatures are currently hard to reach reliably.

VI. SUMMARY

In summary, we have predicted that experiments on bosons
in rotating lattices (or in lattices with an artificial gauge field)
will see a phase where the excitations on top of a Mott insulator
form a bosonic fractional quantum Hall state. We base our
prediction on a set of variational calculations, supplemented
by exact diagonalization of small systems. We find that the
MI + ν = 1/2 Laughlin state has a lower energy than the
Gutzwiller mean-field vortex lattice when the density of excess
particles or holes, ε = N/L2, is chosen appropriately (ε =
αν = α/2), and the hopping t is sufficiently small compared
to the interactions U . In this regime, we find that the overlap
between the exact ground state and the Laughlin state is as
large as 96%, but the overlap with the superfluid is smaller
than 10%. We produced a phase diagram (Fig. 4), illustrating
where this phase should be found at low temperatures.
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