
Photon Netw Commun (2010) 20:120–130
DOI 10.1007/s11107-010-0252-4

Dynamic threshold-based assembly algorithms for optical burst
switching networks subject to burst rate constraints

Mehmet Altan Toksöz · Nail Akar

Received: 29 July 2009 / Accepted: 25 March 2010 / Published online: 17 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Control plane load stems from burst control
packets which need to be transmitted end-to-end over the
control channel and further processed at core nodes of an opti-
cal burst switching (OBS) network for reserving resources in
advance for an upcoming burst. Burst assembly algorithms
are generally designed without taking into consideration the
control plane load they lead to. In this study, we propose traf-
fic-adaptive burst assembly algorithms that attempt to min-
imize the average burst assembly delay subject to burst rate
constraints and hence limit the control plane load. The algo-
rithms we propose are simple to implement and we show
using synthetic and real traffic traces that they perform sub-
stantially better than the usual timer-based schemes.

Keywords Optical burst switching · Burst assembly
delay · Burst assembly algorithms

1 Introduction

Optical burst switching (OBS) has been receiving increasing
attention as an alternative transport architecture for the next-
generation optical Internet in academia and also in industry
[9,12,14]. There are several features of OBS that make it a
viable technology. First, in OBS, data travels through the net-
work in the form of relatively long bursts and all-optically.
A number of client packets are assembled into a data burst
at the edge of an OBS network while the following are taken

M. A. Toksöz · N. Akar (B)
Electrical and Electronics Engineering Department,
Bilkent University, Ankara, Turkey
e-mail: akar@ee.bilkent.edu.tr

M. A. Toksöz
e-mail: altan@ee.bilkent.edu.tr

into consideration: (i) increasing burst lengths helps relax
optical switching-speed requirements, (ii) reducing burst
lengths also reduces delays stemming from burst assembly. A
second principle of OBS is the separation of the control and
data planes where the data plane is all-optical but the con-
trol plane can be optical-electronic in the sense that control
packets are processed electronically at the core nodes. Once
a data burst is formed at the edge device, the ingress node
prepares a control message on behalf of the data burst and
transmits it in the form of a burst control packet (BCP) over
the control plane towards the egress node. The BCP carries
information about the data burst, such as its length, desti-
nation, arrival time, etc. A receipt of a BCP by a core node
initiates a configuration of the node by means of reserving
resources for the burst when available. On the other hand, the
data burst is transmitted over the data plane after an offset
time which has to be at least as long as the sum of the per-hop
processing times that the corresponding BCP will encounter.
In a typical OBS network with no buffers, the end-to-end
delay of a single packet is composed of a fixed propagation
delay and the sum of the offset time and the burst assem-
bly delay, the minimization of the latter forming the scope of
this study.

Various burst assembly algorithms have been proposed to
aggregate a number of client packets (such as IP packets) into
data bursts. Typically, an ingress node maintains per-desti-
nation queues to store client packets awaiting burstification
that are destined for a specific destination. Multiple instances
of a burst assembly algorithm are run for each of these
queues which decide when the packets in the queue should
be aggregated into a burst and sent out. Other variations are
also possible in which multiple queues are maintained for
each destination, one for each QoS-class and different burst
assembly algorithms may be run for each of these queues.
Such scenarios are left outside the scope of this article.

123

Photon Netw Commun (2010) 20:120–130 121

Four classes of burst assembly algorithms are available in
the literature, namely timer-based, size-based, hybrid (timer-
and size-based), and dynamic threshold-based algorithms. In
timer-based burst assembly [5], a timer is started once a client
packet arrives at an empty burst assembly buffer. This timer
expires after a period of duration T (in units of s) by which
time all packets awaiting in the burst assembly buffer are
aggregated into a burst and sent out. The timer parameter T
is typically chosen as the largest allowable delay due to burs-
tification. Moreover, a lower burst length Bmin (in units of
bytes) can also be imposed so that padding is used if the num-
ber of bytes awaiting in the buffer upon timer expiration is
less than Bmin. The second class of algorithms are size-based
and when the assembly buffer size reaches or exceeds a size
parameter B then all packets in the buffer are aggregated into
a burst [15]. Clearly, B should be set to a value larger than the
lower limit Bmin. However, these two classes of burst assem-
bly algorithms have their problems of their own. Size-based
algorithms suffer from excessive delays especially when the
traffic load is light. On the other hand, under heavy traf-
fic load, timer-based algorithms experience a longer average
delay than size-based algorithms. The third class of algo-
rithms, namely hybrid timer- and size-based algorithms, keep
track of the assembly buffer occupancy, as well as the time
since the arrival of the first packet into the assembly buffer.
A representative algorithm in this class is proposed in [16]
in which an upper burst length limit Bmax (in units of bytes)
is imposed on the pure timer-based scheme. In this proposal,
if the buffer occupancy is to exceed Bmax before the timer
expires, a portion of the awaiting packets are aggregated into
a burst immediately without having to wait for the timer to
expire. The final class of algorithms are based on the use
of dynamic thresholds, where either the timer parameter T
or the size parameter B or both are adjusted dynamically
[2,11]. Recently, various methods using dynamic thresholds
have been proposed in [4,8,13].

The assumptions we have for the burst assembly problem
studied in the current article are given below:

(a) We focus on burst assembly algorithms whose average
burst generation rates (both short- and long-term rates)
are upper bounded by a desired burst rate parameter
called β (in units of bursts/s). We have two main goals
with this approach. First, β determines the frequency of
BCPs traveling on the control channel and by adjusting
β, one can control the control plane load in the system
and thus limit BCP queueing delays due to processing.
Second, a fair comparison of two burst assembly algo-
rithms is only meaningful when their average burst rates
are the same since algorithms with higher burst genera-
tion rates are to naturally outperform others in terms of
burstification delays.

(b) We impose lower and upper burst length limits Bmin and
Bmax in units of bytes as in [16].

(c) Given the above two constraints, our goal is to devise a
burst assembly scheme that minimizes

– the average packet delay DP which is defined as the
average of all packet delays in the assembly buffer,
or

– the average byte delay DB which is defined as the
weighted average of all packet delays where the
weights are taken to be packet lengths in units of
bytes. A burst assembly algorithm that attempts to
minimize DB needs to keep track of packet lengths
as well.

(d) Finally, we seek a model-free algorithm which is also
simple to implement. If the traffic statistics were known,
one can obtain an analytical solution as in [7] but gen-
erally burstifiers do not have a good understanding of
the statistical properties of the traffic streams they need
to process. Moreover, traffic is generally unpredictable
which leads us to use traffic-adaptive assembly algo-
rithms.

In this study, we mainly focus on the reduction of the
delays DP and DB that are caused by the assembly process
and we develop two dynamic threshold-based algorithms
each of which attempts to minimize one of these two delay
parameters under a burst rate constraint β. We then compare
our results to those obtained with conventional timer-based
schemes under realistic traffic and packet length distribu-
tion scenarios. The remainder of this paper is organized as
follows. In Sect. 2, we present an overview of existing timer-
based and size-based algorithms. The two algorithms we pro-
pose are presented in Sect. 3. Section 4 provides numerical
results concerning the performance evaluation of existing and
proposed algorithms under different traffic scenarios. Finally,
Sect. 5 concludes this article.

2 Burst assembly algorithms

In this section, we will first present three conventional burst
assembly algorithms, the first two being timer-based, and
the third one being size-based. We will then present the two
algorithms we propose.

2.1 Timer-based min-length burst assembly

This basic algorithm is given as Algorithm 1. It is called
Timer-based min-length burst assembly algorithm, or in short
timer-min since the algorithm is timer-based and also the
minimum burst length limit is enforced. In this algorithm, the
inter-burst time is fixed to the timer threshold T which will be

123

122 Photon Netw Commun (2010) 20:120–130

set to 1/β. The worst case delay then equals T and assuming
packet arrivals for burst i occur uniformly in the interval
((i − 1)T, iT), the average packet delay is T/2 = 1/(2β).
This algorithm does not employ an upper limit Bmax on burst
lengths. The next algorithm attempts to modify the current
one by imposing an upper burst length limit.

Algorithm 1 timer-min
PARAMETERS:
t : timer value
T : assembly time window
i : burst index
pi (t): data accumulated for the i-th burst at timer value t (bytes)
Bmin: lower burst length limit (bytes)

ALGORITHM
t ⇐ 0 {initialize timer to zero}
if t = T then

if pi (t) ≥ Bmin then
pi (t) ⇐ 0 {send pi (t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset timer}

else
pi (t) ⇐ Bmin {increase the data size to Bmin with padding}
pi (t) ⇐ 0 {send pi (t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset timer}

end if
end if

2.2 Timer-based min-max-length burst assembly

This modified algorithm is given as Algorithm 2. It is called
Timer-based min-max-length burst assembly algorithm, or in
short timer-min-max, since the upper burst length limit Bmax

is also imposed. In this algorithm, when the data accumulated
for the i-th burst at time t , denoted by pi (t), at the epoch of
timer expiration exceeds Bmax then a maximum number of
packets whose packet length sum does not exceed Bmax is
sent out as burst i . Let B̂max denote the number of bytes sent
out. The remaining packets in the burst assembly buffer wait
for the next opportunity. In both timer-based algorithms, a
decision to assemble is made synchronously without paying
attention to the assembly buffer content. Worst case delays
are bounded when Bmax → ∞ and the burst rate requirement
β is inherently taken care of by setting T = 1/β. One of the
main goals of this study is to explore alternative methods that
would potentially benefit from asynchronous burst assembly
in terms of either average packet or byte delays.

2.3 Fixed threshold-based burst assembly

Assume that the average packet arrival rate to the assembly
buffer is known and is denoted by λ. Let us assume b = λ/β

Algorithm 2 timer-min-max
PARAMETERS:
t : timer value
T : assembly time window
i : burst index
pi (t): data accumulated for the i-th burst at timer value t (bytes)
Bmin: lower burst length limit (bytes)
Bmax: upper burst length limit (bytes)

ALGORITHM
t ⇐ 0 {initialize timer to zero}
if t = T then

if pi (t) < Bmin then
pi (t) ⇐ Bmin {increase the data size to b with padding}
pi (t) ⇐ 0 {send pi (t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset timer}

else if pi (t) ≥ Bmin and pi (t) < Bmax then
pi (t) ⇐ 0 {send pi (t) as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset timer}

else
pi (t) ⇐ pi (t) − B̂max {send B̂max bytes as burst i immediately}
i ⇐ i + 1 {increase burst counter}
t ⇐ 0 {reset timer}

end if
end if

is an integer. We can then use a burst assembly algorithm
that generates a burst every time b packets are accumulated
in the buffer. This strategy ensures a burst generation rate of
β. This assembly method will be referred to as fixed-thresh-
old. It is then crucial to know whether this policy is optimal.
Let us assume renewal inter-packet arrival times with mean
α. Let us use an arbitrary probabilistic policy that assembles
when bi packets are present with probability pi , 1 ≤ i ≤
N . To enforce a burst generation rate of β, we should have
∑N

i=1 bi pi = b. An arbitrary packet will then belong to a
burst with length bi with probability bi pi

b , 1 ≤ i ≤ N . The
average packet delay then becomes

DP = α

2b

N∑

i=1

pi bi (bi − 1) (1)

It can be shown that the average delay is minimized with a
deterministic policy N = 1 that generates a burst every time
b packets are accumulated in the buffer. In this case

DP = α(b − 1)

2
(2)

which provides an expression for the optimum average
packet delay. For instance, if λ is 50,000 packets/s and β

is 1,000 bursts/s, then an optimal burst assembly policy will
be to wait for 50 packets to arrive for burst assembly. It is
very likely that the value b = λ/β may not be an integer.
Say the value b is in the form x + y where x is the integer
part of b and y is the fractional part where 0 < y < 1. The
optimal policy in this case is one which assembles packets

123

Photon Netw Commun (2010) 20:120–130 123

when x packets are accumulated with probability 1 − y, or
when x+1 packets are accumulated with probability y. There
are several drawbacks of this dynamic threshold-based burst
assembly mechanism described above:

• The method is very sensitive to the average packet arrival
rate λ; a deviation of the estimate from the actual value
will lead to burst generation rates that differ from β.

• When the packet arrival process is a non-renewal pro-
cess, using a fixed threshold of b packets for burst assem-
bly would generate bursts at a long-term rate of β but
over relatively shorter terms, the burst rate constraints
can be violated leading to occasional problems on the
control plane. For this scenario, a need arises to employ a
dynamic-threshold algorithm to keep track of changes in
the arrival process so as to maintain the short-term burst
rate averages at a desired rate of β as well. This situation
appears to worsen with non-stationary traffic.

• When b packets are accumulated, most of these pack-
ets can turn out to be relatively large packets making the
total length exceed Bmax. It appears to be very difficult
to enforce in this algorithm the upper limit Bmax which
is in units of bytes. The lower limit can be enforced by
padding.

• Since the algorithm keeps track of only the number of
packets and not their lengths, this algorithm cannot dif-
ferentiate between packet and byte delays. If the focus is
the minimization of byte delays, then we should resort to
a modified algorithm.

Although a fixed-threshold-based burst assembly algo-
rithm has nice theoretical properties, we still seek a method
that is model-free, which is simple to implement, and which
keeps track of bytes for the purposes of enforcing the lower
and upper bandwidth limits as well as the minimization of
average byte delay in addition to average packet delay.

3 Proposed burst assembly algorithms

The proposed algorithms we propose do not require any prior
information such as the average packet arrival rate or aver-
age bit rate. Another strength of the proposed algorithms
is their simplicity as compared to other dynamic-threshold
algorithms. Next, we present these two algorithms.

3.1 Packet-based dynamic-threshold algorithm for burst
assembly

This algorithm (given as Algorithm 3) is an entirely packet-
based algorithm and it is referred to as dyn-threshold-packet
in short. In this algorithm, we keep track of the packet count
in the assembly buffer and we aim to minimize the average

packet delay due to burstification. The lower and upper burst
length limits are given in units of packets and they are denoted
by Lmin and Lmax, respectively. We also maintain a counter
called bucket to indicate the dynamic threshold used in our
burst assembly algorithm. Each time a packet, say packet k,
arrives at the assembly buffer, the bucket is decremented by
β times the inter-arrival time between packets k − 1 and k.
A decision for burst assembly is made only when the cur-
rent packet count exceeds the bucket value. When an assem-
bly decision is made, the bucket is incremented by one. To
enforce lower and upper burst length limits, the bucket is
allowed to take values in the interval [Lmin, Lmax − 1]. We
have also added an expiration time Tmax for a burst to meet
the worst case delay requirement. Even if the conditions for
a burst are not met in low traffic load, the expiration time
mechanism would force the generation of the burst.

Algorithm 3 dyn-threshold-packet
PARAMETERS:
i : packet index
j : burst index
β: desired burst rate (bursts/s)
L(i, j): data accumulated for the j-th burst at the arrival epoch of the
i-th packet (in units of packets)
Lmin: lower burst length limit (in units of packets)
Lmax: upper burst length limit (in units of packets)
bucket : dynamic threshold
t : timer value
Tmax: burst expiration time
ti : inter-arrival time between the (i − 1)st and i th packets

ALGORITHM
if L(i, j) = 1 then

t ⇐ 0 {if the assembly queue contains 1 packet, start the timer}
end if
bucket ⇐ bucket − ti β {leak the bucket}
bucket ⇐ max (Lmin, bucket){enforce lower burst length limit}
if L(i, j) ≥ bucket then

L(i, j) ⇐ 0 {send L(i, j) as burst j immediately}
bucket ⇐ min (bucket + 1, Lmax − 1) {update bucket and
enforce upper burst length limit}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset timer}

else if t ≥ Tmax then
L(i, j) ⇐ max(Lmin, L(i, j)) {increase the data size to Lmin with
padding if necessary}
L(i, j) ⇐ 0 {send L(i, j) as burst j immediately}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset timer}

end if

3.2 Byte-based dynamic threshold algorithm for burst
assembly

This algorithm (given as Algorithm 4) is a byte-based algo-
rithm and it is referred to as dyn-threshold-byte in short.
In this algorithm, we keep track of the byte count in the

123

124 Photon Netw Commun (2010) 20:120–130

assembly buffer and we aim to minimize the average byte
delay due to burstification. The reason for this is that cli-
ent packet lengths are variable; short and long packets are to
be treated differently since they contribute differently to the
overall byte delay. The lower and upper burst length limits
are given in units of bytes and they are denoted by Bmin and
Bmax, respectively. Similar to the dyn-threshold-packet algo-
rithm, we maintain a bucket to indicate the dynamic threshold
used in our burst assembly algorithm. Each time a packet, say
packet k, arrives at the assembly buffer, the bucket is decre-
mented by an amount in direct proportion with the inter-
arrival time between packets k − 1 and k with the constant
of proportionality set to κβ. A decision for burst assembly is
made only when the current byte count exceeds the bucket
value. When an assembly decision is made, the bucket is
incremented by κ . The parameter κ is the learning parameter
of the system. A large value of κ indicates an algorithm that
rapidly tracks changes in incoming traffic. However, when κ

is large, it is possible to occasionally deviate from the desired
burst rate β. The parameter κ should be chosen by taking into
consideration of these two effects. Unless otherwise stated,
we use κ = 1,000 in our numerical examples. To enforce
lower and upper burst length limits, the bucket is allowed to
take values in the interval [Bmin, Bmax − Pmax] where Pmax

denotes the length of the maximum-sized packet. The expi-
ration time Tmax is again used.

4 Numerical results

We will present our numerical results basically for two dif-
ferent types of traffic scenarios (i) synthetic traffic (ii) real
traffic traces. We will use synthetic traffic mainly to show sev-
eral theoretical properties of the burst assembly algorithms
mentioned above.

4.1 Synthetic traffic

We study in this section two synthetic traffic models, the first
one being the Poisson traffic model, and the second one being
the Markov Modulated Poisson process (MMPP) model [6].
MMPP is not a renewal process but instead a Markov renewal
process in which the successive inter-arrival times depend on
each other. MMPP-based traffic models capture auto-correla-
tion and they are commonly used in the modeling of Internet
traffic [10].

4.1.1 Poisson traffic scenario

We first assume that the input packet traffic is stationary Pois-
son with arrival rate λ (in units of packets/s). Under the burst
rate constraint dictated by β, we can calculate the threshold
and average packet delay for the threshold-based algorithms,

Algorithm 4 dyn-threshold-byte
PARAMETERS:
i : packet index
j : burst index
β: burst rate (bursts/s)
D(i, j): data accumulated for the j-th burst at the arrival of the i-th
packet (bytes)
Bmin: lower burst length limit (bytes)
Bmax: upper burst length limit (bytes)
Pmax: maximum packet length (bytes)
κ: learning parameter
bucket : dynamic threshold
t : timer value
Tmax: burst expiration time
ti : inter-packet time between the (i − 1)st and i th packets

ALGORITHM
if D(i, j) contains 1 packet then

t ⇐ 0 {start the timer}
end if
bucket ⇐ bucket − ti βκ {leak the bucket}
bucket ⇐ max (Bmin, bucket) {enforce lower burst length limit}
if D(i, j) ≥ bucket then

D(i, j) ⇐ 0 {send D(i, j) as burst j immediately}
bucket ⇐ min (bucket + κ, Bmax − Pmax) {update bucket and
enforce upper burst length limit}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset timer}

else if t ≥ Tmax then
D(i, j) ⇐ max(Bmin, D(i, j)) {increase the data size to Bmin with
padding if necessary}
D(i, j) ⇐ 0 {send D(i, j) as burst j immediately}
j ⇐ j + 1 {increase burst counter}
t ⇐ 0 {reset timer}

end if

and the average packet delay for the timer-based algorithms.
As stated before, under these assumptions, the fixed thresh-
old which minimizes the average packet delay for the fixed-
threshold algorithm is given by b = λ/β. Recall that the
average packet delay of fixed-threshold is given by DP =
(b − 1)/(2λ) = 1/(2β) − 1/(2λ). On the other hand, the
average packet delay for the timer-min algorithm is 1/(2β)

as we mentioned earlier. The term 1/(2λ) is the reduction in
packet delays using a size-based algorithm that has a-priori
information on λ. In order to verify the results obtained above
and to compare them against the algorithms we propose, we
have designed a simulation scenario as given below:

– Packet arrival process is stationary Poisson with rate λ

that is varied from 5,000 to 50,000.
– Desired burst rate β is set to 1,000.
– Packet size distribution is taken from Table 1, which

uses the traffic traces from [3]. To clarify, the first row
of Table 1 suggests that 29.55% of all the packets have
lengths (in units of bytes) in the interval [32, 64) and
2171017 such packets are observed. For convenience, in
our simulations, we assume that with probability 0.2955,

123

Photon Netw Commun (2010) 20:120–130 125

Table 1 Packet size distribution from [3]

Size range (bytes) # Packets Probability

32–64 2171017 0.2955

64–128 2519797 0.2621

128–256 574504 0.0598

256–512 297002 0.0309

512–1024 251686 0.0262

1024–2048 3800020 0.3953

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

400

420

440

460

480

500

520

λ (packets/s)

av
er

ag
e

pa
ck

et
 d

el
ay

 (
μ

se
c)

β = 1000 bursts/s

dyn−threshold−packet

fixed−threshold

timer−min

Fig. 1 Average packet delay of the three burst assembly algorithms as
a function of the arrival rate λ

an incoming packet has a discrete uniform distribution
in the interval [32, 64), with probability 0.2621, it has
a discrete uniform distribution in the interval [64, 128),
and so on. We believe that our synthetic method of gen-
erating packet lengths matches quite well with real traffic
traces. Unless otherwise stated, this packet size distribu-
tion method will be used throughout the numerical exam-
ples used in this paper.

– Simulation length is 1,000 s.
– Lower and upper burst length limits are not enforced.

Figure 1 compares the average packet delay of the three
algorithms timer-min, fixed-threshold, and dyn-threshold-
packet as a function of the arrival rate λ. As λ → ∞, the
average packet delay of fixed-threshold approaches to that
of timer-min validating the closed-form expressions stated
before. The average packet delay obtained by dyn-threshold-
packet follows very closely the curve of fixed-threshold for all
arrival rates. Note that dyn-threshold-packet does not assume
an a-priori knowledge of the arrival rate λ as fixed-threshold.
In Fig. 2, we also observe that dyn-threshold-packet achieves
a burst rate which is very close to β validating the burst rate
conformance of bucket-based algorithms.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

999

999.5

1000

1000.5

1001

λ (packets/s)

av
er

ag
e

bu
rs

t r
at

e
(b

ur
st

s/
s) β = 1000 bursts/s

dyn−threshold−packet
fixed−threshold
timer−min

Fig. 2 Average burst rate obtained using the three burst assembly algo-
rithms as a function of the arrival rate λ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

340

360

380

400

420

440

460

480

500

λ (packets/s)

av
er

ag
e

pa
ck

et
 o

r
by

te
 d

el
ay

 (
μ

se
c)

β = 1000 bursts/s

dyn−threshold−packet D
P

dyn−threshold−packet D
B

dyn−threshold−byte D
B

dyn−threshold−byte D
P

Fig. 3 Average packet and byte delays (DP and DB) for the two algo-
rithms dyn-threshold-packet and dyn-threshold-byte as a function of the
arrival rate λ

We propose dyn-threshold-byte for the purpose of reduc-
ing average byte delays instead of packet delays. Average
packet and byte delays (DP and DB) for the two algorithms
dyn-threshold-packet and dyn-threshold-byte as a function
of arrival rate λ are given in Fig. 3, which shows that the
algorithm dyn-threshold-packet generates identical byte and
packet delays since this algorithm is not aware of packet
lengths. On the other hand, the length-aware algorithm
dyn-threshold-byte substantially reduces DB. We are led to
believe that one should use dyn-threshold-byte if the mini-
mization of byte delays are sought.

4.1.2 MMPP traffic scenario

We experiment a non-renewal inter-arrival scenario using
synthetic traffic. For this purpose, we use a two-state MMPP
to model client packet arrivals to the assembly buffer as
shown in Fig 4. In this model, λi , i = 1, 2 denotes the
arrival rate at state i . The average state holding time in
state i is denoted by Ti . Therefore, the transition rate from

123

126 Photon Netw Commun (2010) 20:120–130

Fig. 4 State diagram of the
input traffic modeled by a
two-state MMPP

1/T 1

1/T2

State 1 State 2

state 1 to state 2 (from state 2 to state 1) in Fig. 4 is
1/T1 (1/T2). The average packet arrival rate is denoted by
λ = (λ1T1 + λ2T2)/(T1 + T2).

The timer-min algorithm produces DP = 1/2β irrespec-
tive of incoming packet traffic characteristics. The fixed-
threshold algorithm assumes a-priori information on average
arrival rate λ and generates bursts each time b = λ/β pack-
ets are accumulated assuming integer b. The average packet
delay for the fixed-threshold algorithm can then be written
as:

DP =
(

λ
β

− 1
)

1
2λ1

λ1T1 +
(

λ
β

− 1
)

1
2λ2

λ2T2

λ1T1 + λ2T2
(3)

Let us now use another scheme called optimum that is aware
of the state which the MMPP is visiting. For the purposes of
optimal performance, this scheme generates bursts in state 1
(in state 2) when b1 = λ1/β (b2 = λ2/β) packets are accu-
mulated. Here, we again assume b1 and b2 are integers. The
burst rate of the optimum scheme is then equal to β irrespec-
tive of which state of MMPP is being visited. The average
packet delay for the optimum scheme is easy to write:

DP =
(

λ1
β

− 1
)

1
2λ1

λ1T1 +
(

λ2
β

− 1
)

1
2λ2

λ2T2

λ1T1 + λ2T2
(4)

It is not difficult to show that the two expressions in (3) and
(4) lead to identical average packet delay DP which can fur-
ther be simplified to

DP = 1

2β
− 1

2λ
(5)

The second term above characterizes the reduction in aver-
age packet delay by using a size-based algorithm as opposed
to a timer-based algorithm. Note that this term is identical

to that of the Poisson traffic scenario. We therefore conclude
that the fixed-threshold algorithm provides optimum aver-
age packet delay but it suffers from fluctuations in the burst
rate. When the actual traffic rate exceeds the mean rate, the
burst rate of the fixed-threshold method exceeds the desired
burst rate β. Similarly, when the actual rate is lower than the
mean rate, burst rates are lower than β. On the other hand,
the optimum scheme produces optimal DP while maintain-
ing the burst rate at β at all times. However, it is very hard to
implement the optimum scheme since in this scheme, the traf-
fic model should be entirely available to the burst assembly
unit which should also accurately estimate the instantaneous
state of the MMPP. In order to study how the proposed algo-
rithms compare to these three algorithms, we experiment a
scenario where T1 = γ t and T2 = (1 − γ)t where t = 10 s,
0 < γ < 1 and λ1 = 5,000 and λ2 = 50,000 packets/s.
The lower and upper burst length limits are not enforced in
this experiment. We have tested the algorithms for three dif-
ferent values of γ = 0.3, 0.5, 0.7 for each algorithm. Let
b∗

i and β∗
i , i = 1, 2 denote the average threshold value (in

units of packets) and average burst generation rate (in units
of bursts/s) while at state i . We provide b∗

i and β∗
i , i = 1, 2 as

well as the average packet delay DP using the fixed-threshold,
optimum, and dyn-threshold-packet algorithms as a function
of γ in Table 2. Note that the timer-min algorithm average
delay is fixed at 500µs for all examples. In the fixed-thresh-
old algorithm, the thresholds are fixed irrespective of the
state of the MMPP and therefore the burst rates in each state
deviate substantially from the desired burst rate although the
long-term burst rate is kept approximately at β. The opti-
mum scheme employs two separate burst assembly thresh-
olds depending on the MMPP state and burst generation rate
can therefore be set to β irrespective of the MMPP state.
The average packet delays for these two algorithms are very
close to each other as expected (see expression (5)). The pro-
posed dyn-threshold-packet algorithm performs very close
to the optimum method by adjusting properly the assem-
bly thresholds at each state so that the burst generation rate
settles at β and its delay performance is very close to the

Table 2 The values b∗
i and

β∗
i , i = 1, 2 and DP using the

fixed-threshold, optimum, and
dyn-threshold-packet algorithms
as a function of γ

Algorithm γ b∗
1 b∗

2 β∗
1 β∗

2 DP (µs)

Fixed-threshold 0.3 36.10 36.12 138.49 1384.04 486.26

0.5 28.13 28.12 177.74 1777.88 482.29

0.7 21.23 21.22 235.49 2356.44 476.71

Optimum 0.3 5 50 1000.53 999.96 486.53

0.5 5 50 999.95 999.86 481.70

0.7 5 50 1000.12 999.69 472.67

Dyn-threshold-packet 0.3 5.08 49.69 985.07 1006.20 486.94

0.5 5.04 49.56 991.09 1008.89 482.87

0.7 5.03 49.30 993.67 1014.27 475.46

123

Photon Netw Commun (2010) 20:120–130 127

0 5 10 15 20
−10

0

10

20

30

40

50

60

70

time (sec)

th
re

sh
ol

d
(K

by
te

)

κ = 10000

κ = 1000

κ =10

Fig. 5 A 20-s snapshot of the dynamic thresholds of the dyn-threshold-
byte algorithm with respect to time for different values of κ

size-based algorithms. Despite the difficulty in implement-
ing the optimum method, our proposed method is model-free
and is very easy to implement.

For dyn-threshold-byte algorithm, in order to see the
effects of the choice of the learning parameter κ , we plot-
ted the dynamic thresholds as a function of time for various
values of κ when γ is set to 0.5 in the previous example. As
we see in Fig. 5, for κ = 10, the dynamic threshold changes
slowly despite the abrupt change in the traffic and the algo-
rithm comes short of tracking the thresholds of the optimum
scheme. For κ = 10,000, on the other hand, change in traf-
fic is captured but at the expense of large-scale fluctuations
in the dynamic threshold. We also provide Table 3 which
presents the quantities b∗

i , β∗
i , i = 1, 2 and DB using the

dyn-threshold-byte algorithm as a function of κ . It is clear
that large-scale fluctuations in the dynamic threshold result
in increases in the average byte delay DB. We conclude that
the choice of the learning parameter κ = 1,000 is a reason-
able choice since in this case κ is large enough to track rapid
changes in traffic and κ is small enough to make sure that
fluctuations in the dynamic threshold are reasonably small.
We set κ to 1,000 in the remaining numerical studies of the
current article.

Table 3 The values b∗
i and β∗

i , i = 1, 2 and DB using the dyn-
threshold-byte algorithm as a function of κ

κ β∗
1 β∗

2 β DB (µs)

1 224.01 1733.19 1002.88 466.72

10 611.88 1364.66 1000.19 467.86

100 935.17 1063.37 1000.00 467.76

1000 992.61 1007.24 1000.00 469.55

10000 999.25 1000.73 1000.00 478.09

30000 999.73 1000.26 1000.00 484.41

4.2 Real traffic traces

In the previous scenarios driven with synthetic traffic, we
have shown the basic properties of various burst assem-
bly methods. However, it is also crucial to study the delay
performance of the proposed algorithms in case of more
realistic traffic scenarios. In this numerical experiment, we
focused on only byte delays and not packet delays. For this
purpose, we use two different traces taken from a traffic data
repository maintained by the measurement and analysis on
the WIDE Internet (MAWI) working group of the WIDE Pro-
ject [3]. We also scale down the inter-arrival times in these
traces to generate varying incoming bit rates. While the first
trace has a low standard deviation (STD), the latter is quite
bursty. For each traffic trace, we use three different values of
β = 1000, 2000, 3000. The lower and upper burst length lim-
its have been enforced in this experiment, i.e., Bmin = 1 kb
and Bmax = 70 kb. We have studied the performance of the
dyn-threshold-byte algorithm against the timer-min and the
timer-min-max algorithms. The learning parameter κ is set to
1,000 for dyn-threshold-byte and Tmax is set to ∞. We have
not tested the fixed-threshold algorithm in this scenario due
to its highly variable burst rates that may not be desirable.

The first trace was obtained from the WIDE backbone
at Sample Point B on Jan 1, 2006 at 14:00:00 for a trans-
Pacific line with 100 Mbps link speed [3]. The original
trace has a duration of 899.76 s, mean rate = 22.33 Mbps,
and STD = 1.53 M. Feeding the trace to the burst assembly
unit with varying bit rates (by scaling down the inter-arrival
times), we have simulated the performance of various burst
assembly algorithms. The average byte delays for the three
algorithms are given in Fig. 6a–c for three different values of
β. Figure 6d gives a minute-long snapshot of the incoming
bit rate (scaled 14 times) as a function of time. The trace is
pretty smooth similar to a Poisson traffic stream and there-
fore timer-min and timer-min-max performed very similarly
since the probability that the accumulated number of bytes
within a timer expiration period exceeding Bmax was negli-
gibly small for this smooth traffic. The results clearly show
that the proposed dyn-threshold-byte significantly reduces
the average byte delay compared to timer-based algorithms
especially for lower bit rates. The percentage gain in using
our proposed algorithm also increases with β.

We then study the second trace which was obtained again
from the WIDE backbone at Sample Point F on Sat Jan
5, 2008 at 14:00:00 for a trans-Pacific line with 150 Mbps
link speed [3]. The original trace has a duration of 900.29 s,
mean rate = 61.56 Mbps, and STD = 11.67 M. The average
byte delays for the three algorithms are given in Fig. 7a–c
for three different values of β. Figure 7d gives a 2- min-
long snapshot of the incoming bit rate (scaled 7 times) as
a function of time. The trace is not as smooth as the pre-
vious one and is quite bursty. Therefore, when enforcing

123

128 Photon Netw Commun (2010) 20:120–130

50 100 150 200 250 300 350
400

420

440

460

480

500

520

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

 μ
s)

(a) β = 1000

50 100 150 200 250 300 350
160

180

200

220

240

260

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

μs
)

(b) β = 2000

50 100 150 200 250 300 350
100

110

120

130

140

150

160

170

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

μs
)

(c) β = 3000

0 10 20 30 40 50 60
280

300

320

340

360

380

bi
t r

at
e

(M
bp

s)
time (s)

 Traffic trace

dyn−threshold−byte

timer−min

timer min−max

dyn−threshold−byte

timer−min

timer min−max

dyn−threshold−byte

timer−min

timer min−max

(d)

Fig. 6 Average byte delay for the cases a β = 1,000 b β = 2,000 c β = 3,000 using various algorithms for the trace from Sample Point B (2006)
whose 1- min snapshot is given in d

50 100 150 200 250 300
400

600

800

1000

1200

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

μs
) (a) β = 1000

50 100 150 200 250 300 350

180

200

220

240

260

280

300

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

μs
) (b) β = 2000

50 100 150 200 250 300 350

130

140

150

160

170

bit rate (Mbps)

av
er

ag
e

by
te

 d
el

ay
 (

μs
) (c) β = 3000

0 20 40 60 80 100 120
200

300

400

500

600

700

800

bi
t r

at
e

(M
bp

s)

time (s)

 Traffic trace

dyn−threshold−byte
timer−min
timer min−max

dyn−threshold−byte
timer−min
timer min−max

dyn−threshold−byte
timer−min
timer min−max

(d)

Fig. 7 Average byte delay for the cases a β = 1,000 b β = 2,000 c β = 3,000 using various algorithms for the trace from Sample Point F (2008)
whose 2- min snapshot is given in d

the upper burst length limit, there were quite a few occa-
sions at which the accumulated number of bytes within a
timer expiration period exceeded Bmax and some packets had
to wait for the next timer expiration epoch when using

timer-min-max. In this case, the timer-min-max performed
very poorly compared to the timer-min algorithm for which
there was no enforcement of Bmax. As expected, this situ-
ation is more evident for relatively lower β. The proposed

123

Photon Netw Commun (2010) 20:120–130 129

dyn-threshold-byte is shown to significantly reduce the aver-
age byte delay DB compared to both timer-based algorithms
especially for lower bit rates and higher β. We also note that
dyn-threshold-byte not only reduces DB but also properly
enforces the lower and upper burst length limits.

4.3 Loss performance

In the previous numerical studies, we have shown the reduc-
tions in average packet or byte delays in the burst assem-
bly buffer using the proposed dynamic-threshold algorithms
while enforcing lower and upper burst length limits. How-
ever, it is also vital to address the traffic statistics of the bursts
fed into the OBS network and their impact on burst loss per-
formance in the OBS network. Recall that the timer-min or
timer-min-max algorithms produce deterministic burst inter-
arrival times with variable burst lengths whereas the fixed-
threshold algorithm generates bursts that have fixed number
of packets in them but variable inter-burst times. The pro-
posed algorithms in this article produce both variable inter-
burst times and burst lengths. In this section, we address
the question of whether such modified traffic characteristics
have any impact on loss performance in the OBS network.
In order to study the loss performance of the proposed and
existing algorithms in an OBS network, we have chosen the
topology given in Fig. 8 in which n access networks feed IP
packets into a burst assembly buffer located at an OBS edge
router which is connected to OBS core router using four
wavelengths for data (bandwidth of each wavelength is set
to 10 Gbps) and one wavelength for control. Packet arrivals
from each access network is assumed to be Pareto on-off [1]
with Hurst parameter H = 0.8, on-time ton = 5 10−8, off-
time toff = 5 10−9 s with mean bit rate set to 0.8 Gbps. Packet
size distribution is based on Table 1. We set Bmin = 10 kb
and Bmax = 70 kb. The size of the burst header is assumed
to be 125 bytes, the offset time is set to 40µs and simulation
run-time is set to 20 s. When a burst assembly decision is
to be made by the burst assembly unit and if all the wave-
length channels are occupied after the offset time, this par-
ticular burst is assumed to be lost. We are interested in the
probability of loss using various burst assembly methods. In
Fig. 8, we increase the number of access networks (denoted
by n) from 42 to 46 and we have set β to 3,000n. Under
these conditions, we have compared the loss rates of vari-
ous burst assemblers. Although the measured average burst
size is about 35 kb for each assembly algorithm, we have
observed that the dyn-threshold-byte algorithm significantly
reduces the probability of loss in the bufferless core network
as we see in Fig. 9. From this example, we conclude that the
proposed algorithms not only reduce average packet or byte
delays but the traffic they generate do not appear to have any
adverse impact on the loss performance in the OBS network.

Fig. 8 Burst assembly scenario to study the probability of loss

42 43 44 45 46

10
−3

10
−2

10
−1

number of access networks

pr
ob

ab
ili

ty
 o

f l
os

s
dyn−threshold−byte

timer−min

timer−min−max

Fig. 9 Probability of loss as a function of the number of access
networks n

5 Conclusions

In this study, we have proposed two dynamic-threshold based
algorithms that aim at the reduction of average assembly
delays (packet or byte delays) at burst assembly buffers
located at the edge of an OBS network while conforming
to a desired burst rate. Moreover, enforcement of lower and
upper burst length limits is embedded in these algorithms.
The major contribution of this article is the significant reduc-
tion of average assembly delays while keeping the short-
and long-term burst rates close to the desired burst rate by
means of dynamically adjusting the assembly threshold in
case of changing traffic conditions. The benefits of the pro-
posed algorithms are demonstrated with both synthetic traffic
and actual traffic traces. Moreover, the algorithms are model-
free and simple to implement making them viable alternatives
for the design and implementation of burst assembly units in
next-generation OBS systems.

Acknowledgements This work was supported in part by the BONE-
project (“Building the Future Optical Network in Europe”), a Network
of Excellence funded by the European Commission through the 7th
ICT-Framework Programme, and by the Scientific and Technological
Research Council of Turkey (TUBITAK) under the project EEEAG-
106E046.

123

130 Photon Netw Commun (2010) 20:120–130

References

[1] Bohnert, T., Monteiro, E.: A comment on simulating LRD traffic
with pareto ON/OFF sources. In: Proceedings of CoNEXT 2005,
First International Conference on Emerging Networking Experi-
ments and Technologies, pp. 228–229, Toulouse, France, Oct 2005

[2] Cao, X., Li, J., Chen, Y., Qiao, C.: Assembling TCP/IP packets in
optical burst switched networks. In: Proceedings of IEEE GLO-
BECOM, Taipei, Taiwan, vol. 3, pp. 2808–2812, 17–21 Nov 2002

[3] Cho, K., Mitsuya, K., Kato, A.: Traffic data repository maintained
by the MAWI Working Group of the WIDE Project. http://mawi.
wide.ad.jp/mawi

[4] Du, P., Abe, S.: Burst assembly method with traffic shaping for the
optical burst switching network. In: Proceedings of IEEE GLO-
BECOM, Session OPN-05, San Francisco, CA, USA, 27 Nov–
1 Dec 2006

[5] Ge, A., Callegati, F., Tamil, L.: On optical burst switching and
self-similar traffic. IEEE Commun. Lett. 4(3), 98–100 (2000)

[6] Heffes, H., Lucantoni, D.: A Markov modulated characterization
of packetized voice and date traffic and related statistical multi-
plexer performance. IEEE J. Select. Areas Commun. 4(6), 856–
868 (1986)

[7] Hong, J.H., Sohraby, K.: On the asymptotic analysis of packet
aggregation systems. In: Proceedings of 15th International Sym-
posium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pp. 353–359,
Istanbul, Turkey, 24–26 Oct 2007

[8] Korkakakis, N., Vlachos, K.: An adaptive burst assembly scheme
for OBS-GRID networks. In: Proceedings of 6th International
Symposium on Communication Systems, Networks and Digital
Signal Processing (CNSDSP), pp. 414–417, Graz, Austria, 25 July
2008

[9] Matisse Networks: http://www.matissenetworks.com/
[10] Muscariello, L., Meillia, M., Meo, M., Marsan, M., Cigno, R.:

An MMPP-based hierarchical model of Internet traffic. In: Pro-
ceedings of IEEE International Conference on Communications
(ICC), vol. 4, pp. 2143–2147, Paris, France, 20–24 June 2004

[11] Oh, S.Y., Hong, H.H., Kang, M.: A data burst assembly algo-
rithm in optical burst switching networks. ETRI J. 24(4), 311–
322 (2002)

[12] Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new par-
adigm for an optical Internet. J. High Speed Netw. 8(1), 69–
84 (1999)

[13] Sanghapi, J.N.T., Elbiaze, H., Zhani, M.: Adaptive burst assembly
mechanism for OBS networks using control channel availability.
In: Proceedings of 9th International Conference on Transparent
Optical Networks (ICTON), vol. 3, pp. 96–100, Rome, Italy, 1–5
July 2007

[14] Verma, S., Chaskar, H., Ravikanth, R.: Optical burst switch-
ing: a viable solution for terabit IP backbone. IEEE Netw.
Mag. 14(6), 48–53 (2000)

[15] Vokkarane, V.M., Haridoss, K., Jue, J.P.: Threshold-based burst
assembly policies for QoS support in optical burst-switched net-
works. In: Proceedings of SPIE OptiComm, pp. 125–136, Boston,
MA, 29 July–2 Aug 2002

[16] Yu, X., Chen, Y., Qiao, C.: Study of traffic statistics of assembled
burst traffic in optical burst switched networks. In: Proceedings
of SPIE OptiComm, pp. 149–159, Boston, MA, 29 July–2 Aug
2002

Author Biographies

Mehmet Altan Toksöz received his B.S.
degree in Electrical and Electronics Engi-
neering from Anadolu University, Eskişehir,
Turkey, in 2006 and M.S. degree in Electri-
cal and Electronics Engineering from Bilkent
University, Ankara, Turkey, in 2009. His cur-
rent research interests are resource manage-
ment algorithms for computer and communi-
cation networks.

Nail Akar received the B.S. degree from
Middle East Technical University, Turkey, in
1987 and M.S. and Ph.D. degrees from Bil-
kent University, Turkey, in 1989 and 1994,
respectively, all in Electrical and Electronics
Engineering. From 1994 to 1996, he was a
visiting scholar and a visiting assistant pro-
fessor in the Computer Science Telecom-
munications program at the University of
Missouri—Kansas City. He joined the Tech-
nology Planning and Integration group at

Long Distance Division, Sprint, Overland Park, Kansas, in 1996, where
he held a senior member of technical staff position from 1999 to 2000.
Since 2000, he has been with Bilkent University, currently as an associ-
ate professor. His current research interests include performance analy-
sis of computer and communication networks, optical networks, queue-
ing systems, traffic control and resource allocation.

123

http://mawi.wide.ad.jp/mawi
http://mawi.wide.ad.jp/mawi
http://www.matissenetworks.com/

	Dynamic threshold-based assembly algorithms for optical burst switching networks subject to burst rate constraints
	Abstract
	1 Introduction
	2 Burst assembly algorithms
	2.1 Timer-based min-length burst assembly
	2.2 Timer-based min-max-length burst assembly
	2.3 Fixed threshold-based burst assembly

	3 Proposed burst assembly algorithms
	3.1 Packet-based dynamic-threshold algorithm for burst assembly
	3.2 Byte-based dynamic threshold algorithm for burst assembly

	4 Numerical results
	4.1 Synthetic traffic
	4.1.1 Poisson traffic scenario
	4.1.2 MMPP traffic scenario

	4.2 Real traffic traces
	4.3 Loss performance

	5 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

