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Since in the case q > 1 the q-Bernstein polynomials Bn,q are not positive linear operators on
C[0,1], the investigation of their convergence properties for q > 1 turns out to be much
harder than the one for 0 < q < 1. What is more, the fast increase of the norms kBn,qk as
n ?1, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1,
create a serious obstacle for the numerical experiments with the q-Bernstein polynomials.

Despite the intensive research conducted in the area lately, the class of functions which
are uniformly approximated by their q-Bernstein polynomials on [0,1] is yet to be
described. In this paper, we prove that if f : ½0;1� ! C is analytic at 0 and can be uniformly
approximated by its q-Bernstein polynomials (q > 1) on [0,1], then f admits an analytic con-
tinuation from [0,1] into {z: jzj < 1}.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The importance of the Bernstein polynomials opened the gates to the discovery of their numerous generalizations as well
as their applications in various mathematical disciplines, see, for example, [1–8]. Due to the speedy development of the q-
calculus, recent generalizations based on the q-integers have emerged. Lupas� was the person who pioneered the work on the
q-versions of the Bernstein polynomials. In 1987, he introduced (cf. [9]) a q-analogue of the Bernstein operator, and inves-
tigated its approximation and shape-preserving properties (see also [10]).

Recently another generalization, called the q-Bernstein polynomials, has been brought into the spotlight and studied by a
number of authors from different perspectives. A review of the results on the q-Bernstein polynomials, along with an exten-
sive bibliography on this subject and a collection of open problems is given in [11]. The subject remains under ample study,
and there have been new papers constantly coming out (see, for example, [12–14] published after [11]).

To present our results, let us recall the necessary notations and definitions. Let q > 0. For any n 2 Zþ, the q-integer [n]q is
defined by:
½n�q :¼ 1þ qþ � � � þ qn�1ðn 2 NÞ; ½0�q :¼ 0;
and the q-factorial [n]q! by:
½n�q! :¼ ½1�q½2�q . . . ½n�qðn ¼ 1;2; . . .Þ; ½0�q! :¼ 1:
For integers 0 6 k 6 n, the q-binomial coefficient is defined by:
. All rights reserved.
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Definition 1.1. Let f : ½0;1� ! C. The q-Bernstein polynomials of f are:
Bn;qðf ; zÞ ¼
Xn

k¼0

f
½k�q
½n�q

 !
pnkðq; zÞ; n 2 N;
where
pnkðq; zÞ :¼
n

k

� �
q

zk
Yn�k�1

j¼0

ð1� qjzÞ; k ¼ 0;1; . . . n ð1:1Þ
are the q-Bernstein basic polynomials.
Note that for q = 1, we recover the classical Bernstein polynomials. We reserve the name ‘‘q-Bernstein polynomials” for

the new polynomials appearing when q – 1.
It has been known (cf. [11] and references therein) that some properties of the classical Bernstein polynomials are ex-

tended to the q-Bernstein polynomials. For example, the q-Bernstein polynomials possess the end-point interpolation prop-
erty, the shape-preserving properties in the case 0 < q < 1, and representation via divided differences. Like the Bernstein
polynomials, the q-Bernstein polynomials reproduce linear functions, and are degree-reducing on the set of polynomials.

On the other hand, the approximation properties of the q-Bernstein polynomials are essentially different from those of the
classical ones. What is more, the cases 0 < q < 1 and q > 1 are not similar to each other. This absence of similarity is caused by
the fact that, for 0 < q < 1, Bn,q are positive linear operators on C[0,1], while for q > 1, the positivity does not hold any longer. It
should be pointed out that in terms of the convergence properties, the similarity between the classical Bernstein and q-Bern-
stein polynomials ceases to be true even in the case 0 < q < 1, see, e.g., [15,16]. This is because, for 0 < q < 1, the q-Bernstein
polynomials -despite being positive linear operators – do not satisfy the conditions of Korovkin’s Theorem. They do, how-
ever, satisfy the conditions of Wang’s Korovkin-type theorem (cf. [17]), serving as a model example for the theorem.

Due to the lack of positivity, the study of the convergence properties of the q-Bernstein polynomials in the case q > 1 turns
out to be essentially more complicated than the one in the case 0 < q < 1. In spite of the intensive research conducted in this
area recently, the class of functions in C[0,1] uniformly approximated by their q-Bernstein polynomials when q > 1 is yet to
be described. However, the results obtained for specific classes of functions have already revealed some new phenomena as
well as interesting facts (see, e.g., [12,13,18]). To some extent, the explanation for such an ‘exotic’ behaviour of the q-Bern-
stein polynomials is presented in [14]. It has been proved there that basic polynomials (1.1) combine the fast increase in
magnitude (namely, kpnkk½0;1� � 1

n qðnþkþ1Þðn�kÞ=2; n!1) with the sign oscillations on [0,1]. This creates substantial hurdles
in the numerical study of the q-Bernstein polynomials for q > 1.

It is exactly this unexpected behavior of q-Bernstein polynomials with respect to convergence that makes the study of
such properties interesting and challenging.

In this paper, we present new results on the convergence of the q-Bernstein polynomials. It has been known (see [19],
Theorem 1) that entire functions and, in particular, polynomials are uniformly approximated by their q-Bernstein polynomi-
als (q > 1) on any compact set in C. The aim of this paper is to examine the properties of functions allowing the uniform
approximation by the q-Bernstein polynomials. It will be proved that if f : ½0;1� ! C is analytic at 0 and can be uniformly
approximated by its q-Bernstein polynomials (q > 1) on [0,1], then f admits an analytic continuation from [0,1] into {z:
jzj < 1}. Let it be emphasized that this is the first result giving a necessary condition for the approximation in the case q > 1.
2. Statement of results

In the sequel, we denote by Da and by Da an open and closed disc, respectively, of radius a centered at 0.
It has been known (see [20]) that if a function f is bounded on [0,1] and admits an analytic continuation f(z) from [0,a) to

Da, then
Bn;qðf ; zÞ ! f ðzÞ as n!1;
uniformly on any compact set in Da.
Examples given in [12,18] show that outside of Da the uniform approximation may be impossible on any interval.
In this paper, we present some general statements on the approximation of analytic functions by their q-Bernstein

polynomials.
We assume throughout the paper that q > 1 is fixed. Our main result is the following:

Theorem 2.1. Let f 2 C[0,1] admit an analytic continuation into Da, 0 < a < 1. If there exist c; d 2 R so that d > c > a and the

sequence {Bn,q(f;x)} is uniformly bounded on an interval [c,d], then f(x) admits an analytic continuation ~f ðzÞ from [0,a) into some
disc Db with b > a.
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Remark 2.1. In general ~f ðxÞ – f ðxÞ for a < x < b.
As an immediate application of this theorem, we obtain the following results.

Corollary 2.1. Let f(x) 2 C[0,1] and admit an analytic continuation into a disc Da, 0 < a < 1. If f(x) does not admit an analytic
continuation from [0,a) into a disc Db, b > a, then f(x) cannot be uniformly approximated by its q-Bernstein polynomials on [0,1].
Theorem 2.2. Let f(z) be analytic at 0, so that f(x) 2 C[0,1]. If
Bn;qðf ; xÞ ! f ðxÞ as n!1;
uniformly on [0,1], then f(x) admits an analytic continuation into D1.
Remark 2.2. In general, f(z) may not be continuous in D1. For example, f ðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

is uniformly approximated by Bn,

q(f;x) on [0,1], as it has been proved in [12], Corollary 2.7.
3. Some auxiliary results

In this section, we present a series of facts required to prove Theorems 2.1 and 2.2. The section contains some new state-
ments as well as previously available ones, which have been included for the purpose of convenience of the readers.

Let
Bn;qðf ; zÞ ¼
Xn

k¼0

cknzk; n 2 N;
be the q-Bernstein polynomials of f. We use the following representation of these polynomials given in [19], formulae (6) and
(7):
Bn;qðf ; zÞ ¼
Xn

k¼0

kknf 0;
1
½n�q

; . . . ;
½k�q
½n�q

" #
zk; ð3:1Þ
where f[x0;x1; . . . ;xk] denotes the divided differences of f, that is
f ½x0� ¼ f ðx0Þ; f ½x0; x1� ¼
f ðx1Þ � f ðx0Þ

x1 � x0
; . . . ;

f ½x0; x1; . . . ; xk� ¼
f ½x1; . . . ; xk� � f ½x0; . . . ; xk�1�

xk � x0
and kkn are given by
k0n ¼ k1n ¼ 1; kkn ¼
Yk�1

j¼1

1�
½j�q
½n�q

 !
; k ¼ 2; . . . n: ð3:2Þ
Remark 3.1. It has been shown in [19] that kkn(k = 0,1, . . . ,n) are eigenvalues of the q-Bernstein operator Bn,q. For q = 1, we
recover eigenvalues of the Bernstein operator, whose eigenstructure is described in [21].

If f is an analytic function, then (cf. e.g., [22], Section 2.7, p. 44) the divided differences of f can be expressed by:
f ½x0; x1; . . . ; xk� ¼
1

2pi

I
L

f ðfÞdf
ðf� x0Þ . . . ðf� xkÞ

; ð3:3Þ
where L is a contour encircling x0, . . . ,xk and f is assumed to be analytic on and within L.
We need the following property of the eigenvalues (3.2).

Lemma 3.1. Let q > 1. Then for all k, n, we have:
kkn ¼: kðqÞkn P
Y1
j¼1

ð1� q�jÞ ¼: kq > 0: ð3:4Þ
Proof. For k = 0,1, the statement is obvious. Let k > 1. Using the simple inequality:
½n� j�q
½n�q

<
1
qj

for q > 1;
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we obtain
kðqÞkn ¼
Yk�1

j¼1

1�
½j�q
½n�q

 !
P
Yn�1

j¼1

1�
½j�q
½n�q

 !
¼
Yn�1

j¼1

1�
½n� j�q
½n�q

 !
P
Yn�1

j¼1

1� 1
qj

� �
P
Y1
j¼1

1� 1
qj

� �
¼ kq: �
In the case of f(x) admitting an analytic continuation from [0,1] to a disc centered at 0, the coefficients of Bn,q(f; �) can be
estimated with the help of the following lemma.
Lemma 3.2 [20]. Let f(x) 2 C[0,1] and possess an analytic continuation into a closed disc Da. If
Bn;qðf ; zÞ ¼
Xn

k¼0

cknzk;
then the following estimate holds:
jcknj 6
Ca;f

ak
;

where Ca,f is independent from both k and n.
The reasonings of the present paper have been based largely upon the following statement.

Lemma 3.3. Let q > 1. Given 0 – f 2 C, we fix m 2 N; e > 0 in such a way that
jfj > q�m þ e: ð3:5Þ
Then for all n > m, the following estimate holds:
Yn�1

s¼m

1�
½n� s�q
f½n�q

 !
�
Y1
s¼m

1� 1
fqs

� ������
����� 6 Cnq�n; ð3:6Þ
where C = Cq,e is independent from both n and m.
Corollary 3.1. For any 0 – f 2 C; k 2 N, we have:
lim
n!1

Yn�1

s¼k

1�
½n� s�q
f½n�q

 !
¼
Y1
s¼k

1� 1
fqs

� �
:

Proof of Lemma 3.3. We denote:
Dmn :¼
Yn�1

s¼m

1�
½n� s�q
f½n�q

 !
�
Y1
s¼m

1� 1
fqs

� �
¼: Imn � Im;1:
Consider
ln Imn � ln Im;1 ¼
Xn�1

s¼m

ln 1�
½n� s�q
f½n�q

 !
� ln 1� 1

fqs

� � !
�
X1
s¼n

ln 1� 1
fqs

� �
¼: Smn þ rn:
Let us estimate rn first. Indeed, by virtue of (3.5), we have:
1
fqs

����
���� < 1 for s P m;
whence
jrnj 6
X1
s¼n

ln 1� 1
fqs

� �����
���� 6X1

s¼n

1=ðjfjqsÞ
1� 1=ðjfjqsÞ 6

1
1� 1=ðjfjqnÞ �

1
jfj �

X1
s¼n

q�s ¼ 1
jfj � q�n �

q
ðq� 1Þqn :
Since jfj � q�n P jfj � q�m > e, we obtain:
jrnj 6
1
e
� q
ðq� 1Þqn

¼:
C1

qn
;

where C1 depends only on q and e.
Now, we estimate Smn:
jSmnj 6
Xn�1

s¼m

ln 1�
½n� s�q
f½n�q

 !
� ln 1� 1

fqs

� ������
����� ¼

Xn�1

s¼m

Z ½n�s�q=ðf½n�qÞ

1=ðfqsÞ

dz
1� z

�����
�����;
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where the integral is taken along the straight line segment joining its limits. We notice that
½n� s�q
f½n�q

�����
����� < 1
jfjqs 6

1
jfjqm 6

1
1þ qme

6
1

1þ e
:

Therefore, the segment of integration is contained in the disc D1=ð1þeÞ and its distance from z = 1 is at least e/(1 + e). Hence, we
obtain:
jsmnj 6
Xn�1

s¼m

1þ e
e
�
½n� s�q
f½n�q

� 1
fqs

�����
����� 6 1þ e

e
� 1
jfj �

Xn�1

s¼m

1
qs �

½n� s�q
½n�q

 !
6

1þ e
e
� 1
jfj �

Xn�1

s¼m

1
qn � 1

6
1þ e

e
� qm

1þ eqm �
n

qn � 1

6
1þ e
e2 � n

qn � 1
6 C2nq�n;
where C2 = Cq,e.
As a result, we obtain:

jSmnj þ jrnj 6 C1q�n þ C2nq�n

6 C3nq�n;
where C3 is independent from n and k.
Now, we estimate jDmnj as follows:
jDmnj 6 jeln Imn � eln Im;1 j ¼ jeln Im;1 j � jeln Imn�ln Im;1 � 1j 6 jIm;1j � ej ln Imn�ln Im;1j � j ln Imn � ln Im;1j

6

Y1
s¼m

1� 1
fqs

� ������
����� � eCnq�n � Cnq�n

6

Y1
s¼m

1þ 1
jfjqs

� �
� eC3 � C3nq�n

6 C4nq�n �
Y1
s¼0

1þ 1
ð1þ eÞqs

� �
¼: C5nq�n;
with C5 = Cq,e as stated. h
4. Proofs of the theorems

Proof of Theorem 2.1. We fix d12(c,d). Let ~x be a harmonic measure of the interval ½a=d; a=d1� with respect to the domain
D1n[a/d,a/d1]. We set:
l :¼ min
jzj¼1=2

~xðzÞ > 0: ð4:1Þ
Denote g: = max{(a/c)l,1/q}. Clearly, g < 1. Now, we choose a number a 0 satisfying the following conditions:

(i) a � (c/d1) 6 a0 < a;
(ii) ag < a0 < a;

(iii) a0 R fq�jg1j¼0.

Let
Bn;qðf ; zÞ ¼
Xn

k¼0

cknzk:
Then by Lemma 3.2, we have:
jCn�k;nj 6
C1

ða0Þn�k
; ð4:2Þ
where C1 = Cf,q,a.
Assume that
jBn;qðf ; xÞj 6 M for x 2 ½c;d� with M > 1: ð4:3Þ
Consider the auxiliary polynomials:
PnðzÞ :¼ Bn;qðf ; a0zÞ;
and
Q nðzÞ :¼ znPnð1=zÞ:
Condition (4.3) implies that
jPnðzÞj 6 M
a0

c

� �n

for z 2 c
a0
;

d
a0

� �
;
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while
jQ nðzÞj 6 M � a0

c

� �n

for z 2 a0

d
;
a0

c

� �
;

In addition, for jzj 6 1, we have by virtue of (4.2):
jQ nðzÞj 6 M �
Xn

k¼0

jCn�k;nða0Þn�kj 6 C1n;
Now, denote by xa0 the harmonic measure of the interval [a0/d,a0/c] with respect to the domain D1n[a0/d,a0/c].
Since [a/d,a/d1] � [a0/d,a0/c], it follows that xa0 P ~x, that is
min
jzj¼1=2

xa0 P l;
where l is given by (4.1). To estimate Qn(z) in the unit disc, we apply the Two Constants Theorem (cf. e.g., [23], p. 41). It
follows that, for jzj 6 1,
jQ nðzÞj 6 ½Mða0=cÞn�xa0 ðzÞ� � ½ðnþ 1ÞC1�1�xa0 ðzÞ 6 M � a0

c

� �nxa0 ðzÞ

� ½ðnþ 1ÞC1�1�xa0 ðzÞ:
Therefore,
max
jzj¼1=2

jQ nðzÞj 6 M � a0

c

� �n

� ðnþ 1Þ1�l � C2 6 M
a
c

� 	ln

for n P no:
The Cauchy estimates imply
jCn�k;nða0Þn�kj 6 2k max
jzj¼1=2

jQnðzÞj 6 Ck;f
a
c

� 	ln

for n P no: ð4:4Þ
We fix m 2 N and e > 0 so that
q�m þ e < a0 < q�ðm�1Þ ð4:5Þ
and we set:
dmðfÞ ¼
Y1
s¼m

1� 1
fqs

� �
:

Let us estimate the integral:
J :¼ kn�m;nða0Þn�m

2pi

I
jzj¼a0

f ðfÞdf

fn�mþ1dmðfÞ
:

To do this, we write using (3.1) and (3.3):
Cn�m;nða0Þn�m ¼ kn�m;n �
ða0Þn�m

2pi

I
jfj¼a0

f ðfÞdf

fn�mþ1 1� 1
f½n�q

� 	
. . . 1� ½n�m�q

f½n�q

� 	

and obtain:
J ¼ Cn�m;nða0Þn�m � I;
where
I :¼ kn�m;n �
ða0Þn�m

2pi

I
jfj¼a0

f ðfÞ
fn�mþ1

1

1� 1
f½n�q

� 	
. . . 1� ½n�m�q

f½n�q

� 	� 1
dmðfÞ

2
4

3
5df:
Consider the case n > m, where m is fixed by the condition (4.5). We have:
jIj 6 kn�m;n �Mðf ; a0Þ �max
jfj¼a0

dmðfÞ � 1� 1
f½n�q

� 	
. . . 1� ½n�m�q

f½n�q

� 	
1� 1

f½n�q

� 	
. . . 1� ½n�m�q

f½n�q

� 	
� dmðfÞ

������
������:
By virtue of Lemma 3.3, we conclude that:
max
jfj¼a0

dmðfÞ � 1� 1
f½n�q

 !
� � � 1�

½n�m�q
f½n�q

 !�����
����� 6 Cnq�n: ð4:6Þ
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Now, we estimate the denominator from below as follows:
jdmðfÞjjfj¼a0 P
Y1
j¼m

1� 1
a0 � qj

� �
¼: C:
Furthermore,
1� 1
f½n�q

 !
. . . 1�

½n�m�q
f½n�q

 !�����
�����P jdmðfÞj � dmðfÞ � 1� 1

f½n�q
. . . 1�

½n�m�q
f½n�q

 ! !�����
�����

�����
�����P jC1 � Cnq�njP 1

2
C1
for n large enough.
Therefore, for n large enough, we obtain:
jIj 6 kn�m;n �Mðf ; a0Þ � nq�n: ð4:7Þ
Applying (4.4) and (4.7), we obtain the following estimate:
jJj 6 jCn�m;nða0Þn�mj þ jIj 6 C � a
c

� 	ln

þ Cnq�n ð4:8Þ
for n large enough.
Consider the function:
FðzÞ :¼ f ðzÞ � zm

dmðzÞ
The function is analytic in {z: q�m < z < a}. To prove the theorem, it suffices to show that F admits an analytic continuation
into {z: q�m < z < b}, where b > a. Let
FðzÞ ¼
X1

j¼�1
pjz

j; ð4:9Þ
be a Laurent expansion for F(z). The coefficients fpg1j¼�1 are given by:
pj ¼
1

2pi

I
jfj¼a0

FðfÞdf

fjþ1 ¼ 1
2pi

I
jfj¼a0

f ðfÞdf

fj�mþ1dmðfÞ
:

This implies for n>m,
pn ¼
J

kn�m;nða0Þn�m
Using estimates (3.4) and (4.8), we obtain:
jpnj 6
1
kq
� 1
ða0Þn�m C

a
c

� 	ln

þ Cnq�n

 �
for n large enough.
The outer radius of convergence for series (4.9) can be estimated with the Cauchy–Hadamard formula as follows:
1
R
¼ lim supn!1

ffiffiffiffiffiffiffiffi
jpnjn

p
6

1
a0

lim supn!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

a
c

� 	ln

þ nq�n

� �
n

s
6

1
a0

lim supn!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 max

a
c

� 	l
;
1
q


 �
n

s
¼ g

a0
<

1
a
;

by the condition (ii) for our choice of a0. h
Proof of Theorem 2.2. Let 0 – a: = max{r: f(x) has an analytic continuation from [0,1] into Dr}. We assume that a < 1, that is
q�ðmþ1Þ
6 a < q�m for some m 2 Zþ:
Since the sequence {Bn,q(f;x)} is uniformly bounded on [0,1], we conclude by Theorem 2.1 that there is an analytic con-
tinuation ~f ðzÞ from [0,a) into a closed disc Db with a < b < q�m. Let us choose g(x) 2 C[0,1] in such a way that
gðxÞ ¼
~f ðxÞ for x 2 ½0; b�;
f ðxÞ for x 2 ½q�m � e;1�;

(

where e < (q�m � b)/2.
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Obviously, g(x) = f(x) for x 2 [0,a). Besides, Bn,q(f;z) = Bn,q(g;z) for n large enough, because f and g coincide in all of the
nodes [k]q/[n]q for n large enough. By the condition of this theorem, Bn,q(f(x) ? f(x) as n ?1 uniformly on [0,1]. On the other
hand, it follows from [20], Theorem 2.2 that Bn,q(g;x) ? g(x) as n ?1 uniformly on [0,b]. This implies f(x) = g(x) for x 2 [0,b]
and, as a result, we conclude that f (x) admits an analytic continuation from [0,a) into Db with b > a. This contradicts our
choice of a. Thus, a P 1. h
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