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Abstract 

Fourier transform (FT)-based algorithms for magnetic resonance current 

density imaging (MRCDI) from one component of magnetic flux density have 

been developed for 2D and 3D problems. For 2D problems, where current is 

confined to the xy-plane and z-component of the magnetic flux density is 

measured also on the xy-plane inside the object, an iterative FT-MRCDI 

algorithm is developed by which both the current distribution inside the object 

and the z-component of the magnetic flux density on the xy-plane outside the 

object are reconstructed. The method is applied to simulated as well as actual 

data from phantoms. The effect of measurement error on the spatial resolution 

of the current density reconstruction is also investigated. For 3D objects an 

iterative FT-based algorithm is developed whereby the projected current is 

reconstructed on any slice using as data the Laplacian of the z-component of 

magnetic flux density measured for that slice. In an injected current MRCDI 

scenario, the current is not divergence free on the boundary of the object. The 

method developed in this study also handles this situation. 

(Some figures in this article are in colour only in the electronic version) 
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1. 

Introduction 

Current density imaging (CDI) is the inverse problem of reconstructing a current density 

distribution, J(x,y,z), from its magnetic field, H(x,y,z). Measurement of this magnetic field 

may be achieved by one of the several technologies most of which only allow for the 

measurement of the magnetic field outside the current-carrying object. In MRCDI, a magnetic 

resonance imaging (MRI) system is utilized to measure the magnetic field inside the 

currentcarrying object and better sensitivity from source to measurement is achieved. In 

general if 
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all three components of the magnetic field, Hx,Hy,Hz, are measured then current density can 

be reconstructed by J = ∇ × H. However in MRCDI, only Hz can be measured, where the z-

axis is defined as the direction of the main static magnetic field of the MRI system. Rotations 

of the object in the MRI gantry are needed if Hx and Hy are to be measured also. However, 

rotation of the object in a conventional MRI system may not be possible, nor may it be 

desirable due to object misalignments and distortions. It is therefore preferable to attempt the 

reconstruction of current density from Hz measurement only, which is the purpose of this 

study. (What is actually measured using an MRI system is the magnetic flux density, Bz. 

However in the following, all mathematical derivations are made in terms of the magnetic 

field H since B = μH and we assume throughout the paper that μ is space invariant and has 

the free space value μ0 = 4π × 10−7H m−1.) 

Several spatial domain algorithms for MRCDI have been proposed. Some investigators 

have treated the MRCDI problem as a separate one (Scott et al 1991, 1992, Joy et al 1989, 

Eyuboglu et al 1998), but others have approached it as a companion problem to MREIT where 

internal conductivity distribution and internal current density are reconstructed 

simultaneously (Oh et al 2003a, 2003b, Seo et al 2003a, 2003b, Hasanov et al 2004, Pyo et 

al 2005). In the latter group, an additional auxiliary current injection is necessary. Pyo et al 

(2005) and Park et al (2007) have analyzed to what extent current density can be recovered 

from Hz only. Park et al (2007) have shown that for 3D problems, recovery of current density 

from ∇2Hz does not have a unique solution but there is a recoverable component which they 

call the ‘projected current’. Lee et al (2003) and Oh et al (2003a) have used Fourier transform 

(FT) methods for MRCDI. Other investigators have used FT methods for the CDI problem in 

which the magnetic field is measured outside the object using non-MRI methods (Roth et al 

1989, Wijngaarden et al 1998, Sezginer 1987). Pesikan et al (1990) have also used Fourier 

domain methods for the CDI problem and they have used MRI to measure the magnetic field 

but their measurements are confined to a region away from the current sources. 

Roth et al (1989) have studied the problem of imaging a 2D current distribution from its 

magnetic field measured by a magnetometer on a plane above the plane of the currents. They 

have derived the Fourier domain forward and inverse transfer functions, from currents to the 

magnetic flux density and from the magnetic flux density to the currents respectively. They 

have performed simulations to investigate the limitations of their reconstruction algorithm. 

Even for a current distribution confined to a finite sized object, the magnetic flux density is 

negligible only beyond a certain distance away from the object. Therefore, Roth et al have 

chosen to measure the magnetic flux density in a 6.4 × 6.4 mm area for a current distribution 

confined to a 1 × 1 mm area. This requirement may be met by a magnetometer-based 

measurement system which aims at measuring the magnetic flux density outside the object. 

However in MRCDI, MRI is used to measure the magnetic flux density only inside the object. 

Although it may also be possible to measure the magnetic flux density outside the object using 
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MRI by surrounding the object by water-filled pads, this is an impractical procedure to follow 

in real applications. Therefore, the method of Roth et al needs to be extended to cases whereby 

the magnetic field is measured inside the object only. Roth et al (1989) have also assumed 

that the current distribution is divergence free. This condition is not met in injected current 

MRCDI in which, although the current is divergence free inside the object, it is not divergence 

free on the boundary where current is injected via electrodes attached to the boundary of the 

object. 

In Lee et al (2003) and Oh et al (2003a), a special geometry is considered in which current 

has only one component and this current component is related to only one component of the 

magnetic flux density in the Fourier domain. Thus, the methods developed by Lee et al (2003) 

and Oh et al (2003a) are applicable to limited problems of special geometry. In any case, it is 
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worth noting that in their studies as well, magnetic flux density is supposed to be measured in 

a larger area than covered by the area in which the current density is confined. 

Pesikan et al (1990) have measured the magnetic flux density of a planar current 

distribution on a plane above the plane of the currents (the xy-plane), using MRI. In their 

study, current is restricted to the surface of a printed circuit board which is bathed in 

nonconducting mineral oil to provide an MR signal. They have measured Bz at a height of 1 

cm above the circuit board. They have analyzed the factors which determine the spatial 

resolution of current density reconstruction and have shown how resolution is affected by the 

signal-to-noise ratio (SNR) of the measurements and the height at which the measurements 

are made. Our study differs from that of Pesikan et al in that we measure the magnetic field 

on the plane of the currents. 

In this study, a FT-based method for MRCDI is developed. The algorithm is first 

formulated for the 2D case where current has only transversal (x- and y-) components which 

do not have z-dependence. For solution of such problems, an iterative method (iterative 

FTMRCDI) is proposed. This method makes use of the magnetic flux density measurements 

inside the object only, and it can also be used to reconstruct the magnetic flux density outside 

the object. Furthermore, the method handles the fact that current is not divergence free on the 

boundary of the object. The iterative FT-MRCDI method for 2D problems is applied to 

reconstruction of current density from simulated magnetic flux density data as well as from 

real data obtained from phantoms. The FT-MRCDI method is then extended to the general 

3D case and assumptions under which this problem can be solved are explored. An iterative 

algorithm is proposed whereby ‘projected current’ is reconstructed from simulated ∇2Bz data. 

2. Methods 

2.1. Iterative FT-MRCDI for 2D problems 

2.1.1. Problem definition. Let  be a connected and bounded domain in R2 (defined by the xy-

plane, or the z = 0 plane) with boundary . Let S represent a slab of thickness d defined by the 

set with the current injection boundary surface

. Assuming that the current injection density 

on T and the conductivity in S do not have z-dependence, current density, electric field and 

potential field in S also do not have z-dependence. With unit outward normal along the 

boundary  being n, and non-zero conductivity in S being σ(x,y) in units of S m−1, the potential 

field, (x,y), obeys Laplace’s equation 

 0 in  (1) 

and satisfies the Neumann condition 

  on , (2) 

where , and g is the boundary injected current density in A m−2 and its 

integral on  is zero. 

The current density J (A m−2) and electrical field E are given by J = σE and E . 

We define J(x,y) for all (x,y) ∈ R2 but it is zero if (x,y) does not belong to . The magnetic field 
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due to J has only the z-component on the xy-plane and is given for the whole xy-plane by the 

Biot–Savart integral 

. (3) This 

equation is a Fredholm integral equation of the first kind and is ill-posed in general. The 

inverse problem of MRCDI is to find Jx and Jy from available measurements of Hz(x,y,0) on 

a finite number of spatial locations in . 

2.1.2. Iterative FT-based MRCDI inversion technique. The 2D FT (F2) of Hz(x,y,0) is 

defined as 

  (4) 

where kx and ky are the spatial frequencies (1/m) along x and y respectively. Using the forward 

filter functions derived in the appendix, F2{Hz(x,y,0)} can be written in terms of the FT of the 

x and y components of the current density as 

F2{Hz(x,y,0)} = F(kx,ky)(−jkyF2{Jx} + jkxF2{Jy}), 

where 

(5) 

 . (6) 

As shown in the appendix, if d is very small  and if d is very large 

. 

Divergence of the current density is zero in  and as explained in the appendix, it can be 
taken to be where (x,y) is the impulse function defined on  

(Onural 2006). Since current density is zero outside  in R2. Taking the 2D FT 
of both sides, we obtain 

j2 , (7) where

 is the incremental distance on . 

From equations (5) and (7), one can derive 

  (8) 

and 

 . (9) 

Let us now define the difference currents, Jx
d = Jx − Jx

u and Jy
d = Jy − Jy

u, where Jx
u and Jy

u 

are the current density distributions for a uniform conductivity distribution, σu. Note that the 

actual value of σu does not alter Jx
u and Jy

u. Since the divergences of the actual current and the 

current for σu are the same, we have a divergence-free difference current. Thus, 
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  and 

(10) 

, 

where  is the difference between the measured magnetic field at z = 0 and the 

magnetic field calculated from  and 0. Therefore, the inverse filters Fx(kx,ky) and 

Fy(kx,ky) to be used to find from , respectively, are 

defined as 

  and  . (11) 

If d is small, we have 

 1 j2ky 1 j2kx 

=and Fy(kx,ky) = −(12) Fx(kx,ky) d d 

and if d is large, we have 

Fx(kx,ky) = 

j2πky 

In a truly 2D problem where become undefined and we must study what happens when 

d → 0. For a given amount of applied current, as d → 0, the current density inside the object 

approaches ∞. However, dJ approaches Js which is now surface current density in units of A 

m−1. Multiplying the expressions by d we have d

and d  

 and d
J

y
d → 

J
y

sd yielding the 

expressions , 

where Jx
sd and Jy

sd are the x- and y-components of the difference surface current density. In 

conclusion the inverse filter functions which relate the surface difference current density to 

the measured magnetic flux density become , and . 

Note that the inverse filter functions Fx(kx,ky) and Fy(kx,ky) (and for that matter Fx
0(kx,ky) 

and Fy
0(kx,ky))) are undefined at kx = ky = 0. As shown in the appendix, the dc values of  and

 are zero. Therefore, we can take Fx(0,0) = Fy(0,0) = 0 (and Fx
0(0,0) = Fy

0(0,0) = 0). The 

filters for d = 0 and for d = 0.01 m are shown in figure 1. 
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Althoughcurrentsareconfinedto existsinthewholexy-plane. UsingMRI, in 

practice, Hz
d(x,y,0) is measured only in . In this study, we have developed an iterative method 

whereby the Jx
d and Jy

d are reconstructed in  measurements made in  

only. This iterative method also reconstructs Hz
d(x,y,0) outside . 

Let us assume that Hz
d(x,y,0) is negligible beyond a sufficiently large region L such that

. Due to practical reasons which will be explained in section 3, measurements of 

Hz
d(x,y,0) on an even smaller region S such that  may be used. The assumed conditions 

and the major steps of the algorithm are given as follows: 

(i) Hz
d(x,y,0) is assumed to be zero in 

is calculated. 

(iii) Using the filters Fx and Fy, are calculated. Then, by inverse FT Jx
d 

and Jy
d are calculated in L. 

(iv) The calculated currents are then confined to  by multiplying  by a masking 

function which is 1 in  but is 0 in . is calculated back from the 
current density confined to  using equation (5) and inverse FT. 

(vi) Unless a convergence criterion for is met, the obtained values for 

in  are retained, but the values obtained for are replaced by the 

measured  values, and steps (ii) through (vi) are repeated. 

The proposed algorithm performs iterations in space and spatial-Fourier domains similar 

to the famous Papoulis–Gerchberg algorithm which performs iterations in time and 

temporalFourier domains (Gerchberg 1974 and Papoulis 1975), which has found many 

application areas (Sanz and Huang 1983). To the best of our knowledge, the proposed 

algorithm is 
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Figure 1. Magnitude plots of the inverse filter functions: (a) , (b) 

for d = 0.01 m and (d) Fy(kx,ky) for d = 0.01 m. 

the first application of such an iterative technique to the solution of the MRCDI problem. 

Since the actual Hz
d(x,y,0) distribution satisfies both the space and spatial-Fourier domain 

constraints, it remains unchanged in this iteration. In other words, the actual Hz
d(x,y,0) 

distribution is a fixed point of this iterations. It has been shown that (Ferreira 1994) the 

temporal version of the discrete Papoulis–Gerchberg algorithm is an iteration with strictly 

non-expansive stages; therefore, it has a unique fixed point. The spatial version of the discrete 

Papoulis–Gerchberg algorithm we investigated here has the same property; therefore, the 

actual Hz
d(x,y,0) distribution is the unique fixed point of this iterations. Hence, the proposed 

iterations converges to the actual Hz
d(x,y,0) distribution. Thus, it reconstructs the unmeasured 

values of as well as calculating the difference current density in . In 

other words, by way of determination of  in addition to its measurement 

in S, the reconstructed difference current density is forced to lie in  only. 

By the proposed algorithm, the difference currents Jx
d and Jy

d are reconstructed. The total 

current density can be easily obtained by adding the current distribution calculated for a 

uniform conductivity distribution to the reconstructed difference currents. 

2.2. Iterative FT-MRCDI for 3D problems 

As shown in the appendix, , which in the Fourier domain is expressed 

as  j2πkyF3{Jx} − j2πkxj2πkyF3{Jy}, where F3 is the 3D Fourier 
operator. Considering the difference current which is divergence free, j2

 0. Assuming that Jz
d is negligible, we 

have j2  0, and we obtain  
and 

. Since Hz
d cannot be measured outside the object, an 

iterative Fourier method as described previously may be attempted using 3D Fourier and 3D 

inverse Fourier steps. As a result, Jx
d and Jy

d may be found inside the object and Hz
d may be 

found outside the object. This full 3D method is not investigated in this paper. Its application 

would require the measurement of Hz
d everywhere in the 3D object. 
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If we have measured Hz
d in only one transversal plane, then we can still make some 

assumptions to apply the theory derived for a 2D problem. Let us assume that Hz
d is measured 

in the z = 0 plane, current is z-independent in a slab defined by , and that current 

outside this slab does not affect the measured Hz
d. In such a case, the theory derived previously 

can be directly applied to find the current in the slab. However such assumptions may be 

realistic only for certain object shapes, for certain current application electrode shape, size 

and positions, and for certain internal conductivity distributions. 

Instead of using Hz
d measurement as input to the current reconstruction algorithm, one 

can approach the 3D inverse problem by calculating ∇2Hz first and using it as the input. It 

should be noted at the onset that ∇2Hz from the current due to uniform conductivity inside the 

object is zero. Therefore , and from ∇2Hz one cannot find the component of 

current due to uniform conductivity but can at best find the difference current J

 can be expressed in the Fourier domain as  

j2  d . Multiplying by e2πjkzt (in order to derive the equations for the z = t plane) and 

integrating with respect to kz from −∞ to ∞, we obtain 

. (14) 
d 

 0. Assuming that  is  Since the divergence of J

negligible on z = t , we have 0 which can be expressed for the z = t plane as 

0. Taking the 2D FT of this last expression, we obtain 

 j2 . (15) 

From equations (14) and (15), we obtain 

  and 

  (16) 

Thus, starting from the measurement of ∇2Hz at z = t, one can find estimates for 

Jx
d(x,y,t) and Jy

d(x,y,t) currents at that slice. These are estimates because we have 

made 

d the assumption that (x,y,t) is negligible. Of 

course, measurement of ∇2Hz at z = t requires at least the measurement of Hz at z = t, z = t + δ 

and z = t − δ with δ chosen to be sufficiently small so that  can be calculated at z = t. 

Using the same notation as before, let  denotes the interior of the slice of interest,  its 

boundary and L a region such that 0 outside  but it may not be zero on . 

This is evident when it is considered that . Since Jx and Jy are zero just 
outside , their derivatives will have jumps on  when evaluated by a discrete approximation. 

However, it is not possible to measure because this requires the measurement of Hz 

slightly outside of . Therefore as a starting point, ∇2Hz is calculated in  from the measured Hz. 

On  is taken to be equal to its immediate value in . 
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Equation (16) is then used to find the currents in L. For the second iteration, the currents are 

nulled for outside of  is calculated from and on . The 

values of ∇2Hz calculated on  are retained but the measured values are assigned to ∇2Hz in . 

Obviously with this procedure ∇2Hz becomes 0 outside of . As a final step for the second 

iteration, the currents are calculated again from equation (16). Iterations are continued until 

the calculated ∇2Hz becomes close to the measured . 

The estimates given above for Jx
d(x,y,t) and Jy

d(x,y,t) will be hereafter called the projected 

difference current density and will be denoted by Jx
∗(x,y,t) and Jy

∗(x,y,t), respectively. This 

terminology is in line with the terminology of Park et al (2007) as explained in section 4. 

2.3. Experimental and numerical methods 

2.3.1. Hz measurements. The magnetic field measurements were carried out using the 4T 

whole body MRI system at UCI Center for Functional Onco Imaging. A 16 leg, quadrature, 

high-pass birdcage coil with 10 cm diameter and 18 cm length was designed and built in-

house for the experiments. A current source that uses the pulses generated by the MRI console 

and a voltage-to-current converter is used to generate a current distribution inside the object. 

This current source was triggered by a TTL pulse generated by the scanner computer. A pulse 

sequence, similar to the one proposed by Mikac et al (2001), is used. This sequence is similar 

to a fast spin echo sequence, where a train of 180◦ RF pulses is applied following a 90◦ RF 

pulse. No phase encode or read-out gradients were applied between the 180◦ RF pulses and 

the data were collected with a single read-out gradient only after the last 180◦ RF pulse. The 

details of the data acquisition system and the pulse sequence are explained in Birgul et al 

(2006). 

2.3.2. Phantompreparation. Inordertotesttheperformanceofthealgorithmexperimentally, agar-

gel phantoms with various conductivity distributions were prepared. A cylinder with 7 cm 

diameter was filled with 1 cm deep agar-gel. A small hollow cylinder with 8 mm diameter 

was placed at different locations to understand the spatial dependence of the algorithm. Four 

copper electrodes with 6 mm width were placed on the inner wall of the outer cylinder every 

90◦ degrees. The height of the electrodes was the same as the depth of the phantom so that 

there is no variation in the z-direction and the phantom approximates a 2D situation. 

Currentcarrying wires were fixed on the support of the cylinder parallel to the main magnetic 

field to minimize the z-component of the magnetic field generated inside the object by these 

wires. The picture and the schematic definition of the phantom are given in figure 2. 

2.3.3. Generation of simulated data and filter functions. For 2D problems, finite element 

method (FEM) is used to solve the forward problem defined by equations (1) and (2) for 

  3.5 cm) and thickness d = 1 cm. Comsol Multiphysics 

package is used for FEM solutions and triangular mesh elements and quadratic shape 

functions are used. Triangle sizes are less than 1 mm and are as small as 0.4 mm in regions of 

high conductivity gradient. Once the current density distribution is calculated, Hz is obtained 

by discretizing the Biot–Savart integral defined in equation (3). For this purpose, the 1 cm 

thick slab is divided into ten 1 mm subslabs. Hz is calculated in 
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Figure 2. (a) Picture of the phantom, (b) 2D illustration of the phantom with an insulator object 

placed in the center and (c) its MR magnitude image. 

7 cm  7 cm . The F(kx,ky) function 

defined in equation (6) is calculated by numerical integration for a thickness of d = 1 cm. For 

discrete FT implementations, L is discretized into a 256 × 256 cartesian grid. 

In order to quantify the errors made in reconstructions, the following error measure is 

defined: If f 1 represents a reconstructed scalar function and if f 2 represents the corresponding 

actual scalar function, then the percent relative root-mean-square error is 

, where N is the number of points the 

functions are evaluated at. This error definition is used to calculate errors in reconstructed 

magnetic fields and current magnitudes. 

3. Results 

3.1. Simulation results for the 2D case 

Figure 3 shows the total current density, current density for uniform conductivity case, 

difference current density, calculated magnetic flux density and the calculated difference 

magnetic flux density for the case of two 8 mm radius regions: one with high conductivity (5 

S m−1) and one with low conductivity (0.001 S m−1) (hereafter called the conductivity 

anomalies) placed in an otherwise uniformly conductive (1S m−1) 70 mm diameter object with 

1 cm thickness. Current is injected from the upper-left electrode and sunk from the lower-

right electrode (refer to figure 2). Applied current was 10 mA, yielding 167 A m−2 current 

density on the 6 mm wide and 1 cm thick electrodes. Away from the electrodes, magnitude 

of current density decreases sharply, and for the uniform conductivity case it reaches the value 

of 18 A m−2 at the center and 9 A m−2 at the periphery. When total current density is observed, 

it is found that it is higher in the high conductivity region and much less in the low 

conductivity region. When difference current density is observed, it is found that it has a peak 

of 12 A m−2 in the high conductivity region and a peak of 18 A m−2 in the low conductivity 

region. Direction of the difference current in the high conductivity region is similar to the 

( a ) ( b ) ( c ) 
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direction of current for the uniform conductivity case but the direction of difference current 

in the low conductivity region is reversed. 

It is observed that the total magnetic flux density extends beyond the 70 mm diameter 

circular conductive object as expected. The difference magnetic flux density however is 

mostly confined to the object’s interior although it is not negligible outside as will be shown 

 

 

 (e) (f) 
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Figure 3. (a) Conductivity distribution, (b) total current density, (c) current density for uniform 

conductivity, (d) difference current density, (e) total magnetic flux density and (f) difference 

magnetic flux density for a 1 cm thick object which has a low conductivity region of 0.001 S m−1, 

a high conductivity region of 5 S m−1 and background conductivity of 1 S m−1. The unit for the 

magnetic flux density is Tesla. 

in the next figure. Total magnetic flux density is most pronounced near the current electrodes 

whereas the difference magnetic flux density is most pronounced around the boundaries of 

the conductivity anomalies. 

Figure 4 shows the results of reconstruction for the simulation object in figure 3. Five 

iterations are performed beyond which significant improvement in reconstructed current and 

magnetic flux density is not observed. Errors in the reconstructed magnetic flux density are 

5.5%, 2.7%, 1.7%, 1.2% and 1.0% for the first five iterations. Errors in the reconstructed 

current density magnitude are 17.7%, 13.3%, 12.2%, 11.8% and 11.8% for the first five 

iterations. The benefit obtained by applying the iterative algorithm is better observed when 

the reconstructed distributions are viewed for outside the 70 mm object. Figures 4(e) and (f) 

show the reconstructed magnetic flux densities outside the object for the first and the fifth 

iterations respectively; the magnetic flux density is nulled inside in order to emphasize its 

outside behavior. From the first to the fifth iteration, the reconstructed magnetic flux density 

outside the object builds up significantly. For the reconstructed current density, it is observed 

that at the first iteration outside current is still very high (up to 9 A m−2) but in the fifth iteration 

it is significantly reduced, as shown in figures 4(c) and (d) where inside current is nulled in 

order to emphasize its outside behavior. 

WehaveassumedsofarthatBz measurement does nothave noise, except forthenumerical 

errors in simulated Bz calculations, evaluation of the filter functions and errors due to the finite 

sampling rate. We have next investigated the reconstruction success when noise is added to 

Bz. Noise in Bz measurements using MRI is first investigated by Scott et al (1992). From their 

formulation, standard deviation of noise in Bz is 2.6 nT, 1.3 nT or 0.65 nT for an MR system 

which has an SNR of 15, 30 or 60 in magnitude images respectively, and for current injection 

duration of 48 ms. Although the probability density function of the noise is not Gaussian, 

most investigators use Gaussian distribution as an approximation (Oh et al (2003b)). 

Figure 5 shows the FT magnitudes for Bz
d and Jx

d on a certain line in the frequency domain 

(kx = ky line). High frequency components of Bz
d are relatively more attenuated compared to 

the high frequency components of Jx
d (similarly for Jy

d ). Thus, the Biot–Savart integral acts 

as a low pass filter and suppresses the high frequency components of the currents. However, 

the inverse filters shown in figures 1(c) and (d) have high pass behavior to compensate for 

this suppression. Therefore, the inverse problem is ill conditioned in the sense that if there is 

high frequency noise in Bz measurement, then error in the reconstructed currents will be 

amplified. In actual application, the inverse filter must be band limited by multiplying with a 

low pass filter in order to avoid excessive noise in reconstructed currents. In the same figure, 

we show the FT of Bz
d with 0.26 nT (s.d.) additive Gaussian noise. In this case by visual 

inspection, it is evident that a low pass filter with 200 m−1 cutoff (−3 dB) must be used because 

above 200 m−1 the level of signal becomes comparable to or less than the level of wide band 

noise. We have used a Hanning window, w(kx,ky) = . k max , as used by Roth 

et al (1989). 

We have taken kmax = 400 m−1 because with this kmax value, the filter has −3 dB cutoff at 200 

m−1. 
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Figure 6 compares the current reconstructions made for noiseless and noisy cases. The 

fifth iteration reconstructed Jx
d and actual difference current density profiles are drawn for the 

line which passes through the centers of the anomalies. For the noiseless case, even the sharp 

variations (single pixel jumps) in Jx
d are preserved by reconstruction, and resolution is 

basically limited by the sampling interval for Bz which is = 140 mm/256 = 0.55 mm. When 

0.26 nT (s.d.) Gaussian noise is added to the simulated Bz data, it is observed that the 

reconstructed  current becomes unacceptably noisy. If then the inverse filter is multiplied 

by the Hanning window, we observe that the high frequency noise in the reconstructed current 

disappears but a significant loss in resolution occurs. Single pixel jumps in the actual current 
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 (e) (f) 

Figure 4. Reconstructions for the object shown in figure 3. (a) Difference current density (fifth 

iteration), (b) difference magnetic field (fifth iteration), (c) magnitude of current density outside 

the object (first iteration), (d) magnitude of current density outside the object (fifth iteration), (e) 

difference magnetic field outside the object (first iteration) and (f) difference magnetic field 

outside the object (fifth iteration). The unit for the magnetic flux density is Tesla, and the unit for 

current density is A m−2. 
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Figure 5. Fourier transform (FT) magnitudes of Bz
d and Jx

d on the kx = ky line: (a) FT magnitude of 

), (b) FT magnitude of ), (c) FT magnitude of Bz
d with vertical scale magnified 

and (d) FT magnitude of Bz
d when 0.26 nT (s.d.). Gaussian noise is added with vertical scale 

magnified. 

are now reconstructed by jumps of the blunted slope. Point spread function of the Hanning 

window has a FWHM value of 2.5 mm. The 5–95% rise length of the step response of the 

filter is also 2.5 mm. Consistently, the sharp edges of the actual Jx
d current are also 

reconstructed with a rise length of 2.5 mm. Therefore with the use of the Hanning window, 

the resolution of reconstruction worsens to 2.5 mm. 

3.2. Simulation results for the 3D case 

We have also tested the reconstruction of the projected current density at a certain slice of a 

3D object. We have first calculated ∇2Bz at z = 0.25 m for a cubic object with dimensions 2 m 

× 2 m × 2 m. The cubic object has a conductivity of 1 S m−1 except in a spherical region of 
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higher conductivity. The spherical anomaly has a radius of 0.6 m and is centered at (0.25 

m,0.25 m,0.25 m). Inside the sphere, conductivity is 5 S m−1 for r < 0.2 m and it is tapered 

linearly to 1 S m−1 until r = 0.6 m where r is the distance from the center of the sphere. Current 

is injected uniformly (1 A m−1) from the face at x = −1 m and sunk at the 

 
−0.03 −0.02 −0.01 0 0.01 0.02 0.03 −0.03 −0.02 −0.01 0

 0.01 0.02 0.03 m m 

 
−0.03 −0.02 −0.01 0 0.01 0.02 0.03 −0.03 −0.02 −0.01 0

 0.01 0.02 0.03 m m 

 (c) (d) 

Figure 6. (a) Reconstructed and actual Jx
d (A m−2) profiles on the line passing through the centers 

of the conductivity anomalies (no noise added to Bz
d, no Hanning window applied) , (b) same as 

in (a) but with noise added to Bz
d and no Hanning window applied, (c) same as in (a) but with 

noise added to Bz
d and Hanning window applied and (d) unit step response of the Hanning window. 

x = 1 m face. To generate simulation data, the 3D forward problem for the currents is solved 

using FEM (1120000 tetrahedrons, 196210 nodes and 3062000 degrees of freedom), and Bz 

is calculated using the Biot–Savart integral. Bz is then sampled on a cartesian grid with a 

step size of 5 mm and ∇2Hz is calculated using centered differences except on  where 
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forward or backward differences are used. This results in a ∇2Hz which does not have jumps 

on . This ∇2Hz is used as input to the first iteration of the reconstruction algorithm. 

Figure 7 shows the conductivity distribution, Bz
d, ∇2Bz and J  25 m. The 

reconstructed J∗ at z = 0.25 m is also shown. It is observed that J∗ has similar behavior to Jd 

but the percent relative error between their magnitudes is 43%. In the formulation of the 

inverse filters for the 3D case, small Jz
d assumption was made. In order to test how important 

this assumption is, we also made a simulation where conductivity is z-independent but has 

the same variation in the x- and y-directions. In this case, the forward problem reduces to a 

2D problem; the transverse currents do not have z-dependence, 0; and the error between 

J∗ and Jd is found to be 4.5%. Thus for a cylindrically symmetric problem where  is 

a loyal reconstruction for Jd. 

 

 
 (c) (d) 
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Figure 7. Results of projected difference current density (J∗) reconstruction at the z = 0.25 m slice 

of the 3D object: (a) conductivity distribution (S m−1), (b) (T), (c) initial ∇2Bz T m−2, 

(d) ∇2Bz T m−2 at the fifth iteration, (e) difference current density J and (e) projected difference 

current density J∗. 

It is interesting to observe the behavior of  as iterations proceed. In figure 7, 

the initial ∇2Bz which is the input to the iterative algorithm and the ∇2Bz which is obtained at 

the end of the fifth iteration are shown. On  has built up significantly at the end of the 

fifth iteration. In fact this buildup of is what makes the currents zero outside of 
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Figure 8. Reconstruction of difference current from data obtained for an insulator object placed 

in the center of the phantom: (a) total measured magnetic flux density, (b) difference magnetic 

flux density, (c) reconstructed difference current at the fifth iteration, (d) reconstructed difference 

magnetic flux density at the fifth iteration. 

. Although ∇2Bz builds up on , error between initial ∇2Bz and ∇2Bz of the fifth iteration is 4.5% 

in . 

We have reconstructed J∗ also using the method of Park et al (2007) which is described 

in section 4. Error between J∗ obtained by our method and by the method of Park et al (2007) 

is 4.7%. Furthermore, error between J∗ obtained by the method of Park et al (2007) and Jd is 

45%. It can be concluded that our method and the method of Park et al (2007) give very 

similar results. 

3.3. Experimental results 

The iterative FT-MRCDI method is then applied to data collected from the 2D phantom 

described in figure 2. Total current of 1 mA is injected from the upper-left electrode and sunk 

from the lower-right electrode. Figure 8 shows the measured total magnetic flux density, and 

the difference magnetic flux density obtained by subtracting the calculated uniform magnetic 
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flux density, for the case of a circular insulator object placed at the center of the phantom. 

Also in the same figure, fifth iteration reconstructed difference current density and 

reconstructed difference magnetic flux density are shown. Figure 9 shows the results for the 

case of a circular insulator object placed closer to the current injection electrode. 

 
 (c) (d) 

Figure 9. Reconstruction of difference current from data obtained for an insulator object placed 

near the current injection electrode of the phantom: (a) total measured magnetic flux density, (b) 

difference magnetic flux density, (c) reconstructed difference current at the fifth iteration and (d) 

reconstructed difference magnetic flux density at the fifth iteration. 

Due to the noise inherent in the actual Bz measurements, an extra precaution is taken. If 

the FT of the measured Bz is investigated, it is observed that above 150 m−1 the spectrum is 

flat indicating that noise dominates. Therefore in order to filter out the high frequency noise 

in the measurements, the inverse filters were multiplied by a Hanning window with kmax = 300 

m−1. 

As observed in figures 8 and 9, magnetic flux density measurements near the boundary 
have relatively more noise. Therefore for reconstructions from real data, we have 

taken  while . 
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4. Discussion and conclusion 

An iterative FT-based algorithm for 2D MRCDI is proposed and successful reconstructions 

obtained from both simulated data and real phantom data have been presented. Extension of 

the technique to the 3D case is not trivial. However, an iterative FT-based algorithm is 

developed to find the projected current density at a certain slice using ∇2Hz data measured for 

that slice. When applied to actual problems such as human imaging, both the MRCDI and the 

MREIT problems are inherently 3D in nature (Ider and Onart 2004). It is known that in the 

general 3D situation, the MRCDI problem does not have a unique solution (Pyo et al 2005, 

Park et al 2007). However, Nam et al (2008) have shown that a projected current solution for 

the 3D MRCDI problem may still be useful or even sufficient to find the solution of the 3D 

MREIT problem. 

FT methods for MRCDI have been used by other investigators as well. In Lee et al (2003) 

and Oh et al (2003a), a special geometry is considered in which one component of the 

magnetic flux density is related to one component of current only. In Lee et al (2003), current 

has z-component only, and in Oh et al (2003a) current is predominantly in the z-direction. It 

is known that F3{Jz} = 2πjkxF3{Hy} − 2πjkyF3{Hx}. Assuming that Hz is negligible, and since 

magnetic flux density is divergence free, and assuming that μ is uniform, one obtains 

2πjkxF3{Hx} + 2πjkyF3{Hy} = 0 . Therefore, one can relate F3{Jz} to F3{Hx} only. Thus, the 

methods developed by Lee et al (2003) and Oh et al (2003a) are not applicable to the problem 

considered in this study. 

Similar geometry as used in this study for 2D problems has been used by investigators in 

other areas (Wijngaarden et al 1998, Sezginer 1987). The difference in our study is that 

magnetic flux density is assumed to be measured inside, whereas in geophysics (Sezginer 

1987) or in superconductivity research (Wijngaarden et al 1998), magnetic flux density is 

measured outside the object. 

Roth et al (1989) and Pesikan et al (1990) have studied the reconstruction of planar 

currents from magnetic flux density measurements made on a plane above the plane of the 

currents. They have shown that as the distance between measurement plane and the plane of 

currents is decreased, the resolution of reconstruction increases. In this study, the magnetic 

flux density is measured on the plane of the currents. We have shown that if there is no 

measurement noise, resolution is limited by numerical and sampling errors. We have also 

calculated the magnetic flux density 0.5 cm above the current slab of thickness d = 1 cm. This 

magnetic flux density is attenuated and smoothed compared to the magnetic flux density 

measured at the middle plane of the slab. When 2.6 nT (s.d.) noise is added, it is observed 

that thehighfrequencycomponentsofthemagneticfluxdensitystaybelowthenoisespectrumafter 

80 m−1. If a Hanning window with −3 dB cutoff at 80 m−1 is then used, the reconstruction 

resolution will be around 6.25 mm as compared to 2.5 mm for when magnetic flux density is 

measured in the center plane of the slab and a Hanning window with −3 dB cutoff at 200 m−1 

is used. 

Two-dimensional applications such as those described by Wijngaarden et al (1998) and 

Pesikan et al (1990) have the limitation that the magnetic field cannot be measured on the 

planeofcurrentsusingconventionalMRIbecausethecurrent-carryingmediumissolidinthose 

applications. We have not come across any application where the problem is 2D in nature and 

the current-carrying medium is liquid-like to provide the MR signal. 2D applications for 



3198 Y Z Ider et al 

materials testing or biological specimen investigation where preparation of a slice object is 

possible may emerge in the future. However, the 2D algorithms developed in this study are 

also applicable to 3D problems under certain assumptions as explained in section 2.2. 

Furthermore in future work, the iterative 2D algorithm developed in this study may be 

extended to cases where the magnetic field is measured above the plane of the currents. 

We have reconstructed the difference current density in the 2D case. An alternative 

approach is to find the FT of gδ and use it in equations (8) and (9) to find the FT of the total 

current density F2{Jx} and F2{Jy}. Finding the Ft of gδ is however prone to numerical errors 

even if a high spatial frequency sampling is used because gδ is defined on a thin line 

coincident with the boundary. 

Park et al (2007) have analyzed the recovery of current density in a 3D object. They have 

developed a theory whereby the ‘projected current’ density is calculated from ∇2Hz 

measurements instead of Hz measurements. They formulate that total current density, JT , is 
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the sum of three components, namely JT = J0 +J∗ +JN, where J0 is the current calculated for 

the object assuming uniform conductivity inside and using the Neumann boundary conditions 

imposed by the injected current, J0 + J∗ is the projected current, and JN is the component of 

current which cannot be recovered from ∇2Hz measurement only because it is in the null space 

of the forward transformation from J to ∇2Hz satisfying the boundary conditions due to 

theinjectedcurrent. Themagnitudeofthisunrecoverablecomponentisrelatedtothedifference of 

the Jz current and the z-component current for the uniform conductivity case, Jz
0. With the 

assumption that JN is small, the projected current is a good estimate of the actual total current. 

The divergence-free transversal current, J∗ is calculated as J  where 

βt(x,y) obeys the differential equation  

with the null Dirichlet condition on the boundary defined by the intersection of the object 

boundary with the z = t plane. 

The theory of Park et al (2007) and the FT-MRCDI technique presented in this paper are 

closely related. Defining β(x,y,z) = βz(x,y), in the Fourier domain we 

have , and therefore . 

Assuming that Hz at a certain plane, say z = 0, is affected by only the current density in the 

slab defined by  and that  and thus β do not have zdependence in 

that slab, . Integrating with respect to kz from −∞ to ∞, 

we get , and therefore 

. Finally  and 

. These expressions are the same as what we have 

stated in equation (10). 

Park et al (2007) have developed their theory for reconstructions from ∇2Hz data directly. 

Let f(x, y) denote the ∇2Hz data measured at z = 0. Then from Park et al (2007) theory 

 and in the Fourier domain . 

Therefore,   . These 
− 

expressions are identical to what we have stated in equation (16). 

The method developed in this study is more suitable for the problem of induced current 

MR-CDI (Ozparlak and Ider 2005). In induced current, MR-CDI current is not injected but is 

induced by an applied magnetic field. Thus, the current density in the object is divergence 

free both inside and on the boundary. 
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Appendix. Derivation of forward filters for the 2D problem 

∇ × H = J 

∇ × ∇ × 
H 

= ∇ × 
J
 

(A.1) 
2 

∇(∇ · H) − ∇ H = ∇ × J 

2 

∇ 
H 

= −∇ × 
J
 

and 

 . (A.2) 

The 3D-FT pair is defined as 

  (A.3) 

Since current is confined to a slab of thickness d, 

 (A.4) 

and similarly for F3{Jy}. In the Fourier domain, equation (A.2) becomes 

  (A.5) 

and therefore 

  (A.6) 

Since 

 ), (A.7) 
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we have 

 (A.8) If d is 

large, dsinc(kzd) approaches δ(kz) and 

(A.9) 

If d is small, dsinc(kzd) approaches d and 

 (A.10) 

Derivation of equation (7) 

In order to illustrate the philosophy behind the derivation of equation (7), let us consider the 
simple 2D connected and bounded domain  (defined by the xy-plane) with boundary 

 
. Let us define the problem 

= , with the Neumann boundary condition  , such 

that f(x,y) = ξ for  

 for  

 0 otherwise,

 (A.11) 

where ξ is the current source density with units of A m−2 and ε is a small positive real number. 

As 0, with the condition that  where G has units of A m−1, f(x,y) → G[δ(x + L) 

− δ(x − L)]rect  where δ(x) is the one-dimensional impulse function and rect(y) is 1 for 

 and 0 elsewhere. Defining 

 g(x,y) = 0 for y = ±L 

 = G for x = −L, 

 = −G for x = L, (A.12) 

we can express the partial differential equation as (x,y), where δ is an 

impulse function on the curve  such that it is 0 outside and for any well-behaving 

function h  which is the line integral of h(x, y) 

on  where dγ is the incremental distance on . Impulse functions over curves and surfaces are 

defined and explained by Onural L (2006). 
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= − 

L)]rect 2L = −  

and it is zero in the interior of . 

This impulsive divergence on  can be converted to an equivalent boundary condition. 

Using the divergence theorem, one can show that −Jx(−L−,y) + Jx(−L+,y) = −G. Since σ = 0 

outside , we have Jx(−L+,y) = −G. This result can also be expressed as n · J = G on x = −L. 

Similarly, we have Jx(L−,y) = −G and n · J = −G on x = L. In general 

n . 

In conclusion the problem can now be viewed as  J = g(x,y) on 

. This is equivalent to . 

Thus, in general, the 

original 

problem 

definition expressed by equations (1) and (2) is equivalent to 

which is equal to 

. 

DC values of Jx
d and Jy

d 

Consider a vertical (x = constant) line in the xy-plane such that its intersection with the 

conductive connected and bounded domain  L is not empty. Consider now another 

connected domain  with boundary ϒ, in the xy-plane, such that . In other words, 

most of ϒ lies outside , and the part of ϒ that lies in  is the vertical line segment L. 

Since current is zero outside , the line integral of the normal component of Jd on ϒ is 

equal to  (depending on the direction of the normal vector on L). From the 

divergence theorem, the line integral of the normal component of Jd on ϒ is equal to the 

surface integral of the divergence of J . We know that the divergence of Jd is zero 

everywhere, and therefore  

The dc value of  is defined as . Since , 

evaluation of the dc value of comprises line integrals of along all vertical line segments 

in . We can therefore conclude that the dc value of  is zero. Similarly for . 
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