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Abstract. In this paper, a video based algorithm for fire and flame detection is
developed. In addition to ordinary motion and color clues, flame flicker is distin-

guished from motion of flame colored moving objects using Markov models. Irregu-
lar nature of flame boundaries is detected by performing temporal wavelet analysis
using Hidden Markov Models as well. Color variations in fire is detected by comput-

ing the spatial wavelet transform of moving fire-colored regions. Boundary of flames
are represented in wavelet domain and irregular nature of the boundaries of fire
regions is also used as an indication of the flame flicker. Decisions from sub-algo-

rithms are linearly combined using an adaptive active fusion method. The main
detection algorithm is composed of four sub-algorithms (i) detection of fire colored
moving objects, (ii) temporal, and (iii) spatial wavelet analysis for flicker detection
and (iv) contour analysis of fire colored region boundaries. Each algorithm yields a

continuous decision value as a real number in the range [-1, 1] at every image frame
of a video sequence. Decision values from sub-algorithms are fused using an adaptive
algorithm in which weights are updated using the least mean square (LMS) method

in the training (learning) stage.

Keywords: Fire detection, Least-mean-square methods, Active learning, Decision Fusion,

On-line learning

1. Introduction

Conventional chemical point fire sensors typically detect the presence of certain
particles generated by smoke and fire by ionisation or photometry. An important
weakness of point detectors is that they are distance limited and fail in open or
large spaces because it may take a long time for particles to reach them.

The main advantage of using video in fire detection is the ability to monitor
large and open spaces. Fire and flame detection algorithm in [1] is based on the
use of color and motion information in video. In this paper, we not only detect
fire and flame colored moving regions but also analyze the motion. It is well-
known that turbulent flames flicker. Therefore, fire detection scheme can be made
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more robust by detecting irregular rapid movements in flame colored moving pix-
els compared to existing fire detection systems described in [1].

High frequency motion around the boundary of an object with frequency
greater than 0.5 Hz is an important sign of presence of flames in the scene. In this
paper, high-frequency analysis of moving pixels is carried out in wavelet domain.
Wavelet transform is a time-frequency analysis tool and one can examine an
entire frequency band in wavelet domain [2, 4, 5]. Hence, it is ideally suited to
determine an increase in high-frequency activity in some fire and flame colored
objects. In addition, turbulent high-frequency behavior exist not only on the
boundary but also inside a fire region. Spatial wavelet analysis makes is used to
detect high-frequency behavior inside a flame region.

Two similar methods for identifying flame in video are described in [1, 6]. The
method in [6] only makes use of the color information. On the other hand, the
scheme in [1] is based on detecting the fire colored regions in the current video first.
If these fire colored regions move then they are marked as possible regions of fire in
the scene monitored by a camera. In [7] another real-time fire-detection system is
proposed that combines foreground object information with color pixel statistics of
flames. Some of the previous works [8–11] include fire detection algorithms that use
temporal and spatial wavelet analysis of the video in a Hidden Markov Models
framework to determine the existence of fire. In this paper, we use an LMS based
on-line learning algorithm to combine the decisions of sub-algorithms, obtained
using wavelet analysis and markov models, in an efficient manner.

Moving objects are determined using a background subtraction algorithm and
fire colored moving objects are determined using Hidden Markov Models. Tempo-
ral and spatial wavelet analysis are carried out on flame boundaries and inside the
fire region. An increase in energy of wavelet coefficients indicate an increase in
high frequency activity. Contours of moving objects are also analyzed by estimat-
ing the boundaries of moving fire colored regions in each image frame. This spa-
tial domain clue is also combined with temporal clues to reach a final decision.

The proposed automatic video based fire detection algorithm is based on four
sub-algorithms: (i) detection of fire colored moving objects, (ii) temporal and (iii)
spatial wavelet analysis for flicker detection, and (iv) contour analysis of flame
boundaries. Each sub-algorithm separately decides on the existence of fire in the
viewing range of the camera. Decisions from sub-algorithms are linearly combined
using an adaptive active fusion method. Initial weights of the sub-algorithms are
determined from actual fire videos. They are updated using the least-mean-square
(LMS) algorithm during initial installation [12]. The error function in the LMS
adaptation is defined as the difference between the overall decision of the com-
pound algorithm and the decision of an oracle. The oracle can be the user of the
program or the security guard monitoring the computer screen in the case of a
surveillance application. The system asks the oracle to verify its decision whenever
an alarm occurs. In this way, the user actively participates in the learning process.

The paper is organized as follows: Sect. 2 describes each one of the four sub-
algorithms which make up the compound (main) fire detection algorithm. Adap-
tive active fusion method is described in Sect. 3. In Sect. 4, experimental results
based on test fires are presented.

552 Fire Technology 2010



2. Sub-Algorithms of Flame Detection Algorithm

Flame detection algorithm is developed to locate flame regions within the viewing
range of visible range camera. Four sub-algorithms that make up the composite
detection algorithm are: (i) detection of fire colored moving objects, performing
(ii) temporal wavelet analysis, and (iii) spatial wavelet analysis, and (iv) contour
analysis of flame boundaries. The respective decision functions,
D1ðx; nÞ;D2ðx; nÞ;D3ðx; nÞ and D4ðx; nÞ, are defined, for each pixel at location x of
every incoming image frame at time step n.

The outputs of decision functions Di; i ¼ 1; . . . ;M of sub-algorithms are zero-
mean real numbers for each incoming sample x. When the number is positive
(negative), it means that the individual algorithm has decided that there is (not)
fire in the viewing range of the camera. The confidence level of each sub-algo-
rithm is determined by the amplitude of the decision value. Higher the value, the
more confident the algorithm.

2.1. Detection of Flame Colored Moving Objects

2.1.1. Moving Region Detection. Moving object segmentation for surveillance
applications can be achieved using background subtraction. There are several
methods in the literature [13–15]. In Video Surveillance and Monitoring (VSAM)
Project at Carnegie Mellon University [13] a recursive background estimation
method was developed from the actual image data using ‘1-norm based calcula-
tions. In this method background is obtained by updating each pixel indepen-
dently using a simple IIR filter and an adaptive threshold update algorithm is
used to determine foreground and background pixels.

Background can be defined as temporally stationary part of the video, therefore
stationary pixels in the video are the pixels of the background scene. If the scene
is observed for some time, then pixels forming the entire background scene can be
estimated because moving regions and objects occupy only some parts of the
scene in a typical image of a video. A simple approach to estimate the back-
ground is to average the observed image frames of the video. Since moving
objects and regions occupy only a part of the image, they conceal a part of the
background scene and their effect is canceled over time by averaging. Our main
concern is real-time performance of the system.

Let Iðx; nÞ represent the intensity value of the pixel at location x in the n-th
video frame I. Estimated background intensity value, Bðx; nþ 1Þ, at the same pixel
position is calculated as follows:

Bðx; nþ 1Þ ¼ aBðx; nÞ þ ð1� aÞIðx; nÞ if x is stationary
Bðx; nÞ if x is a moving pixel

�
ð1Þ

where Bðx; nÞ is the previous estimate of the background intensity value at the
same pixel position. The update parameter a is a positive real number close to
one. Initially, Bðx; 0Þ is set to the first image frame Iðx; 0Þ. A pixel positioned at x
is assumed to be moving if:
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jIðx; nÞ � Iðx; n� 1Þj> T ðx; nÞ ð2Þ

where Iðx; n� 1Þ is the intensity value of the pixel at location x in the ðn� 1Þ-th
video frame I and T ðx; nÞ is a recursively updated threshold at each frame n,
describing a statistically significant intensity change at pixel position x:

T ðx; nþ 1Þ ¼ aT ðx; nÞ þ ð1� aÞðcjIðx; nÞ � Bðx; nÞjÞ if x is stationary
T ðx; nÞ if x is a moving pixel

�

ð3Þ

where c is a real number greater than one and the update parameter a is a posi-
tive number close to one. Initial threshold values are set to a pre-determined non-
zero value.

Both the background image Bðx; nÞ and the threshold image T ðx; nÞ are statisti-
cal blue prints of the pixel intensities observed from the sequence of images
fIðx; kÞg for k< n. The background image Bðx; nÞ is analogous to a local temporal
average of intensity values, and T ðx; nÞ is analogous to c times the local temporal
standard deviation of intensity in ‘1-norm [13].

As it can be seen from Equation 3, the higher the parameter c, higher the
threshold or lower the sensitivity of detection scheme. It is assumed that regions
significantly different from the background are moving regions. Estimated back-
ground image is subtracted from the current image to detect moving regions
which corresponds to the set of pixels satisfying:

jIðx; nÞ � Bðx; nÞj> T ðx; nÞ ð4Þ

are determined. These pixels are grouped into connected regions (blobs) and
labeled by using a two-level connected component labeling algorithm [16]. The
output of the first step of the algorithm is a binary pixel map that indicates whe-
ther or not the pixel at location x in nth frame is moving.

2.1.2. Detection of Flame Colored Pixels. Markov models shown in Figure 1 are
used to detect flame in color video. Two models are trained off-line for both flame
and non-flame pixels. States of the Markov models are determined according to
color information. The fire and flame color model of [11] is used for defining the
flame-pixels. Although there are various types of fires, fire flames especially in the
initial stages of the fire exhibit a color range of red to yellow. In terms of RGB
values, this fact corresponds to the following inter-relation between R, G and B
color channels: R > G and G > B. The combined condition for the fire region in
the captured image is R > G > B. Besides, R should be more stressed than the
other components, because R becomes the dominating color channel in an RGB
image of flames. This imposes another condition for R as to be over some pre-
determined threshold, RT. However, lighting conditions in the background may
adversely affect the saturation values of flames resulting in similar R, G and B
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values which may cause non-flame pixels to be considered as flame colored. There-
fore, saturation values of the pixels under consideration should also be over some
threshold value. All of these conditions are summarized in the following compos-
ite condition:

Condition1: R > RT

Condition2: R > G > B
Condition3: S > ð255� RÞ�ST =RT

where ST is the value of saturation when the value of R channel is RT. If both of
the three conditions are satisfied for a pixel, then that pixel is considered as fire
colored. As it is known, the saturation will decrease with increasing R value. This
is formulated in the term (255 - R) * ST/RT. In fire color classification, both val-
ues of RT and ST are defined according to various experimental results, and typi-
cal values range from 40 to 60 and 170 to 190, for ST and RT, respectively.

The three-state Markov model used for flame detection is presented in Figure 1.
The state F1 corresponds to a pixel having a fire color. The state F2 also corre-
sponds to a pixel having a fire color but the fire color range of F2 is different
from F1. The state called as Out is reserved for non-fire colored pixels. Let Sx(i)
be the state of the pixel x at frame i. The conditions for transition between states
for x is shown as a flow chart in Figure 2. In this diagram, Rx(i) corresponds to
the R channel value of the pixel x at frame i, and S0xðiÞ is F2 if Sx(i) is F1 and vice
versa.

The thresholds should satisfy T1<T2 and they are set to 10 and 40, respec-
tively, in our implementation. Transition between states F1 and F2 occurs when
there is a relatively large variation in the R channel of the fire colored pixel.
When this variation is above the larger threshold T2, a transition to state Out
takes place. The state of the pixel is preserved whenever a variation in the R
channel of the fire colored pixel, which is smaller than T1, is observed.

Figure 1. Three-state Markov models for flame (left) and non-flame
moving pixels.
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Temporal variation in RGB values of each pixel belonging to a moving region
is used as a one dimensional (1-D) feature signal, F ¼ f ðnÞ, and fed to the Mar-
kov models shown in Figure 1.

A moving pixel is classified as a fire pixel when the probability of obtaining the
observed feature signal F ¼ f ðnÞ given the probability model k1 is greater than the
probability of obtaining the observed feature signal F ¼ f ðnÞ given the probability
model k2, i.e., when the pixel has fire color characteristics :

p1 ¼ P ðF jk1Þ> p2 ¼ P ðF jk2Þ ð5Þ

where F is the observed feature signal, k1 and k2 represent the Markov models for
fire and ordinary moving objects, respectively.

As the probability p1ðp2Þ gets a larger value than p2ðp1Þ, the confidence level of
this sub-algorithm increases (decreases). A decision function, D1ðx; nÞ, is defined
describing the Markov model based flame colored region detection sub-algorithm.
The zero-mean decision function D1ðx; nÞ is determined by the normalized differ-
ence of Markov model probabilities:

D1ðx; nÞ ¼
p1�p2
p1þp2

; if x is a moving pixel

�1; otherwise

�
ð6Þ

When a moving pixel is classified as a fire colored pixel, i.e., p1 � p2;D1ðx; nÞ is
close to 1. Otherwise, the decision function D1ðx; nÞ is close to �1.

Figure 2. State transition flow-chart of the Markov chain.
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2.2. Temporal Wavelet Analysis for Flicker Detection

The second sub-algorithm analyzes the frequency history of pixels in flame col-
ored moving regions. In order to detect flicker or oscillations in pixels due to fire
in a reliable manner, the video capture rate should be high enough to capture
high-frequency flicker in flames. To capture 10 Hz flicker, the video should cap-
ture at least 20 frames per second (fps). However, in some surveillance systems,
the video capture rate is below 20 Hz. If the video is available at a lower capture
rate, aliasing occurs but flicker due to flames can still be observed in the video.
For example, 8 Hz sinusoid appears as 2 Hz sinusoid in a 10 fps video.

Each pixel Iðx; nÞ at location x belonging a fire colored moving object in the
image frame at time step n is fed to a two stage-filter bank as shown in Figure 3.
The signal ~InðxÞ is a one-dimensional signal representing the temporal variations in
color values of the pixel Iðx; nÞ at location x in the nth image frame. Temporal
wavelet analysis can be carried out using either the luminance (Y component) in
YUV color representation or the red component in RGB color representation. In
our implementation the red channel values of the pixels are used. The two-channel
subband decomposition filter bank is composed of half-band high-pass and low-
pass filters with filter coefficients f�1

4;
1
2;�1

4g and f14; 12; 14g; respectively, as shown in
Figure 3. The filter bank produces wavelet subsignals dn(x) and en(x). If there is
high frequency activity at pixel location x, high-band subsignals d and e get non-
zero values. However, in a stationary pixel, the values of these two subsignals
should be equal to zero or very close to zero because of high-pass filters used in
subband analysis. If the pixel is part of a flame boundary at some time (see Fig-
ure 4), then there will be several spikes in one second due to transitions from
background colors to flame colors and vice versa. If there is an ordinary fire-col-
ored moving object going through pixel at location x, then there will be a single
spike in one of these wavelet subsignals because of the transition from the back-
ground pixel to the object pixel as shown in Figure 5. The number of zero cross-
ings of the subband signals dn and en in a few seconds can be used to discriminate
between a flame pixel and an ordinary fire colored object pixel. If this number is
above some threshold, then an alarm can be issued for this pixel.

The temporal history of the red channel of a pixel at location x = (111, 34)
which is part of a flame, and the corresponding wavelet signals are shown in

Figure 3. A two-stage filter bank. HPF and LPF represent half-band
high-pass and low-pass filters, with filter coefficients f�1

4;
1
2;�1

4g and
f14;12;14g, respectively. This filter bank is used for wavelet analysis.
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Figure 4. A flicker in the red channel values of this flame pixel is obvious from
the figure. The pixel is part of a flame for image frames with time steps n = 1, 2,
3, 19, 23, 24, 41 and 50. It becomes part of the background for n ¼ 12; . . . ;
17; 20; 21; 26; 27; 31; . . .; 39; 45; 52; . . . ; and 60. Wavelet domain subsignals dn and
en reveal the fluctuations of the pixel at location x ¼ ð111; 34Þ with several zero
crossings. Due to a down-sampling operation during wavelet computation, the
length of wavelet signals are halved after each stage of subband filtering. As a
result, the value of a sample in a subband signal corresponds to several samples in
the original signal, e.g., the value of d5ð111; 34Þ corresponds to the values of
~I10ð111; 34Þ and ~I11ð111; 34Þ; and the value of e4ð111; 34Þ corresponds to the values
of ~I12ð111; 34Þ;~I13ð111; 34Þ;~I14ð111; 34Þ and ~I15ð111; 34Þ; in the original signal.

The temporal history of the red channel of a pixel at location x ¼ ð18; 34Þ,
which is part of a fire colored object, and the corresponding wavelet signals are
shown in Figure 5. As shown in this figure, neither the original nor the wavelet
signals exhibit oscillatory behavior. The pixel is part of a white-colored back-
ground for n = 1, 2, and 3, becomes part of a fire colored object for n = 4, 5, 6,

Fig. 4. (a) Temporal variation of image pixel at location x = (111,
34), Ĩn(x) The pixel at x = (111, 34) is part of a flame for image
frames I(x,n), n = 1, 2, 3, 19, 23, 24, 41 and 50. It becomes part of
the background for n = 12,…, 17, 20, 21, 26, 27, 31,…, 39, 45,
52,…, and 60. Wavelet domain subsignals (b) dn and (c) en reveal the
fluctuations of the pixel at location x = (111, 34).
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7, and 8, then it becomes part of the background again for n > 8. Corresponding
wavelet signals dn and en do not exhibit oscillatory behavior as shown in Figure 5.
Small variations due to noise around zero after the 10-th frame are ignored by
setting up a threshold.

The number of wavelet stages needed for used in flame flicker analysis is deter-
mined by the video capture rate. In the first stage of dyadic wavelet decomposi-
tion, the low-band subsignal and the high-band wavelet subsignal dn(x) of the
signal ~InðxÞ are obtained. The subsignal dn(x) contains [2.5 Hz, 5 Hz] frequency
band information of the original signal ~InðxÞ in 10 Hz video frame rate. In the sec-
ond stage the low-band subsignal is processed once again using a dyadic filter
bank, and the wavelet subsignal en(x) covering the frequency band [1.25 Hz,
2.5 Hz] is obtained. Thus by monitoring wavelet subsignals enðxÞ and dnðxÞ, one
can detect fluctuations between 1.25 to 5 Hz in the pixel at location x.

Flame flicker can be detected in low-rate image sequences obtained with a rate
of less than 20 Hz as well in spite of the aliasing phenomenon. To capture 10 Hz
flicker, the video should capture at least 20 frames per second (fps). However, in
some surveillance systems, the video capture rate is below 20 Hz. If the video is
available at a lower capture rate, aliasing occurs but flicker due to flames can still

Figure 5. (a) Temporal history of the pixel at location x = (18, 34).
It is part of a fire-colored object for n = 4, 5, 6, 7, and 8, and it
becomes part of the background afterwards. Corresponding subsig-
nals (b) dn and (c) en exhibit stationary behavior for n > 8.
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be observed in the video. For example, 8 Hz sinusoid appears as 2 Hz sinusoid in
a 10 fps video [9]. Aliased version of flame flicker signal is also a wide-band signal
in discrete-time Fourier Transform domain. This characteristic flicker behavior is
very well suited to be modeled as a random Markov model which is extensively
used in speech recognition systems and recently these models have been used in
computer vision applications [17].

Three-state Markov models are trained off-line for both flame and non-flame
pixels to represent the temporal behavior (Figure 6). These models are trained by
using first-level wavelet coefficients dn(x) corresponding to the intensity values
~InðxÞ of the flame-colored moving pixel at location x as the feature signal. A sin-
gle-level decomposition of the intensity variation signal ~InðxÞ is sufficient to char-
acterize the turbulent nature of flame flicker. One may use higher-order wavelet
coefficients such as, en(x), for flicker characterization, as well. However, this may
incur additional delays in detection.

Wavelet signals can easily reveal the random characteristic of a given signal
which is an intrinsic nature of flame pixels. That is why the use of wavelets instead
of actual pixel values lead to more robust detection of flames in video. Since, wave-
let signals are high-pass filtered signals, slow variations in the original signal lead to
zero-valued wavelet coefficients. Hence it is easier to set thresholds in the wavelet
domain to distinguish slow varying signals from rapidly changing signals. Non-neg-
ative thresholds T1 <T2 are introduced in wavelet domain to define the three states
of the Hidden Markov Models for flame and non-flame moving objects. For the
pixels of regular flame colored objects no rapid changes take place in the pixel val-
ues. The lower threshold T1 basically determines a given wavelet coefficient being
close to zero. The second threshold T2 indicates that the wavelet coefficient is signif-
icantly higher than zero. When the wavelet coefficients fluctuate between values
above the higher threshold T2 and below the lower threshold T1 in a frequent
manner this indicates the existence of flames in the viewing range of the camera.

Figure 6. Three-state Markov models for (a) flame and (b) non-flame
moving flame-colored pixels.
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The states of HMMs are defined as follows: at time n, if jwðnÞj1, the state is in
S1; if T1 < jwðnÞj2, the state is S2; else if jwðnÞj2, the state S3 is attained. Here
|w(n)| denotes the absolute value of the wavelet coefficient corresponding to the
currently analyzed pixel. For the pixels of regular flame-colored moving objects,
like walking people in red shirts, no rapid changes take place in the pixel values.
Therefore, the temporal wavelet coefficients ideally should be zero but due to ther-
mal noise of the camera the wavelet coefficients wiggle around zero. The lower
threshold T1 basically determines a given wavelet coefficient being close to zero.
The state defined for the wavelet coefficients below T1 is S1. The second threshold
T2 indicates that the wavelet coefficient is significantly higher than zero. The state
defined for the wavelet coefficients above this second threshold T2 is S3. The val-
ues between T1 and T2 define S2. The state S2 provides hysteresis and it prevents
sudden transitions from S1 to S3 or vice versa. When the wavelet coefficients fluc-
tuate between values above the higher threshold T2 and below the lower threshold
T1 in a frequent manner this indicates the existence of flames in the viewing range
of the camera.

In flame pixels, the transition probabilities a’s should be high and close to each
other due to random nature of uncontrolled fire. On the other hand, transition
probabilities should be small in constant temperature moving bodies because there
is no change or little change in pixel values. Hence we expect a higher probability
for b00 than any other b value in the non-flame moving pixels model (cf. Fig-
ure 6), which corresponds to higher probability of being in S1. The state S2 pro-
vides hysteresis and it prevents sudden transitions from S1 to S3 or vice versa.

The transition probabilities between states for a pixel are estimated during a
pre-determined period of time around flame boundaries. In this way, the model
not only learns the way flame boundaries flicker during a period of time, but also
it tailors its parameters to mimic the spatial characteristics of flame regions. The
way the model is trained as such, drastically reduces the false alarm rates.

During the recognition phase, the HMM based analysis is carried out in pixels
near the contour boundaries of flame-colored moving regions. The state sequence
of length 20 image frames is determined for these candidate pixels and fed to the
flame and non-flame pixel models.

Let p1 and p2 denote the probabilities obtained from the models for flame and
non-flame pixels respectively. As the probability p1ðp2Þ gets a larger value than
p2ðp1Þ, the confidence level of this sub-algorithm increases (decreases). Therefore,
the zero-mean decision function D2ðx; nÞ is determined by the normalized differ-
ence of these probabilities:

D2ðx; nÞ ¼
p1 � p2
p1 þ p2

ð7Þ

When a fire colored moving region is classified as a fire pixels according to fre-
quency history, i.e., p1� p2;D2ðx; nÞ is close to 1. Otherwise, the decision function
D2ðx; nÞ is close to -1.

The probability of a Markov model producing a given sequence of wavelet coef-
ficients is determined by the sequence of state transition probabilities. Therefore,
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the flame decision process is insensitive to the choice of thresholds T1 and T2,
which basically determine if a given wavelet coefficient is close to zero or not.
Still, thresholds can be determined using a k-means type algorithm, as well.

2.3. Spatial Wavelet Analysis

The third sub-algorithm is the spatial wavelet analysis of moving regions containing
fire colored pixels to capture color variations in pixel values. In an ordinary fire-col-
ored object there will be little spatial variations in the moving region as shown in
Figure 7a. On the other hand, there will be significant spatial variations in a fire
region as shown in Figure 8a. The spatial wavelet analysis of a rectangular frame
containing the pixels of fire-colored moving regions is performed. The images in
Figures 7b and 8b are obtained after a single stage two-dimensional wavelet trans-
form that is implemented in a separable manner using the same filters explained in
Subsect. 2. Absolute values of low–high, high–low and high–high wavelet subimag-
es are added to obtain these images. A decision parameter describing spatial vari-
ance is defined for this step, according to the energy of the wavelet subimages:

n ¼ 1

M � N

X
k;l

jIlhðk; lÞj þ jIhlðk; lÞj þ jIhhðk; lÞj; ð8Þ

where Ilhðk; lÞ is the low–high subimage, Ihlðk; lÞ is the high–low subimage, and
Ihhðk; lÞ is the high–high subimage of the wavelet transform, respectively, and
M � N is the number of pixels in the fire-colored moving region. If the decision
parameter of the fourth step of the algorithm, n, exceeds a threshold, then it is
likely that this moving and fire-colored region under investigation is a fire region.
The decision function for this sub-algorithm is determined as follows:

D3ðx; nÞ ¼ 2 n
nmax
� 1; if n � nT

�1; otherwise

�
ð9Þ

where nmax and nT are experimentally determined parameters from videos contain-
ing flames. nmax is the largest value that n can take and nT is a predefined thresh-
old. The threshold determines the definite non-fire cases. The decision function is
not sensitive to this threshold. One can also use D3ðx; nÞ ¼ 2 n

nmax
� 1 as the decision

without the dependence on the threshold.

2.4. Wavelet Domain Analysis of Object Contours

The fourth sub-algorithm of the proposed method analyzes the contours of flame
colored objects. A one-dimensional (1-D) signal xðhÞ is obtained by computing the
distance from the center of mass of the object to the object boundary for
0� h < 2p. In Figure 9, two image frames are shown. Example feature functions
for fire colored shirt and the fire region in Figure 9 are shown in Figure 10 for 64
equally spaced angles x½l� ¼ xðlhsÞ; hs ¼ 2p

64: To determine the high-frequency content
of a curve, we use a single scale wavelet transform shown in Figure 11. The feature
signal x[l] is fed to a filterbank shown in Figure 11 and the low-band signal
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c½l� ¼
X

m

h½2l� m�x½m� ð10Þ

and the high-band subsignal

w½l� ¼
X

m

g½2l� m�x½m� ð11Þ

are obtained. Coefficients of the lowpass and the highpass filters are h½l� ¼ f14; 12; 14g
and g½l� ¼ f�1

4;
1
2;�1

4g; respectively [3, 18].

Fig. 7. (a) A fire colored moving car, and (b) the absolute sum of
spatial wavelet transform coefficients, |Ilh(k,l)| + |Ihl(k,-
l)| + |Ihh(k,l)|, of the region bounded by the indicated rectangle.
(Color figure online).

Fig. 8. (a) Fire, and (b) the absolute sum of spatial wavelet trans-
form coefficients, |Ilh(k,l)| + |Ihl(k,l)| + |Ihh(k,l)|, of the region
bounded by the indicated rectangle.
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The absolute values of wavelet, w[l] and low-band c[l] coefficients of the fire
region and the fire colored shirt are shown in Figures 12 and 13, respectively. The
high-frequency variations of the feature signal of the fire region is clearly distinct
from that of the shirt. Since regular objects have relatively smooth boundaries
compared to flames, the high-frequency wavelet coefficients of flame boundary
feature signals have more energy than regular objects. Therefore, the ratio of the
wavelet domain energy to the energy of the low-band signal is a good indicator of
a fire region. This ratio is defined as

q ¼
P

l jw½l�jP
l jc½l�j

ð12Þ

Figure 9. Two fire colored objects in video: (a) fire image, and (b)
fire colored shirt. (Color figure online).
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The likelihood of the moving region to be a fire region is highly correlated with the
parameter q. Higher the value of q, higher the probability of the region belonging
to flame regions. The decision function for this sub-algorithm is defined as follows:

D4ðx; nÞ ¼
2 q

qmax
� 1; if q � qT

�1; otherwise

�
ð13Þ

where qmax is the maximum value of q and qT is an experimentally determined
threshold. The threshold determines the definite non-fire cases. The decision func-
tion is not sensitive to this threshold. One can also use D4ðx; nÞ ¼ 2 q

qmax
� 1 as the

decision without the dependence on the threshold.

Figure 10. Equally spaced 64 contour points of the (a) fire colored
shirt, and (b) the fire region.

Figure 11. Single-stage wavelet filter bank. The high-pass and the
low-pass filter coefficients are f�1

4;
1
2;�1

4g and f14;12;14g; respectively.
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3. Sub-Algorithm Weight Update

As described in Sect. 2, the main fire detection algorithm is composed of four sub-
algorithms. Each algorithm has its own decision function. Weights of sub-algo-
rithms are adaptively updated by linearly combining decision values from sub-
algorithms. The adaptive update of sub-algorithm weights is performed according
to the Least-Mean-Square (LMS) algorithm which is the most widely used adap-
tive filtering method [19, 20].

Most adaptive decision methods use binary values 1(correct) or -1 (false) as the
outputs of decision methods, in this paper we implement a more versatile
approach by designing decision functions in such a way that they produce a zero-
mean real numbers in the range [-1, 1] as decision values. If the number is posi-
tive (negative), then the individual algorithm decides that there is (not) fire in the
viewing range of the camera. Higher the absolute value, the more confident the
sub-algorithm.

When the composite algorithm is composed of M-many detection algorithms:
D1; . . . ;DM each algorithm yields a zero-mean decision value DiðxÞ 2 R; upon
receiving a sample input x. The type of the sample input x may vary depending
on the algorithm. It may be an individual pixel, or an image region, or the entire
image depending on the sub-algorithm of the computer vision problem. In the fire
detection problem the number of sub-algorithms, M = 4 and each pixel at the
location x of incoming image frame is considered as a sample input for every
detection algorithm.

Let Dðx; nÞ ¼ ½D1ðx; nÞ. . .DM ðx; nÞ�T , be the vector of confidence values of the
sub-algorithms for the pixel at location x of input image frame at time step n, and
wðnÞ ¼ ½w1ðnÞ. . .wMðnÞ�T be the current weight vector.

We define

ŷðx; nÞ ¼ DTðx; nÞwðnÞ ¼
X

i

wiðnÞDiðx; nÞ ð14Þ

as an estimate of the correct classification result yðx; nÞ of the oracle for the pixel
at location x of input image frame at time step n, and the error eðx; nÞ as
eðx; nÞ ¼ yðx; nÞ � ŷðx; nÞ: Weights are updated by minimizing the mean-square-
error (MSE):

min
wi

E½ðyðx; nÞ � ŷðx; nÞÞ2�; i ¼ 1; . . . ;M ð15Þ

where E represents the expectation operator. Taking the derivative with respect to
weights:

@E
@wi
¼ �2E½ðyðx; nÞ � ŷðx; nÞÞDiðx; nÞ� ¼ �2E½eðx; nÞDiðx; nÞ�; i ¼ 1; . . . ;M

ð16Þ
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and setting the result to zero:

�2E½eðx; nÞDiðx; nÞ� ¼ 0; i ¼ 1; . . . ;M ð17Þ

a set of M equations is obtained. The solution of this set of equations is called the
Wiener solution [19, 20]. Unfortunately, the solution requires the computation of
cross-correlation terms in Equation 17. The gradient in Equation 16 can be used
in a steepest descent algorithm to obtain an iterative solution to the minimization
problem in Equation 15 as follows:

wðnþ 1Þ ¼ wðnÞ þ kE½eðx; nÞDðx; nÞ� ð18Þ

where k is a step size. In the well-known LMS algorithm, the ensemble average
E½eðx; nÞDðx; nÞ� is estimated using the instantaneous value eðx; nÞDðx; nÞ or it can
be estimated from previously processed pixels as follows:

êðx; nÞD̂ðx; nÞ� ¼ 1

L

X
x;n

eðx; nÞDðx; nÞ ð19Þ

where L is the number of previously processed pixels. The LMS algorithm is
derived by noting that the quantity in Equation 18 is not available but its

Figure 12. The absolute values of (a) wavelet and (b) low-band coef-
ficients for the fire region.
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instantaneous value is easily computable, and hence the expectation is simply
replaced by its instantaneous value [21]:

wðnþ 1Þ ¼ wðnÞ þ keðx; nÞDðx; nÞ ð20Þ

Equation 20 is a computable weight-update equation. Whenever the oracle pro-
vides a decision, the error e(x,n) is computed and the weights are updated accord-
ing to Equation 20. Note that, oracle does not assign her/his decision to each and
every pixel one by one. She/he actually selects a window on the image frame and
assigns a ‘‘1’’ or ‘‘-1’’ to the selected window.

Convergence of the LMS algorithm can be analyzed based on the MSE surface:

E½e2ðx; nÞ� ¼ Pyðx; nÞ � 2wTp� wTRw ð21Þ

where Py ¼ E½y2ðx; nÞ�; p ¼ E½yðx; nÞDðx; nÞ�, and R ¼ E½Dðx; nÞDT ðx; nÞ�, with the
assumption that y(x,n) and Dðx; nÞ are wide-sense-stationary random processes.
The MSE surface is a function of the weight vector w. Since E½e2ðx; nÞ� is a qua-
dratic function of w, it has a single global minimum and no local minima. There-
fore, the steepest descent algorithm of Equations 18 and 20 is guaranteed to
converge to the Wiener solution, w� [21] with the following condition on the step
size k [20]:

Figure 13. The absolute (a) wavelet and (b) low-band coefficients for
the shirt.
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0< k <
1

amax
ð22Þ

where amax is the largest eigenvalue of R.
In Equation 20, the step size k can be replaced by

l

jjDðx; nÞjj2
ð23Þ

as in the normalized LMS algorithm, which leads to:

wðnþ 1Þ ¼ wðnÞ þ l
eðx; nÞ
jjDðx; nÞjj2

Dðx; nÞ ð24Þ

where the l is an update parameter and the normalized LMS algorithm converges
for 0< l < 2 to the Wiener solution, w* with the wide-sense-stationarity assump-
tion. Initially the weights can be selected as 1

M: The adaptive algorithm converges,
if y(x,n) and Diðx; nÞ are wide-sense stationary random processes and when the
update parameter l lies between 0 and 2 [22].Unfortunately, the wide-sense-sta-
tionarity assumption is not a valid assumption in natural images, as in many sig-
nal processing applications. Nevertheless, the LMS algorithm is successfully used
in many telecommunication and signal processing problems. Wide-sense-stationa-
rity assumption may be valid in some parts of a sequence in which there are no
spatial edges and temporal changes.

In all the tests that we carried out, sub-algorithms described in the previous sec-
tion yield non-negative decision values, Di’s, for pixels inside fire regions. The
final decision which is nothing but the weighted sum of individual decisions must
also take a non-negative value when the decision functions yield non-negative val-
ues. This implies that, in the weight update step of the active decision fusion
method, weights should also be non-negative: w(n) ‡ 0. In the proposed method,
the weights are updated according to Equation 24 and negative weights are reset
to zero complying with the non-negative weight constraint.

The main advantage of the LMS algorithm compared to other related methods,
such as the weighted majority algorithm [23], is the controlled feedback mechanism
based on the error term. Weights of the algorithms producing incorrect (correct)
decision is reduced (increased) according to Equation 24 in a controlled and fast
manner. In weighted majority algorithm, conflicting weights with the oracle are
simply reduced by a factor of two [23, 24]. Another advantage of the LMS algo-
rithm is that it does not assume any specific probability distribution about the data.

4. Experimental Results

Three approaches are compared with each other in the experiments: (a) LMS
based method, (b) Weighted majority algorithm (WMA) based method, and (c)
non-adaptive method. The method with no adaptive learning simply issues an
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alarm if all of the decision functions are 1 for the case of binary decision func-
tions producing outputs 1 and -1 for fire and non-fire regions. Comparative tests
are carried out with recordings containing actual fire and test sequences with no
fires. Fire alarms are issued by all three methods at about the same time after fire
becomes visible. However, there are some performance differences among the
schemes in terms of false alarm rates.

The WMA is summarized in Figure 14 [24]. In WMA, as opposed to our
method, individual decision values from sub-algorithms are binary, i.e.,
diðx; nÞ 2 f�1; 1g; which are simply the quantized version of real valued Diðx; nÞ
defined in Sect. 2. In the WMA, the weights of sub-algorithms yielding contradic-
tory decisions with that of the oracle are reduced by a factor of two in an un-con-
trolled manner, unlike the proposed LMS based algorithm [23]. Initial weights for
WMA are taken as 1

M; as in the proposed LMS based scheme.
The LMS based scheme, the WMA based scheme and the non-adaptive

approach are compared with each other in the following experiments. In Tables 1
and 3, video recordings containing actual fires and video sequences with no fires
are used. The durations of the fire videos, the burning material in the video, and
the explanation of the fire source for the fire videos in Table 1 are given in
Table 2. The snapshots of the fire videos are also given in Figures 15 and 16. The
fire videos are mostly outdoor recordings or forest fires, burning paper, oil, gaso-
line, and petroleum. The snapshots from the videos that do not contain fire are
shown in Figure 17. The videos V18 and V19 which are used for false alarm tests
contain car headlights that show oscillatory behavior, V20 has a fire colored mov-
ing car, V21 has a man with fire colored shirt, V22 has yellow reeds moving in the
wind, V23 has moving tree leaves against a fire-colored background which gives
the effect of moving flames, V24 has red flowers moving in the wind.

LMS and WMA based decision fusion methods detect fires within 12 seconds
but the method with no learning capability failed to produce alarms for 3 of the
video sequences, as shown in Table 1. The LMS based method issues a correct

Figure 14. The pseudo-code for the weighted majority algorithm.
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Table 1
Three Different Methods (Non-Adaptive, LMS Based, WMA Based) are
Compared in Terms of Frame Numbers at Which an Alarm is Issued for
Fire Captured at Various Ranges and fps

Video seq. Range (m) Frame rate (fps)

Frame number/time (sec) of first alarm

LMS based WMA based Non-adaptive

V1 2 10 44 4.4 s 39 3.9 s 51 5.1 s

V2 50 30 48 1.6 s 43 1.4 s 62 2.0 s

V3 50 30 49 1.6 s 35 1.2 s 37 1.2 s

V4 30 30 106 3.5 s 44 1.5 s No alarm

V5 1 30 64 2.1 s 42 1.4 s 18 0.6 s

V6 5 10 43 4.3 s 140 14 s 38 3.8 s

V7 60 30 334 11.1 s 320 10.7 s 349 11.6 s

V8 80 30 73 2.4 s 78 2.6 s No alarm

V9 100 30 41 1.4 s 36 1.2 s 12 0.4 s

V10 10 15 48 3.2 s 44 2.9 s 56 3.7 s

V11 20 15 49 3.3 s 33 2.2 s 48 3.2 s

V12 50 15 46 3.0 s 41 2.7 s 80 5.3 s

V13 40 15 47 3.1 s 43 2.9 s 18 1.2 s

V14 30 15 72 4.8 s 68 4.5 s 20 1.3 s

V15 70 30 212 7.0 s 216 7.2 s 156 5.2 s

V16 15 30 259 8.6 s 249 8.3 s 163 5.4 s

V17 20 30 68 2.3 s 47 1.6 s No alarm

Average 94.3 4.0 s 89.3 4.1 s 79.1 3.6 s

It is assumed that the fire starts at frame 0

Table 2
The Durations, the Burning Material and Explanations for the Fire
Videos in Table 1

Video seq. Duration (frames) Material Explanation

V1 430 Pine cones Burning pine cones

V2 330 Wood Forest fire

V3 210 Wood Forest fire

V4 1200 Wood + diesel oil A burning boat

V5 900 Gasoline A burning car

V6 1200 Cardboard + paper Burning paper and cardboard

V7 1200 Wood Forest fire

V8 210 Wood Forest fire

V9 240 Wood Forest fire

V10 750 Dry grass Dry grass burning in a bin

V11 225 Wood Forest fire

V12 225 Wood Forest fire

V13 225 Wood Forest fire

V14 220 Wood Forest fire

V15 210 Petroleum Fire at a refinery

V16 210 Wood + fuel Fire at a ranch

V17 270 Wood + gasoline A burning RV
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Figure 15. Frames from the fire videos in Table 1.
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alarm within 4 seconds on the average. The detection rates of the methods are
comparable to each other. On the other hand, the proposed adaptive fusion
strategy reduces the false alarm rate of the system by integrating the feedback
from the guard (oracle) into the decision mechanism within the active learning

Figure 16. Frames from the fire videos in Table 1.
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Figure 17. Frames from the nuisance sources in Table 3.
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framework described in Sect. 3. A set of video clips that do not contain fire is
used to generate Table 3. These video clips are especially selected from recordings
that contain fire colored moving objects. Number of false alarms issued by differ-
ent methods are presented. The adaptive algorithms produce lower number of
false alarms and LMS based scheme is better than WMA except for one video
sequence. Total number of false alarms for the clips in Table 3 issued by the
methods (a) the LMS based scheme, (b) the WMA based scheme, (c) the non-
adaptive approach are 5, 13 and 21, respectively.

5. Conclusion

A video based fire detection algorithm with LMS based active learning capability
is developed. The main algorithm comprises four sub-algorithms which produce
their individual decision values for fires. Each algorithm is designed to character-
ize an aspect of fire. The decision functions of sub-algorithms yield their own deci-
sions as confidence values in the range ½�1; 1� 2 R: Computationally efficient sub-
algorithms are selected in order to realize a real-time fire detection system working
on a standard PC. The LMS based adaptive decision fusion strategy takes into
account the feedback from the user of the application. Experimental results show
that the learning duration is decreased with the proposed active learning scheme.It
is also observed that false alarm rate of the proposed LMS based algorithm is the
lowest in our data set, compared to non-adaptive and WMA based methods.
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Table 3
Three Different Methods (Non-Adaptive, LMS Based, WMA Based) are
Compared in Terms of the Number of False Alarms Issued for Fire
Video Sequences that Do Not Contain Fire

Video seq. Range (m) Frame rate (fps) Duration (frames)

Number of false alarms

LMS based WMA based Non-adaptive

V18 20 25 1500 0 0 1

V19 25 25 2000 2 1 6

V20 50 25 2000 0 0 2

V21 2 25 150 0 2 1

V22 1 25 500 3 5 7

V23 5 25 1000 0 5 2

V24 1 25 150 0 0 2
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