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Suppose that a Wiener process gains a known drift rate at some unobservable disorder time with some zero-modified expo-
nential distribution. The process is observed only at known fixed discrete time epochs, which may not always be spaced
in equal distances. The problem is to detect the disorder time as quickly as possible by means of an alarm that depends
only on the observations of Wiener process at those discrete time epochs. We show that Bayes optimal alarm times, which
minimize expected total cost of frequent false alarms and detection delay time, always exist. Optimal alarms may in general
sound between observation times and when the space-time process of the odds that disorder happened in the past hits a set
with a nontrivial boundary. The optimal stopping boundary is piecewise-continuous and explodes as time approaches from
left to each observation time. On each observation interval, if the boundary is not strictly increasing everywhere, then it first
decreases and then increases. It is strictly monotone wherever it does not vanish. Its decreasing portion always coincides with
some explicit function. We develop numerical algorithms to calculate nearly optimal detection algorithms and their Bayes
risks, and we illustrate their use on numerical examples. The solution of Wiener disorder problem with discretely spaced
observation times will help reduce risks and costs associated with disease outbreak and production quality control, where the
observations are often collected and/or inspected periodically.
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1. Introduction. In Shiryaev’s [15, 16] classical Bayesian formulation of Wiener disorder problem, a Wiener
process gains a constant nonzero known drift rate at some unknown unobserved random time with zero-modified
exponential distribution. The objective is to detect the disorder time as soon as after it occurs by means of a
stopping time of the continuously monitored Wiener process. The solution of Wiener disorder problem is impor-
tant, because quickest detection of disease outbreak from the number of emergency room visits, machine failures
from the measurements of incompliant finished products, and sudden shifts in the riskiness and profitability
of investment instruments can save lives, reduce maintenance and scrap costs, cut financial losses, or enhance
financial gains, respectively.
In this paper, we revisit the Wiener disorder problem but assume that the Wiener process is observed only

at fixed known discrete time epochs, which may be separated from each other with unequal distances. In dis-
ease outbreak monitoring and production quality control problems, the observations are typically gathered and
inspected at the end of shifts, which may sometimes be spaced out in time at different distances from each other
because of noon and night breaks, long weekends, or national and religious holidays. Even though the observa-
tions are now being taken only at discrete time epochs, an alarm may be set at any time—at observation times
or any time between observation times. Our goal is to solve the continuous-time Bayesian quickest detection
problem while the information becomes available at discrete time epochs.
More precisely, suppose that a Wiener process X = �Xt� t ≥ 0� gains a known drift rate � �= 0 at some

unknown random time �, which either equals zero with some known probability p ∈ 	0
1� or has exponential
distribution with some known mean 1/
 with probability 1−p. The process X is observed at fixed known time
epochs 0= t0 < t1 < · · · , and we want to detect the disorder time � as quickly as possible, in the sense that the
expected total cost of frequent false alarms and detection delay time is minimized by setting the alarm at some
real-valued stopping time � of the history � = ��t�t≥0 of observations, where

�0 = ��
�� and �t = ��Xtn
� tn ≤ t
 n≥ 0� for every t ≥ 0� (1)

We prove that a quickest detection rule always exists. We show that optimal alarms do not always sound at
some observation times. One should therefore remain alert at all times for an alarm that may sound at some time
strictly between two observations. We also describe how to calculate a nearly optimal change detection rule.
Because the times between observations may in general be different, the Markov sufficient statistic for the

quickest detection problem is the space-time process ���t
 t�� t ≥ 0� of the conditional odds �t at time t of that
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the disorder happened in the past, given the past observations �t; see (4) for the precise definition. As shown in
Appendix A.1, the conditional odds-ratio process can be calculated recursively by

�t =



��t− tn−1
�tn−1�
 if t ∈ 	tn−1
 tn� for some n≥ 1,



(
�tn
�tn−1


�Xn√
�tn

)

 if t = tn for some n≥ 1


(2)

where �tl = tl − tl−1 and �Xl =Xtl
−Xtl−1 for every l≥ 1, ��t
��= e
t��+ 1�− 1 for every t ≥ 0 and �≥ 0,

and �t > 0, �≥ 0, z ∈�

��t
�
 z�= exp
{
�z

√
�t+

(

− �2

2

)
�t

}
�+

∫ �t

0

 exp

{(

+ �z√

�t

)
u− �2u2

2�t

}
du�

If an alarm has not yet been raised until time t ≥ 0, then an optimal alarm time

�0�t�= inf
{
s ≥ t�

�∑
n=0

1	tn
 tn+1��s��tn
≥�0�s�

}

 t ≥ 0


is the first time s ≥ t, when the conditional odds-ratio �tn
calculated at the last observation time tn (n≥ 0 such

that tn ≤ s < tn+1) exceeds the optimal stopping boundary �0�s�. For every n≥ 0, the optimal stopping boundary
�0�s�, s ∈ 	tn
 tn+1� between the nth and �n+ 1�st observation times is continuous and increases to infinity as
s ↗ tn+1; see Figure 1 for a typical optimal stopping boundary. If the boundary is not strictly increasing, then
it first decreases and then increases. It is strictly monotone wherever it does not vanish. Therefore, it is never
optimal to stop as the next observation time nears. If the optimal stopping boundary is strictly increasing and
it is not optimal to raise the alarm at the last observation, then the same remains true at least until the next
observation time. Otherwise, an alarm may sound at some time strictly between the last and next observations.
In Figure 1, if an alarm has not been raised before times t1, t3, or t4, then the optimal alarm may sound at some
time strictly inside the intervals 	t1
 t2�, 	t3
 t4�, or 	t4
 t5�, respectively. We also show that the strictly decreasing
portion of s �→�0�s� always coincides with s �→ e−
�s−tn��1+
/c�− 1, while the strictly increasing part has to
be calculated numerically.
Continuous-time quickest change detection problems with discretely spaced observation times have recently

started to receive attention. Brown and Zacks [6] studied Bayesian formulation of detecting a change in the
arrival of a Poisson process monitored at discrete time epochs, derived one- and two-step ahead stopping rules,
and provided conditions under which those myopic stopping rules are optimal. Brown [5] revisited the same
problem but also assumed that the arrival rates before and after change are unknown, and developed one- and two-
step look-ahead stopping rules, and illustrated their effectiveness on numerical examples. Sezer [14] has recently
solved Bayesian and variational formulations of the Wiener disorder problem when the disorder is caused by
one of the shocks, which arrive according to an observable Poisson process independent of the Wiener process.
The classical Bayesian and variational formulations of the Wiener disorder problem were given and solved
by Shiryaev [15, 16]. The Wiener disorder problem with finite horizon was solved by Gapeev and Peskir [8].

Φt1

�0(s)

s

�
c

Φt0

s     e–�(s– tn)(1+ �) –1

n=1

t4 t5 t60 = t0 t1 s2s1 t2 t3

n=3

c

n=4

Figure 1. A typical optimal stopping boundary s �→�0�s�.
Notes. The optimal stopping region is the shaded areas. Suppose that an alarm has not been raised before time t ∈ 	tn
 tn+1� for some n≥ 0.
If 	t
 tn+1�∩ �s ∈ 	tn
 tn+1�� �tn

≥�0�s�� is not empty, then it is optimal to stop at the first time s ∈ 	t
 tn+1� when �tn
≥�0�s�. Otherwise,

it is optimal to wait at least until the next observation time tn+1. Suppose that �t0
and �t1

are realized as in the figure. It is then optimal to
stop at times s1 and t, respectively, for every t ∈ 	0
 s1! and t ∈ 	s1
 s2!. If t ∈ �s2
 t2�, then it is optimal to wait at least until time t2 and act
optimally after �t2

is observed.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Dayanik: Wiener Disorder Problem
758 Mathematics of Operations Research 35(4), pp. 756–785, © 2010 INFORMS

Hadjiliadis [9] and Hadjiliadis and Moustakides [10] developed optimal and asymptotically optimal CUSUM
rules for Wiener disorder problems with multiple alternatives. The optimality of the CUSUM algorithm was
established under Lorden’s criterion by Moustakides [11] in discrete time and by Shiryaev [17] and Beibel [4] for
the Wiener process. Asymptotic optimality of Shiryaev’s procedure in continuous-time models were proved by
Baron and Tartakovsky [1]. Quickest change detection problems were reviewed in the monographs of Basseville
and Nikiforov [2], Peskir and Shiryaev [12], and Poor and Hadjiliadis [13].
Let us also mention two important alternative formulations, the variational formulation and the generalized

Bayesian formulation of the Wiener disorder problem with observations at fixed discrete time epochs. In the
variational problem, one fixes the probability of false alarm and wants to minimize the expected detection delay
cost. The Bayesian formulation in (3) can be seen as the Langrange relaxation of the variational formulation.
Particularly, the Bayes optimal alarm time is optimal also for the variational formulation if the false alarm
probability of the Bayes optimal alarm time exactly matches the requirement. We shall see later that the explicit
characterization of the Bayes optimal alarm times allows one to easily calculate their false alarm probabili-
ties, and by a straightforward search over a suitable grid of unit delay time cost c and the observation times
t1 < t2 < · · ·, one can also solve the variational formulation in practice. For the classical Wiener disorder prob-
lem, the variational formulation and its solution by means of the Bayesian formulation were studied by Shiryaev
[15, 16]. As the required false alarm probability tends to zero, Baron and Tartakovsky [1] and Tartakovsky and
Veeravalli [19] established simple and explicit forms of optimal alarm times for both Bayesian and variational
formulations of disorder problems in discrete and continuous times under some general conditions. In the future,
we plan to investigate if the asymptotic analysis can be fruitfully extended to the Wiener disorder problem with
observations at fixed discrete time epochs.
In the generalized Bayesian formulation, instead of an exponentially distributed prior distribution, an unin-

formed prior distribution is assumed for the unknown and unobserved disorder time. The objective is to find a
stopping time � ∈� which minimizes

∫ �

0
Ɛ	�� −��+ ��= t!dt− cƐ	� ��=�!

for some constant c > 0, or alternatively,
∫ �
0 Ɛ	�� − ��+ � � = t!dt subject to the additional constraint

Ɛ	� ��=�!≥ " for some prespecified " > 0. Shiryaev [15, 18] and Feinberg and Shiryaev [7] studied both
formulations for the classical Wiener disorder problem, and we plan to investigate them for the case of discretely
spaced observations in the future.
We conclude the introduction with an outline of the paper and its main results. In §2, we start by describ-

ing the problem, which is then expressed as an optimal stopping problem of the Markov sufficient statistic,
space-time process ���t
 t�� t ≥ 0� of conditional odds-ratio �. The process � = ��t
 t ≥ 0� is a continuous-
time stochastic process with right-continuous sample paths having left-limits and jumping only at deterministic
observation times tn, n ≥ 0. Therefore, the solution of the optimal stopping problem depends on the explicit
characterization of Theorem 3.1 of admissible stopping times, which is of independent interest and should also
be useful for stochastic dynamic optimization problems in general. In §4, suitable dynamic programming opera-
tors are introduced, and the solution of optimal stopping problem is described at observation times. Theorem 4.1
shows how to construct #-optimal stopping rules for every # ≥ 0 for the optimal stopping problems truncated
at observation times, the value functions of which also coincide with successive approximations of the value
function of the original infinite-horizon optimal stopping problem. Theorem 4.2 shows that successive approxi-
mations converge uniformly at known exponential rates, which are used for efficient numerical solution methods
described later in §7. Between the observation times, the solution of the optimal stopping problem turns out to
depend on nontrivial optimal stopping boundaries, the existence and properties of which are established in §§5
and 6, respectively. Theorem 5.1 describes the explicit construction of #-optimal stopping times for every #≥ 0.
Theorems 5.2 and 5.3, respectively, present for truncated and infinite-horizon problems alternative #-optimal
stopping times, which can be characterized as the first hitting times of the space-time processes to suitable sets,
whose nontrivial boundaries are characterized explicitly by Theorem 6.1. A numerical algorithm to calculate
#-optimal stopping rules is described in Figure 3 and illustrated on examples in §7. Section 8 describes how
the false alarm probabilities of Bayes optimal alarm times can be accurately calculated. The relation between
variational and Bayesian formulations is revisited, and a practical solution for the variational formulation is
described and then illustrated on an example. Long proofs are deferred to Appendix A.

2. Problem description. On some probability space ��
� 
��, suppose that X = �Xt� t ≥ 0� is a Wiener
process whose zero drift changes to some known constant � �= 0 at some unknown statistically independent
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time �, which has zero-modified exponential distribution ��� = 0�= p and ��� > t�= �1− p�e−
t for every
t ≥ 0 for some known constants p ∈ 	0
1� and 
> 0.
Let 0= t0 < t1 < t2 < · · ·< tn < · · · be an infinite sequence of fixed real numbers, along which the process X

may be observed as long as it is desired before an alarm � is raised to declare that the drift of process X has
changed. For each stopping rule � of the history � = ��t�t≥0 in (1) of observations, we define its Bayes risk as
the sum R��p� = ��� < ��+ cƐ	�� −��+!, p ∈ 	0
1� of false alarm probability ��� < �� and the expected
detection delay penalty cƐ	�� −��+!. The problem is (i) to calculate the minimum Bayes risk

R�p� %= inf
�∈�

R��p�
 p ∈ 	0
1�
 (3)

where the infimum is taken over the collection � of all stopping times of the filtration � and (ii) to find a
stopping time in � , which attains the infimum, if such a stopping time exists. If we define

Lt�u
 x0
 x1
 ( ( ( �=
∏

l≥ 1% tl ≤ t

1√
2)�tl − tl−1�

exp
{
	xl − xl−1 −��tl − �tl−1 ∨ u��+!2

2�tl − tl−1�

}

 u≥ 0
 t ≥ 0


then we have ��Xtl
∈ dxl for every l≥ 1 and tl ≤ t � �� = Lt��
x0
 x1
 ( ( ( �

∏
l≥1% tl≤t dxl for every t ≥ 0, and

the conditional likelihood of the observations Xt0

Xt1


 ( ( ( 
 given �= u is

Lt�u� %= Lt�u
Xt0

Xt1


 ( ( ( �

= ∏
l≥1% tl≤t

1√
2)�tl − tl−1�

exp
{
	Xtl

−Xtl−1 −��tl − �tl−1 ∨ u��+!2

2�tl − tl−1�

}

 u≥ 0
 t ≥ 0�

Model. Let ��
� 
��� be a probability space hosting a random variable � with zero-modified exponential
distribution ����= 0�= p and ���� > t�= �1−p�e−
t for every t ≥ 0 and an independent Wiener process X.
Therefore, ���Xtl

∈ dxl for every l≥ 1 and tl ≤ t ��� equals

Lt��
 x0
 x1
 ( ( ( �
∏

l≥1% tl≤t

dxl =
∏

l≥1% tl≤t

1√
2)�tl − tl−1�

exp
{
	xl − xl−1!2

2�tl − tl−1�

}
dxl for all t ≥ 0�

Let � be the filtration in (1) obtained by observing process X at fixed times 0= t0 < t1 < t2 < · · · , and denote
by �= ��t�t≥0 the augmentation of the filtration � by the information about �; i.e., �t = �t ∨���� for every
t ≥ 0 and define � on �� locally along the filtration � by means of

d�
d��

∣∣∣∣
�t

= Zt��� %= Lt���

Lt���

= exp
{ �∑

l=1
1�tl≤t�

[
�Xtl

−Xtl−1��	tl − ��∨ tl−1�!+

tl − tl−1
− �2�	tl − ��∨ tl−1�!+�2

2�tl − tl−1�

]}

 t ≥ 0�

Under � , the random variables Xtl
− Xtl−1 , l ≥ 1 are, given �, conditionally independent Gaussian random

variables with mean �	tl − �� ∨ tl−1�!+ and variance tl − tl−1 for every l ≥ 1. Because Z0���= 1, probability
measures � and �0 are identical on �0 = ����, and ��� ∈ B�= ���� ∈ B�; therefore, � has also zero-modified
exponential distribution with the same parameters p and 
 under � . Thus, � has the same properties as the
probability measure in the description of the original problem. In the remainder, we will work with � constructed
as above.
Let us define the conditional odds-ratio process

�t %=
���≤ t ��t�

��� > t ��t�
= Ɛ�	Zt���1��≤t� ��t!

Ɛ�	Zt���1��>t� ��t!
= Ɛ�	Zt���1��≤t� ��t!

�1−p�e−
t

 t ≥ 0
 (4)

where the second equality follows from Bayes theorem and the third equality from

Ɛ�	Zt���1��>t� ��t!= ���� > t ��t�= ���� > t�= �1−p�e−
t
 t ≥ 0
 (5)

because, on the event �� > t�, we have 	tl − �� ∨ tl−1�!+ = �tl − ��+ = 0 for every l ≥ 1 and tl < t, and
therefore,

Zt���1��>t� = 1��>t� ��-almost surely. (6)
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In Appendix A.1, we prove that the conditional odds-ratio process � = ��t� t ≥ 0� has the dynamics (2).
Because for every n ≥ 1 and tn−1 ≤ s < tn, we have �s ≡ �tn−1 = ��Xt1


 ( ( ( 
Xtn−1�, and �Xn = Xtn
− Xtn−1

is independent of �tn−1 under ��, the dynamics in (2) ensure that Ɛ�	f ��t
 t� � �s! = Ɛ�	f ��t
 t� � �tn−1 ! =
Ɛ�	f ��t
 t� � �tn−1
 tn−1! = Ɛ�	f ��t
 t� � �s
 s! for every t > s and bounded Borel measurable function
f % 	0
��× � �→ �, and the process ���t
 t�
�t� t ≥ 0� is a (piecewise-deterministic strong) Markov process
under ��. Proposition 2.1 below shows that the sequential detection problem reduces to a discounted optimal
stopping problem with running cost � �→�−
/c for the conditional odds-ratio process �.

Proposition 2.1. The Bayes risk equals R��p� = 1− p+ �1− p�cƐ�	
∫ �

0 e−
t��t − 
/c�dt! for every p ∈
	0
1� and � ∈� . The minimum Bayes risk equals R�p�= 1− p+ �1− p�cV �p/�1− p�� for every p ∈ 	0
1�,
where V � · � is the value function of the optimal stopping problem

V ���= inf
�∈�

Ɛ�
�

[∫ �

0
e−
t

(
�t −




c

)
dt
]

 �≥ 0 (7)

for piecewise-deterministic strong Markov space-time process ���t
 t�� t ≥ 0� of conditional odds-ratio pro-
cess �, and Ɛ�

� is the expectation with respect to ��
�, which is �� s.t. �0 =� a.s.

The proof is similar to that of Bayraktar et al. [3] Proposition 2.1. In the remainder, we solve the optimal stopping
problem in (7). The solution method reduces the continuous-time optimal stopping problem to a discrete-time
optimal stopping problem by means of suitable single-jump operators, which take advantage of the special
structure of admissible stopping times. The solution is presented in §§4 and 5 after jump operators are introduced.
In the next section, we first characterize the stopping times in the collection � .

3. The characterization of admissible stopping times. Recall that every admissible stopping time � ∈� is
a stopping time of observation filtration � = �Ft�t≥0 defined by (1). The main result of this section is Theorem 3.1
and implies that every stopping time � ∈ � is essentially a discrete random variable, and the original optimal
stopping problem can essentially be solved in discrete time. Let �� = �A ∈ � �A∩ �� ≤ t� ∈�t for every t ≥ 0�
and 	� %= ��Xtk

1�tk≤��
1�tk>��� k≥ 0� generated by those observations Xt0

Xt1


 ( ( ( before time � .

Proposition 3.1. We have �� =	� for every � ∈� .

Proof. (�) Clear. (�) Fix any A ∈ �� and write 1A = ∑�
k=0 1A1�tk≤�<tk+1� + 1A1��=+��. For every k ≥ 0,

A ∩ �tk ≤ � < tk+1� = �tk ≤ �� ∩ ⋃�
n=1	A ∩ �� ≤ tk+1 − 1/n�! belongs to �tk

because �tk ≤ �� ∈ �tk
and A ∩

�� ≤ tk+1 − 1/n� ∈ �tk+1−1/n = �tk
. Then there is a Borel function fk% �

k+1
+ �→ �0
1� such that 1A1�tk≤�<tk+1� =

fk�Xt0

 ( ( ( 
Xtk

�1�tk≤�<tk+1� for every k ≥ 0, which is 	� -measurable because fk�Xt0

 ( ( ( 
Xtk

�1�tk≤�<tk+1� =
fk�Xt0

1�t0≤��
 ( ( ( 
Xtk
1�tk≤���1�tk≤��1�tk+1>�� is measurable with respect to ��Xtl

1�tl≤��
1�tl>��� l= 0
1
 ( ( ( 
 k+1�
⊆	� . Similarly, 1A1��=+�� ∈	� . �

Theorem 3.1. Let � be an � = ��t�t≥0-stopping time. Then there is a nonnegative �tn
-measurable random

variable Rn for every n≥ 0 such that
(i) �1�tn≤�<tn+1� = �tn +Rn�1�tn≤�<tn+1�,
(ii) �� ∧ tn+1�1�tn≤�� = 	�tn +Rn�∧ tn+1!1�tn≤��,
(iii) �� ≥ tn+1�= �R0 ≥ t1
 t1 +R1 ≥ t2
 ( ( ( 
 tn +Rn ≥ tn+1�,
(iv) �tn ≤ � < tn+1�= �R0 ≥ t1
 t1 +R1 ≥ t2
 ( ( ( 
 tn−1 +Rn−1 ≥ tn
 tn +Rn < tn+1�.

Let N %= inf�n≥ 0� tn +Rn < tn+1�. Then N is an ��tn
�n≥0-stopping time, and

(v) � = �tN +RN�1�N<�� +� · 1�N=+��.

Proof. Let � be an ��t�t≥0-stopping time. Because � ∈ �� = 	� , there is a Borel function f such that
� = f �Xt0

1�t0≤��
 1�t0>��
 Xt1
1�t1≤��
 1�t1>��
 ( ( ( 
Xtn

1�tn≤��
 1�tn>��
 ( ( ( �. For all n≥ 0, �1�tn≤�<tn+1� = f �Xt0

 0


Xt1

 0
 ( ( ( 
Xtn


 0, 0, 1, 0, 1( ( ( �1�tn≤�<tn+1� = 	tn +Rn!1�tn≤�<tn+1� and

�� ∧ tn+1�1�tn≤�� = �1�tn≤�<tn+1� + tn+11��≥tn+1� = 	�tn +Rn�∧ tn+1!1�tn≤��

in terms of �tn
-measurable Rn %= 	f �Xt0


0
Xt1

0
 ( ( ( 
Xtn


0
0
1
0
1( ( ( �− tn!1�tn≤�<tn+1� +� · 1��≥tn+1�. Then
�1�tn≤�<tn+1� = �tn +Rn�1�tn≤�<tn+1�, and (i) and (ii) follow. By (i), �tn ≤ � < tn+1�= �tn ≤ � < tn+1
 � = tn +Rn�
⊆ �tn ≤ �� ∩ �tn + Rn < tn+1�, and because Rn ≥ tn+1 − tn on �� ≥ tn+1�, we have the converse inclusion
�tn ≤ ��∩ �tn +Rn < tn+1�= �tn ≤ ��∩ �tn +Rn < tn+1�∩ �� < tn+1�⊆ �tn ≤ ��∩ �� < tn+1�≡ �tn ≤ � < tn+1�.
Hence, �tn ≤ � < tn+1�= �tn ≤ ��∩ �tn +Rn < tn+1�, which proves the first equality in (iv). As a consequence,
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�� < t1�= �t0 ≤ � < t1�= �t0 ≤ ��∩ �R0 < t1�= �R0 < t1�. Therefore, �� ≥ t1�= �R0 ≥ t1�, and (iii) holds for
n= 0. Suppose that (iii) holds for some n≥ 0. Then by the first equality of (iv) (after n is replaced with n+ 1)

�� ≥ tn+2� = �� ≥ tn+1�\�� ≥ tn+1
 � < tn+2�= �� ≥ tn+1�\�� ≥ tn+1
 tn+1 +Rn+1 < tn+2�

= �� ≥ tn+1�∩ �tn+1 +Rn+1 ≥ tn+2�= �R0 ≥ t1
 ( ( ( 
 tn +Rn ≥ tn+1
 tn+1 +Rn+1 ≥ tn+2�


which proves (iii). The first equality in (iv) and (iii) give that �tn ≤ � < tn+1� = �� ≥ tn� ∩ �tn + Rn < tn+1� =
�R0 ≥ t1
 ( ( ( 
 tn−1 +Rn−1 ≥ tn�∩ �tn +Rn < tn+1�, which proves (iv).
Because Rn ∈ �tn

for all n≥ 0, N = inf�n≥ 0� tn +Rn < tn+1� is an ��tn
�n≥0-stopping time, and �N = n�=

�R0 ≥ t1
 ( ( ( 
 tn−1 + Rn−1 ≥ tn
 tn + Rn < tn+1� = �tn ≤ � < tn+1� and �N = +�� = �R0 ≥ t1
 t1 + R1 ≥
t2
 ( ( ( �= �� =+�� by (iv), which imply � =∑�

n=0 �1�tn≤�<tn+1�+�1��=�� =
∑�

n=0�tn+Rn�1�N=n�+�·1�N=�� =
�tN +RN�1�N<�� +� · 1�N=�� by (i). This proves (v). �

The next proposition shows that (v) of Theorem 3.1 also has a converse.

Proposition 3.2. For each n ≥ 0, let Rn be an a.s. nonnegative �tn
-measurable random variable. Define

N %= inf�n≥ 0� tn +Rn < tn+1� and � %= �tN +RN�1�N<�� +� · 1�N=+��. Then � is a ��t�t≥0-stopping time.

Proof. Fix t ≥ 0. Then tm ≤ t < tm+1 for some m ≥ 0. Because Rn ∈ �tn
for n ≥ 0, �� ≤ t� = �N < �


tN +RN ≤ t�=⋃m−1
n=0 �t0 +R0 ≥ t1
 ( ( ( 
 tn−1 +Rn−1 ≥ tn
 tn +Rn ≤ tn+1�∪ �t0 +R0 ≥ t1
 ( ( ( 
 tm−1 +Rm−1 ≥ tm


tm +Rm ≤ t� ∈�tm
≡�t , and � is an ��t�t≥0-stopping time. �

4. The solution at observation times. Let �� · 
 · � and � · 
 · 
 · � be as in (2) and define for every bounded
function w% �+ �→� operators

�Jyw���t
�� %= inf
r≥y

�Jw���t
�
 y
 r�
 �t > 0
 �≥ 0
 0≤ y ≤�t
 (8)

�Jw���t
�
 y
 r� %=
∫ r∧�t

y
e−
t

(
��t
��− 


c

)
dt+ 1	�t
���r�e

−
�t�Kw���t
��
 r ≥ y
 (9)

�Kw���t
�� %=
∫ �

−�
w���t
�
 z��

exp�−z2/2�√
2)

dz� (10)

Let us pretend that we have not raised an alarm until tn. Suppose also that we are told the value w��� of
the optimal policy if � has not been stopped until time tn+1 and equals � at time tn+1. Given history �tn

of
observations until time tn, we want to know if stopping before tn+1 or waiting at least until tn+1 is the best.
If � is an ��t�t≥0-stopping time such that � ≥ tn (��-a.s.), then optimality principle suggests that the conditional
expected total remaining cost given �tn

equals

Ɛ�

[∫ �∧tn+1

tn

e−
�t−tn�

(
�t −




c

)
dt+ 1��≥tn+1�e

−
�tn+1w��tn+1�

∣∣∣∣�tn

]

in time-tn monetary units. On the one hand, by Theorem 3.1(ii) and (iii), there is a nonnegative �tn
-measurable

random variable Rn such that ��-a.s. �∧ tn+1 = �tn+Rn�∧ tn+1 and �� ≥ tn+1�= �tn+Rn ≥ tn+1�, because � ≥ tn
(��-a.s.). On the other hand, the dynamics in (2) of � imply �t = ��t − tn
�tn

� for every tn ≤ t < tn+1 and
�tn+1 = ��tn+1
�tn


�Xn+1/
√
�tn+1�. Therefore, the conditional expected total remaining cost given �tn

can be
rewritten as

∫ �tn+Rn�∧tn+1

tn

e−
�t−tn�

(
��t− tn
�tn

�− 


c

)
dt+ 1�tn+Rn≥tn+1�e

−
�tn+1Ɛ�

[
w

(


(
�tn+1
�


�Xn+1√
�tn+1

))]∣∣∣∣
�=�tn

=
∫ Rn∧�tn+1

0
e−
t

(
��t
�tn

�− 


c

)
dt+ 1	�tn+1
���Rn�e

−
�tn+1�Kw���tn+1
�tn
�

= �Jw���tn+1
�tn

0
Rn�


because Rn and �n are �tn
-measurable, and �Xn+1/

√
�tn+1 has standard Gaussian distribution independent of

�tn
= ��Xt0


 ( ( ( 
Xtn
� under ��. Thus, the minimum conditional expected total remaining cost given �tn

is
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obtained by taking the infimum over the collection of all ��t�t≥0-stopping times � such that � ≥ tn (��-a.s.), or
equivalently, over all �tn

-measurable nonnegative random variables Rn:

ess inf
�∈� % �≥tn a.s.

Ɛ�

[∫ �∧tn+1

tn

e−
�t−tn�

(
�t −




c

)
dt+ 1��≥tn+1�e

−
�tn+1w��tn+1�

∣∣∣∣�tn

]

= ess inf
0≤Rn∈�tn

�Jw���tn+1
�tn

0
Rn�=

[
inf
r≥0

�Jw���tn+1
�
0
 r�
]∣∣∣∣

�=�tn

= �J0w���tn+1
�tn
��

Thus, �J0w���t
�� can be thought as a dynamic programming operator (namely, J0) applied to a continuation
function w� · � to determine the best decision, based only on the currently available information �, before �t, at
which time new information arrives.
Let us define optimal stopping problems

"n %= ess inf
�∈�n

Ɛ�

[∫ �

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

]



"�m�
n %= ess inf

�∈�n

Ɛ�

[∫ �∧tm

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

] (11)

obtained from the original problem in (7) by allowing stopping only in 	tn
�� and 	tn
 tm!, respectively, based
on observation history �tn

until time tn for some 0≤ n≤m, where

�n %= �� ∈� � � ≥ tn
 ��-a.s.�
 n≥ 0 ��0 ≡� �

is the collection of all �-stopping times that are ��-a.s. greater than or equal to tn, n≥ 0. By Proposition 4.1,
for each n ≥ 0, "n can be pathwise approximated well by the elements in the tail of the sequence �"�m�

n �m≥n,
and by Theorem 4.1 each "�m�

n coincides ��-a.s. with v�m�
n ��tn

�, where

v�m�
m ���= 0 for every �≥ 0 and m≥ 0


v�m�
n ���= �J0v

�m�
n+1���tn+1
�� for every �≥ 0 and 0≤ n≤m− 1,

(12)

and �v�m�
n ��tn

��m≥n gives pathwise a sequence of successive approximations to "n for every n≥ 0. For the proof
of all of the major results in the remainder, we will need Lemma 4.1 about important properties of dynamic
programming operator J�, and its proof is in the Appendix 4.2.

Lemma 4.1. For every �t > 0 and 0≤ y ≤�t, the followings are true.
(i) If w� · � is bounded and w� · �≥−1/c, then −1/c ≤ e
y�Jyw���t
 ·�≤ 0. If w� · � is also nondecreasing,

concave, and continuous, then so is �Jyw���t
 ·�, and there exists some finite ���t
 y� such that �Jyw���t
��= 0
for every �≥���t
 y�.

(ii) If w1� · � and w2� · � are bounded and w1� · �≤w2� · �, then �Jyw1���t
 ·�≤ �Jyw2���t
 ·�.
(iii) If w3� · � and w4� · � are bounded, then

sup
�≥0

∣∣�Jyw3���t
��− �Jyw4���t
��
∣∣≤ e−
�t sup

�≥0

∣∣w3���−w4���
∣∣�

(iv) If w� · � is bounded and nonpositive, then for every �t > 0, �≥ 0, and 0≤ y ≤�t,

y �→ �Jyw���t
��= inf
r≥y

�Jw���t
�
 y
 r�= min
r∈	y
�t!

�Jw���t
�
 y
 r� (13)

is continuous, and infimum is attained because r �→ �Jw���t
�
 y
 r� is lower semicontinuous.
(v) If for some 0 ≤ y0 < y1 ≤ �t and � ≥ 0, we have �Jyw���t
�� < 0 for every y0 ≤ y ≤ y1, then

�Jyw���t
��= ∫ z

y
e−
u���u
��−
/c�du+ �Jzw���t
��, y0 ≤ y ≤ z≤ y1.

Proposition 4.1. For every fixed n≥ 0, the sequence �"�m�
n �m≥n converges ��-a.s. to "n as m→�. More

precisely, ��-a.s. 0≤ "�m�
n −"n ≤ �1/c� e−
�tm−tn� for every 0≤ n≤m.

Proof. Fix 0 ≤ n ≤ m. For all � ∈ �n, � ∧ tm ∈ �n, and "n ≤ Ɛ�	
∫ �∧tm
tn

e−
�t−tn���t − 
/c�dt � �tn
!.

Then ��-a.s. "n ≤ "�m�
n . However, Ɛ�

�	
∫ �

tn
e−
�t−tn���t − 
/c�dt � �tn

! ≥ Ɛ�
�	
∫ �∧tm
tn

e−
�t−tn���t − 
/c�dt � �tn
!−

�
/c�
∫ �
tm

e−
�t−tn� dt ≥ "�m�
n − �1/c�e−
�tm−tn�. Taking the infimum over � ∈�n completes the proof. �

Theorem 4.1. For every 0≤ n≤m, we have
(i) "�m�

n = v�m�
n ��tn

�
 ��-a.s.


(ii) 9�m�
n %= inf�∈�n

Ɛ�
[∫ �∧tm

tn
e−
�t−tn�

(
�t −
/c

)
dt
]= Ɛ�"�m�

n �
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For every # ≥ 0, let R�m�
m
# ≡ 0 and R�m�

n
# ≡ R�m�
n
#��tn+1
�tn

� be a nonnegative real number such that
�Jv

�m�
n+1���tn+1
�tn


0
R�m�
n
#�≤ �J0v

�m�
n+1���tn+1
�tn

�+ # for every 0≤ n≤m− 1. Then for every 0≤ n≤m, R�m�
n
#

is a nonnegative �tn
-measurable random variable, and

��m�
n
# %=




tn +R
�m�
n
#/2
 if R�m�

n
#/2 <�tn+1

�
�m�
n+1
 #/2
 if R�m�

n
#/2 ≥�tn+1


 ∈�n

is #-optimal in the sense that

(iii) "�m�
n + #≥ Ɛ�

[∫ �
�m�
n
#∧tm

tn
e−
�t−tn�

(
�t −
/c

)
dt

∣∣�tn

]

 ��-a.s.


(iv) 9�m�
n + #≥ Ɛ�

[∫ �
�m�
n
#∧tm

tn
e−
�t−tn�

(
�t −
/c

)
dt
]
�

Proof of Theorem 4.1. Note that "�m�
m = 0 (��-a.s.), v�m�

m ��tm
� = 9�m�

m = 0, and ��m�
m
# = tm. Therefore, the

theorem holds for n=m. Suppose now that the theorem holds for some 0<n≤m, and let us prove that it also
holds when n is replaced with n− 1.
(i) Fix any stopping time � ∈�n−1. By Theorem 3.1(ii) there is a nonnegative �tn−1 -measurable r.v. Rn−1 such

that � ∧ tn = �tn−1 + Rn−1� ∧ tn, and the dynamics in (2) of � implies that �t = ��t − tn−1
�tn−1� for every
tn−1 ≤ t < tn. Therefore,

Ɛ�

[∫ �∧tm

tn−1
e−
�t−tn−1�

(
�t −




c

)
dt

∣∣∣∣�tn−1

]

= Ɛ�

[∫ �∧tn

tn−1
e−
�t−tn−1�

(
�t −




c

)
dt+ 1��≥tn�

e−
�tnƐ�

{∫ ��∨tn�∧tm

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

}∣∣∣∣�tn−1

]

≥ Ɛ�

[∫ �∧tn

tn−1
e−
�t−tn−1�

(
�t −




c

)
dt+ 1��≥tn�

e−
�tnv�m�
n ��tn

�

∣∣∣∣�tn−1

]



because �� ∨ tn� ∈ �n, and Ɛ��
∫ ��∨tn�∧tm
tn

e−
�t−tn���t − 
/c�dt � �tn
� ≥ "�m�

n = v�m�
n ��tn

� by induction hypothe-
sis. By Theorem 3.1(ii) and (iii), there is a nonnegative �tn−1 -measurable random variable r.v. Rn−1 such that
��-a.s. � ∧ tn = �tn−1 + Rn−1� ∧ tn and �� ≥ tn� = �t0 + R0 ≥ t1
 ( ( ( 
 tn−1 + Rn−1 ≥ tn� = �tn−1 + Rn−1 ≥ tn�
because � ∈ �n−1 implies ��-a.s. � = �� ≥ tn−1� = �t0 + R0 ≥ t1
 ( ( ( 
 tn−2 + Rn−2 ≥ tn−1�. Because �tn

=
��tn
�tn−1�Xn/

√
�tn� by (2),

Ɛ�

[∫ �∧tm

tn−1
e−
�t−tn−1�

(
�t −




c

)
dt

∣∣∣∣�tn−1

]

=
∫ Rn−1∧�tn

0
e−
t

(
��t
�tn−1�−




c

)
dt+ 1�Rn−1≥�tn�

e−
�tnƐ�

[
v�m�
n

(


(
�tn
�


�Xn√
�tn

))]∣∣∣∣
�=�tn−1

= �Jv�m�
n ���tn
�tn−1
0
Rn−1�≥ �J0v

�m�
n ���tn
�tn−1�= v

�m�
n−1��tn−1�
 (14)

because Rn−1 and �tn−1 are �tn−1 -measurable, and �Xn/
√
�tn has standard Gaussian distribution independent of

�tn−1 = ��Xt0

Xt1


 ( ( ( 
Xtn−1� under ��. Taking the essential infimum of both sides over � ∈ �n−1 gives that
��-a.s. "

�m�
n−1 ≥ v

�m�
n−1��tn−1�. To show the reverse inequality, recall that

�
�m�
n−1
 # %=



tn−1 +R

�m�
n−1
 #/2
 if R�m�

n−1
 #/2 <�tn


�
�m�
n
#/2
 if R�m�

n−1
 #/2 ≥�tn

is in �n−1, where R
�m�
n−1
 #/2 ≥ 0 is such that �Jv�m�

n ���tn
�tn−1
0
R
�m�
n−1
 #/2�≤ �J0v

�m�
n ���tn
�tn−1�+#/2. Moreover,

�
�m�
n−1
 # ∧ tn = �tn−1 +R

�m�
n−1
 #/2�∧ tn and ��

�m�
n−1
 # ≥ tn�= �R

�m�
n−1
 #/2 ≥�tn�, on which �

�m�
n−1
 # = �

�m�
n
#/2 ∈�n. Then

"
�m�
n−1 ≤ Ɛ�

[∫ �
�m�
n−1
 #∧tm

tn−1
e−
�t−tn−1�

(
�t −




c

)
dt

∣∣∣∣�tn−1

]

=
∫ �tn−1+R

�m�
n−1
 #/2�∧tn

tn−1
e−
�t−tn−1�

(
��t− tn−1
�tn−1�−




c

)
dt
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+ 1
�R

�m�
n−1
 #/2≥�tn�

e−
�tnƐ�

[
Ɛ�

{∫ �
�m�
n
#/2∧tm

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

}∣∣∣∣�tn−1

]

≤
∫ R

�m�
n−1
 #/2∧�tn

0
e−
t

(
��t
�tn−1�−




c

)
dt+ 1	�tn
���R

�m�
n−1
 #/2�e

−
�tnƐ�	v
�m�
n ��tn

� ��tn−1 !+
#

2



where Ɛ��
∫ �

�m�
n
#/2∧tm

tn
e−
�t−tn���t −
/c�dt ��tn

�≤ "�m�
n +#/2= v�m�

n ��tn
�+#/2 by induction hypothesis. Because

�tn
= ��tn
�tn−1
�Xn/

√
�tn� by (2), and �tn−1 and R

�m�
n−1
 #/2 are �tn−1 -measurable,

"
�m�
n−1 ≤

∫ R
�m�
n−1
 #/2∧�tn

0
e−
t

(
��t
�tn−1�−




c

)
dt

+ 1	�tn
���R
�m�
n−1
 #/2�e

−
�tnƐ�

[
v�m�
n

(


(
�tn
�


�Xn√
�tn

))]∣∣∣∣
�=�tn−1

+ #

2

=
∫ R

�m�
n−1
 #/2∧�tn

0
e−
t

(
��t
�tn−1�−




c

)
dt+ 1	�tn
���R

�m�
n−1
 #/2�e

−
�tn�Kv�m�
n ���tn
�tn−1�+

#

2

= �Jv�m�
n ���tn
�tn−1
0
R

�m�
n−1
 #/2�+

#

2
< �J0v

�m�
n ���tn
�tn−1�+ #= v

�m�
n−1��tn−1�+ #�

Because #≥ 0 is arbitrary, we conclude that "�m�
n−1 = v

�m�
n−1��tn−1�, which proves (i) for n− 1.

In the meantime, Ɛ�	
∫ �

�m�
n−1
 #∧tm

tn−1
e−
�t−tn−1���t −
/c�dt ��tn−1 !≤ v

�m�
n−1��tn−1�+ #= "

�m�
n−1 + #, and taking expec-

tations proves (iii) and (iv) for �n− 1� and that stopping time �
�m�
n−1
 # is #-optimal.

(ii) Let us finally prove (ii) for n − 1. By (iv) that we have just established for �n − 1�, we obtain

9
�m�
n−1 ≤ Ɛ�	

∫ �
�m�
n−1
 #∧tm

tn−1
e−
�t−tn−1���t − 
/c�dt! ≤ Ɛ�"

�m�
n−1 + #, and because # ≥ 0 is arbitrary, we get 9

�m�
n−1 ≤

Ɛ�"
�m�
n−1. For reverse inequality, take expectations in (14) and obtain Ɛ�	

∫ �∧tm
tn−1

e−
�t−tn−1���t − 
/c�dt � �tn−1 !≥
Ɛ�	v

�m�
n−1��tn−1�! = Ɛ�"

�m�
n−1 for all � ∈ �n−1. Taking infimums over � ∈ �n−1 gives 9

�m�
n−1 ≥ Ɛ�"

�m�
n−1, which

proves (ii) for n− 1, and the theorem. �

The next corollary follows immediately from Proposition 4.1 and Theorem 4.1 and shows that the value
function V ��� in (7) can be approximated successively by the elements of the sequence �v�m�

0 ����n≥0. The explicit
uniform bound on the approximation error allows one to determine the least number of iterations sufficient to
obtain any given level of accuracy.

Corollary 4.1. The value function V � · � of the original optimal stopping problem in (7) can be found
in the limit by V ��0�= "0 = limm→� "

�m�
0 = limm→� v

�m�
0 ��0�, where the convergence is uniform in �0. More

precisely, we have 0≤ V ���− v
�m�
0 ���≤ �1/c�e−
tm for every �≥ 0 and m≥ 0. For every # > 0, let M�#� %=

min�m ≥ 0� tm ≥ 1/
 ln�1/�c#���. Then the ��t�t≥0-stopping time �
�M�#/2��
0
 #/2 ∧ tM�#/2� ∈ �0 is #-optimal for the

problem in (7); namely,

0≤ V ���− Ɛ�
�

[∫ �
�M�#/2��
0
 #/2 ∧tM�#/2�

0
e−
t

(
�t −




c

)
dt
]
≤ # for every �≥ 0�

Proposition 4.2 shows that, for every 0≤ n≤m and # > 0, the #-optimal stopping rule ��m�
n
# of Theorem 4.1

admits a simple characterization of the same form as in the general characterization of all ��t�t≥0-stopping rules
described by Theorem 3.1 and Proposition 3.2.

Proposition 4.2. For every 0 ≤ n ≤ m − 1 and # ≥ 0, let ��m�
n
# and R�m�

n
# be as in Theorem 4.1. Define
N �m�

n
# =min�n ≤ k ≤ m�R
�m�

k
#/2k+1−n < �tk+1�. Then N �m�
n
# is an �n
n+ 1
 ( ( ( 
m�-valued ��tk

�k≥0-stopping time,
�tk ≤ ��m�

n
# < tk+1�= �N �m�
n
# = k�, and

��m�
n
# = t

N
�m�
n
#

+R
�m�

N
�m�
n
# 
#/2

N
�m�
n
# +1−n

=
(
tk +R

�m�

k
#/2k+1−n

)∣∣∣∣
k=N

�m�
n
#

�

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Dayanik: Wiener Disorder Problem
Mathematics of Operations Research 35(4), pp. 756–785, © 2010 INFORMS 765

Proof. Because ��m�
n
# = �

�m�
n+1
 #/2 on ���m�

n
# ≥ tn+1�= �R
�m�
n
#/2 ≥�tn+1�, we have

{
��m�
n
# ≥ tk

}= {
R

�m�
n
#/2 ≥�tn+1

}∩ k⋂
i=n+2

{
�
�m�
n+1
 #/2 ≥ ti

}= · · · =
k−1⋂
l=n

{
R

�m�

l
#/2l+1−n ≥�tl+1
}

 for n+ 1≤ k≤m

and

{
tk ≤ ��m�

n
# < tk+1
}= k−1⋂

l=n

{
R

�m�

l
#/2l+1−n ≥�tl+1
}∖ k⋂

l=n

{
R

�m�

l
#/2l+1−n ≥�tl+1
}= {

N �m�
n
# = k

}
for n≤ k≤m− 1�

��m�
n
# = tk +R

�m�

k
#/2k+1−n on
{
tk ≤ ��m�

n
# < tk+1
}= {

N �m�
n
# = k

}
for n≤ k≤m� �

Theorem 4.2 generalizes Corollary 4.1. The theorem shows that the minimum conditional expected remaining
Bayes risk at tn, given the past observations �tn

equals ��-a.s. "n = vn��tn
�, where vn� · � is the limit of its

successive approximations �v�m�
n � · ��m≥0 as m→�. Because the convergence turns out to be uniform, the error

in the approximation of vn��� by v
�m�
0 ��� can be made arbitrarily small simultaneously for every �≥ 0 if m≥ 0

is chosen sufficiently large.

Theorem 4.2. For every n≥ 0 and �≥ 0, the sequence �v�m�
n ����m≥0 is decreasing, and the pointwise limit

vn��� %= limm→� v�m�
n ��� exists and is uniform in �≥ 0. More precisely,

sup
�≥0

�vn���− v�m�
n ���� ≤ 1

c
e−
�tm−tn� for every 0≤ n≤m�

The functions v�m�
n � · �, 0 ≤ m ≤ n and vn� · �, n ≥ 0 are nondecreasing, concave, continuous, and bounded

between −1/c and 0. Moreover, for every n≥ 0, we have vn� · �= �J0vn+1���tn+1
 ·�, and

"n = vn��tn
�
 ��-a.s. and 9n %= inf

�∈�n

Ɛ�

[∫ �

tn

e−
�t−tn�

(
�t −




c

)
dt
]
= Ɛ�"n�

For every n ≥ 0 and # > 0, let Mn�#� %= min�m ≥ n� tm − tn ≥ �1/
� ln�1/�c#���. Then the ��t�t≥0-stopping
time �

�Mn�#/2��
n
#/2 ∧ tMn�#/2�

∈�n, defined as in Theorem 4.1, is #-optimal for the problem inf�∈�n
R��p�= 1− p+

�1− p�cƐ�	
∫ tn
0 e−
t��t − 
/c�dt + e−
tn"n! of the minimum Bayes risk if an alarm has not yet been raised

before time tn; namely,

"n + #> Ɛ�

[∫ �
�Mn�#/2��
n
#/2 ∧tMn�#/2�

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

]
�

Proof. For every m≥ 0, because v�m�
m � · �≡ 0 ∈ 	−1/c
0! is bounded, nondecreasing, concave, and continu-

ous, Lemma 4.1(i) implies that v�m�
n � · � is bounded between −1/c and 0, nondecreasing, concave, and continuous

for every 0 ≤ n ≤ m. Moreover, for every n ≥ 0, the sequence �v�m�
n � · ��m≥n is decreasing. To see this, note

that for every m< p we have v�p�
m � · � ≤ 0 ≡ v�m�

m � · �. Suppose v�p�
n � · � ≤ v�m�

n � · � for some 0 < n ≤ m. Then by
Lemma 4.1(ii) v�p�

n−1� · �= �J0v
�p�
n ���tn
 ·�≤ �J0v

�m�
n ���tn
 ·�= v

�m�
n−1� · �, and an induction on 0≤ n≤m proves that

v�p�
n � · �≤ v�m�

n � · � for every 0≤ n≤m≤ p. Thus, the limit vn��� %= limm→� v�m�
n ��� exists for every �≥ 0 and

is bounded between −1/c and 0, nondecreasing, and concave. For all 0≤ n≤m≤ p, by Lemma 4.1(iii)

sup
�≥0

∣∣vn���− v�m�
n ���

∣∣ ≤ sup
�≥0

∣∣v�p�
n ���− v�m�

n ���
∣∣= sup

�≥0

∣∣�J0v�p�
n+1���tn+1
��− �J0v

�m�
n+1���tn+1
��

∣∣

≤ e−
�tn+1 sup
�≥0

∣∣v�p�
n+1���− v

�m�
n+1���

∣∣= e−
�tm−tn� sup
�≥0

�v�p�
m ���� ≤ 1

c
e−
�tm−tn��

Hence, the sequence �v�m�
n ����m≥n of continuous functions converges as m→� to vn��� uniformly in �≥ 0,

and vn� · � is also continuous for all n≥ 0. Moreover, vn� · �= �J0vn+1���tn+1
 ·� for all n≥ 0, because vn���=
infm≥n�J0v

�m�
n+1���tn+1
�� = infm≥n inf r≥0�Jv

�m�
n+1���tn+1
�
0
 r� = inf r≥0 infm≥n�Jv

�m�
n+1���tn+1
�
0
 r� =

inf r≥0�Jvn+1���tn+1
�
0
 r� = �J0vn+1���tn+1
��, by the bounded convergence. Finally, by Proposition 4.1
and Theorem 4.1, "n = limm→� v�m�

n ��tn
� = vn��tn

�. For 0 ≤ n ≤ m and � ∈ �n, we have � ∧ tm ∈ �n and
9n ≤ Ɛ�	

∫ �∧tm
tn

e−
�t−tn���t −
/c�dt!, and taking the infimums gives 9n ≤ 9�m�
n = Ɛ�"�m�

n by Theorem 4.1. Taking
limits as m → � gives 9n ≤ Ɛ�"n because "�m�

n → "n as m → �, ��-a.s. uniformly across sample-paths by

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Dayanik: Wiener Disorder Problem
766 Mathematics of Operations Research 35(4), pp. 756–785, © 2010 INFORMS

Proposition 4.1. For the reverse, "n ≤ Ɛ�	
∫ �

tn
e−
�t−tn���t − 
/c�dt � �tn

! for all � ∈�n, and taking expectations
and infimum over � ∈�n gives Ɛ�"n ≤ inf�∈�n

Ɛ�	
∫ �

tn
e−
�t−tn���t −
/c�dt!= 9n, and 9n = Ɛ�"n.

According to the first parts of Proposition 2.1 and Theorem 4.2, if an alarm has not yet been raised before
time tn, then inf�∈�n

R��p� = 1− p+ �1− p�cƐ�	
∫ tn
0 e−
t��t − 
/c�dt + e−
tn"n!. Theorem 4.1(iii) with m =

Mn�#/2� implies

Ɛ�

[∫ �
�Mn�#/2��
n
#/2 ∧tMn�#/2�

tn

e−
�t−tn�

(
�t −




c

)
dt

∣∣∣∣�tn

]
≤ "�Mn�#/2��

n + #

2

= v�Mn�#/2��
n ��tn

�+ #

2
< vn��tn

�+ #

2
+ #

2
= "n + #� �

5. The solution between observation times. If detection alarm has not been raised until time t ≥ 0, then
one faces optimal stopping problems

"�t� %= ess inf
�∈� �t�

Ɛ�

[∫ �

t
e−
�u−t�

(
�u −




c

)
du

∣∣∣∣�t

]

 t ≥ 0


"�m��t� %= ess inf
�∈� �t�

Ɛ�

[∫ �∧tm

t
e−
�u−t�

(
�u −




c

)
du

∣∣∣∣�t

]

 t ≥ 0
 m≥ 0


(15)

where � �t� = �� ∈ � � � ≥ t
 ��-a.s.�� Note that �n, "
�m�
n , and "n of §4 are the same as, respectively, � �tn�,

"�m��tn�, and "�tn� for every 0 ≤ n ≤ m. Theorem 5.1 below shows how the solution and #-optimal stop-
ping rules between observation times can be easily identified after they are first found at observation times as
described in §4.

Theorem 5.1. For every 0≤ n<m and tn ≤ t < tn+1, we have

(i) "�m��t�= e
�t−tn��Jt−tn
v
�m�
n+1���tn+1
�tn

�
 ��-a.s.


(ii) 9�m��t� %= inf�∈� �t� Ɛ�
[∫ �∧tm

t
e−
�u−t�

(
�u −
/c

)
du

]= Ɛ�"�m��t�


where �v�m�
n � · ��0≤n≤m are the successive approximations calculated by (12). For every m≥ 0 and 0≤ t ≤ tm, we

have ��-a.s. −1/c ≤ "�m��t�≤ 0, and −1/c ≤ 9�m��t�≤ 0.
For every # ≥ 0, m ≥ 0, and 0 ≤ t ≤ tm, let R

�m�
# �t� ≡ 0 and R�m�

# �t� ≡ R�m�
# �t
�tn+1
�tn

� be a real number
greater than or equal to t− tn such that

�Jv
�m�
n+1���tn+1
�tn


 t− tn
R
�m�
# �t��≤ �Jt−tn

v
�m�
n+1���tn+1
�tn

�+ # · e−
�t−tn�


if tn ≤ t < tn+1 for some 0 ≤ n < m. For every # ≥ 0, R�m�
# �t� is a nonnegative random variable, which is �tm

measurable if t = tm and �t ≡�tn
measurable if tn ≤ t < tn+1 for some 0≤ n<m. Moreover,

��m�
# �t� %=




tn +R
�m�
#/2�t�
 if R�m�

#/2�t� < �tn+1

�
�m�
n+1
 #/2
 if R�m�

#/2�t�≥�tn+1


 ∈� �t�

is #-optimal in the sense that, if tn ≤ t < tn+1 for some 0≤ n<m, then

(iii) "�m��t�+ #≥ Ɛ�
[∫ �

�m�
# �t�∧tm

t
e−
�u−t�

(
�u −
/c

)
du

∣∣�t

]

 ��-a.s.


(iv) 9�m��t�+ #≥ Ɛ�
[∫ �

�m�
# �t�∧tm

tn
e−
�u−t�

(
�u −
/c

)
du

]
�

R�m�
n
# and ��m�

n
# of Theorem 4.1 are the same as R�m�
# �tn� and ��m�

# �tn� for all 0≤ n≤m, #> 0.

The proof of Theorem 5.1 is similar to that of Theorem 4.1 and is omitted. As expected from Proposition 4.1
and Theorem 4.2, "�t� is ��-a.s. limit of "�m��t� as m→� and is related to vn� · �, if tn ≤ t < tn+1 for some n,
through the dynamic programming operator J�. For each t ≥ 0, the convergence is uniform across the sample
path realizations, and the explicit bound on the approximation error helps one determine #-stopping times.

Proposition 5.1. For every fixed n ≥ 0 and tn ≤ t < tn+1, the sequence �"�m��t��m>n converges ��-a.s. to
"�t� as m→�. More precisely, ��-a.s. 0≤ "�m��t�− "�t�≤ �1/c�e−
�tm−tn� for every 0≤ n <m and tn ≤ t <
tn+1. For every n≥ 0 and tn ≤ t < tn+1,

"�t�= e
�t−tn��Jt−tn
vn+1���tn+1
�tn

�
 ��-a.s.


9�t� %= inf
�∈� �t�

Ɛ�

[∫ �

t
e−
�u−t�

(
�u −




c

)
du

]
= Ɛ�"�t��
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If Mn�#� is defined for every # > 0 and n ≥ 0 as in Theorem 4.2, then for every tn ≤ t < tn+1 the �-stopping
time �

�Mn�#/2��
#/2 �t�∧ tMn�#/2�

∈� �t� defined as in Theorem 5.1 is #-optimal for

inf
�∈� �t�

R��p�= 1−p+ �1−p�cƐ�

[∫ t

0
e−
u

(
�u −




c

)
du+ e−
t"�t�

]
(16)

of the minimum Bayes risk if an alarm has not been raised before time t; namely,

"�t�+ #> Ɛ�

[∫ �
�Mn�#/2��
#/2 �t�∧tMn�#/2�

t
e−
�u−t�

(
�u −




c

)
du

∣∣∣∣�t

]
�

Proof. Fix n≥0 and tn≤ t<tn+1. For every � ∈� �t� and m>n, we have �∧tm∈� �t� and "�t�≤
Ɛ�	

∫ �∧tm
t

e−
�u−t���u−
/c�du ��t!. Hence, ��-a.s. "�t�≤"�m��t�. We also have Ɛ�	
∫ �

t
e−
�u−t���u−
/c�du ��t!

≥ Ɛ�	
∫ �∧tm
t

e−
�u−t���u − 
/c�du � �t! − �1/c�
∫ �
tm


e−
�u−t� du ≥ "�m��t� − �1/c�e−
�tm−t� ≥ "�m��t� −
�1/c�e−
�tm−tn�. Taking essential infimums over � ∈ � �t� gives the first inequality of the proposition, which
shows that "�m��t� converges uniformly and ��-a.s. to "�t� as m → �. By Theorem 5.1(i), ��-a.s. "�t� =
limm→� "�m��t�= limm→� e
�t−tn��Jt−tn

v
�m�
n+1���tn+1
�tn

�= e
�t−tn��Jt−tn
vn+1���tn+1
�tn

� by the bounded conver-
gence and Theorem 4.2. Because for every � ∈� �t�, we have "�t�≤ Ɛ�	

∫ �

t
e−
�u−t���u − 
/c�du � �t!, taking

expectations and infimums over � ∈� �t� gives Ɛ�"�t�≤ 9�t�. Because �"�m��t��m≥0 converges uniformly to "�t�
as m→�, we have Ɛ�"�t�= limm→� Ɛ�"�m��t�= limm→� 9�m��t�≥ 9�t� by Theorem 4.2(ii). This proves (ii).
By the first parts of Proposition 2.1 and Theorem 4.2, if an alarm has not yet been raised before tn, then

minimum expected risk becomes inf�∈�n
R��p� = 1− p + �1− p�cƐ�	

∫ t

0 e
−
u��u − 
/c�du+ e−
t"�t�!. The-

orem 5.1(iii) with m = Mn�#/2� implies that Ɛ�	
∫ �

�Mn�#/2��
#/2 �t�∧tMn�#/2�

t
e−
�u−t���u − 
/c�du � �t! ≤ "�Mn�#/2���t�+

#/2 < "�t� + #/2 + #/2 = "�t� + #, where the last inequality follows from the first part of the proposition.
Taking expectations gives the last inequality of the proposition. �

Remark 5.1. We can write more compactly that ��-a.s.

"�t�=
�∑

n=0
1	tn
 tn+1��t�e


�t−tn��Jt−tn
vn+1���tn+1
�tn

�
 t ≥ 0


"�m��t�=
m−1∑
n=0

1	tn
 tn+1��t�e

�t−tn��Jt−tn

v
�m�
n+1���tn+1
�tn

�
 0≤ t < tm
 m≥ 1�

(17)

For every 0 ≤ n ≤ m, because the functions vn+1� · � and v
�m�
n+1� · � are bounded and nonpositive, the mappings

t �→ �Jt−tn
vn+1���tn+1
�tn

� and t �→ �Jt−tn
v
�m�
n+1���tn+1
�tn

� are continuous on the interval t ∈ 	tn
 tn+1! by
Lemma 4.1(iv). Therefore, the processes in (17) are RCLL versions of �"�t�� t ≥ 0� and �"�m��t�� 0≤ t ≤ tm�,
m≥ 1, and we work with those in the remainder.
The next theorem introduces alternative #-optimal stopping rules, which will later be characterized as simple

first hitting times of process � to suitable regions.

Theorem 5.2. The stopping times

��m�
# �t� %= inf�s ≥ t� "�m��s�≥−#�
 #≥ 0
 0≤ t ≤ tm
 m≥ 1 (18)

belong to � �t�, are ��-a.s. less than or equal to tm, and are #-optimal in the sense that "�m��t� + # ≥
Ɛ�	

∫ �
�m�
# �t�∧tm

t
e−
�u−t���u − 
/c�du � �t!. Particularly, �

�m�
0 �t�, 0 ≤ t ≤ tm, m≥ 1 are optimal in the sense that

"�m��t�= Ɛ�	
∫ �

�m�
0 �t�∧tm

t
e−
�u−t���u −
/c�du ��t!.

For the proof of Theorem 5.2, we need the following proposition and its corollary, which are proved in
Appendix A.3.

Proposition 5.2. For every m≥ 1, let M�m��t� %= ∫ t

0 e
−
u��u − 
/c�du+ e−
t"�m��t� for every 0≤ t ≤ tm.

Then M�m��t� is integrable for every 0≤ t ≤ tm under ��, and Ɛ�	M�m��� ∧��m�
# �t��!= Ɛ�	M�m��t�! for every

m≥ 1, 0≤ t ≤ tm, � ∈� �t�, and #≥ 0.

Corollary 5.1. The stopped process �M�m��s ∧ ��m�
# �t��
�s� t ≤ s ≤ tm� is a RCLL martingale under ��

for every m≥ 1, 0≤ t ≤ tm, and #≥ 0.
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Proof of Theorem 5.2. Because "�m��tm�≡ 0, we have t ≤ ��m�
# �t�≤ tm for every m≥ 1, 0≤ t ≤ tm, and

#≥ 0. Moreover, optional sampling theorem and Corollary 5.1 imply that
∫ t

0 e
−
u��u −
/c�du+ e−
t"�m��t�=

M�m��t�= Ɛ�	M�m����m�
# �t�� � �t!= Ɛ�	

∫ �
�m�
# �t�

0 e−
u��u − 
/c�du+ e−
�
�m�
# �t�"�m����m�

# �t�� � �t!, which leads to

"�m��t� ≥ Ɛ�	
∫ �

�m�
# �t�

t
e−
�u−t���u − 
/c�du � �t!− #, because "�m����m�

# �t�� ≥ −# and ��m�
# �t�− t ≥ 0. Finally,

taking the expectations of both sides and Theorem 5.1(ii) give 9�m��t� = Ɛ�"�m��t� ≥ Ɛ�	
∫ �

�m�
# �t�

t
e−
�u−t� ·

��u −
/c�du!− #. �
The stopping time �#�t� %= inf�s ≥ t� "�s� ≥ −#� is #-optimal in infinite-horizon for all # ≥ 0, t ≥ 0 by

Theorem 5.3, Proposition 5.3, and Corollary 5.2, whose very similar proofs are omitted.

Theorem 5.3. The stopping times

�#�t� %= inf�s ≥ t� "�s�≥−#�
 #≥ 0
 t ≥ 0 (19)

belong to � �t� and are #-optimal in the sense that "�t�+#≥ Ɛ�	
∫ �#�t�

t
e−
�u−t���u−
/c�du ��t!. Particularly,

�0�t�, t ≥ 0 are optimal; namely, "�t�= Ɛ�	
∫ �0�t�

t
e−
�u−t���u −
/c�du ��t!, t ≥ 0.

Proposition 5.3. M�t� %= ∫ t

0 e
−
u��u − 
/c�du + e−
t"�t� is integrable for every t ≥ 0 under ��, and

Ɛ�	M�tm ∧ � ∧�#�t��!= Ɛ�	M�t�! for every m≥ 0, 0≤ t ≤ tm, � ∈� �t�, and #≥ 0.

Corollary 5.2. �M�s∧�#�t��
�s� s ≥ t� is a RCLL martingale under �� for all t ≥ 0, and #≥ 0.

The process "� · �= limm→� "�m�� · � can be obtained only in the limit, and optimal stopping times �0�t� of
Theorem 5.3 are impractical. We can use successive approximations "�m�� · � to define, in light of Proposition 5.1
and Theorem 5.2, practical #-optimal stopping rules of Proposition 5.4.

Proposition 5.4. If Mn�#� is defined for all # > 0 and n≥ 0 as in Theorem 4.2, then for all tn ≤ t < tn+1
the �-stopping time �

�Mn�#/2��
#/2 �t� ∈� �t� defined as in Theorem 5.2 is #-optimal for the problem of the minimum

Bayes risk in (16) if an alarm was not raised before time t; namely,

"�t�+ #> Ɛ�

[∫ �
�Mn�#/2��
#/2 �t�∧tMn�#/2�

t
e−
�u−t�

(
�u −




c

)
du

∣∣∣∣�t

]
�

6. The structure of #-optimal stopping rules. Here, we shall characterize #-optimal stopping time ��m�
# �t�

of (18) for arbitrary but fixed m≥ 1, #≥ 0, 0≤ t ≤ tm and #-optimal stopping time �#�t� of (19) for arbitrary but
fixed #≥ 0 and t ≥ 0. Remark 5.1 implies that "�m��s�= e
�s−tl��Js−tl

v
�m�
l+1���tl+1
�tl

� for every 0≤ l ≤m− 1,
s ∈ 	tl
 tl+1�, and "�s�= e
�s−tl��Js−tl

vl+1���tl+1
�tl
� for l≥ 0, t ≥ 0. Then

"�m��s�≥−# ⇔ �Js−tl
v
�m�
l+1���tl+1
�tl

�≥−#e−
�s−tl�
 s ∈ 	tl
 tl+1�
 0≤ l <m


"�s�≥−# ⇔ �Js−tl
vl+1���tl+1
�tl

�≥−#e−
�s−tl�
 s ∈ 	tl
 tl+1�
 l≥ 0�
(20)

By Theorem 4.2, � �→ v
�m�
l+1��� and � �→ vl+1��� are nondecreasing, concave, continuous, bounded between

−1/c and 0. Then �Js−tl
v
�m�
l+1���tl+1
�� = 0 ≥ −#e−
�s−tl� and �Js−tl

vl+1���tl+1
�� = 0 ≥ −#e−
�s−tl� for
every large � ≥ 0 by Lemma 4.1(i), and the sets �� ≥ 0� �Js−tl

v
�m�
l+1���tl+1
�� ≥ −#e−
�s−tl�� and �� ≥ 0�

�Js−tl
vl+1���tl+1
��≥−#e−
�s−tl�� are not empty. Therefore,

��m�
# �s� %=

m−1∑
l=0

1	tl
 tl+1��s� inf
{
�≥ 0� �Js−tl

v
�m�
l+1���tl+1
��≥−#e−
�s−tl�

}

 s ∈ 	0
 tm!


�#�s� %=
�∑
l=0

1	tl
 tl+1��s� inf
{
�≥ 0� �Js−tl

vl+1���tl+1
��≥−#e−
�s−tl�
}

 s ≥ 0

(21)

are finite. Because � �→ �Js−tl
v
�m�
l+1���tl+1
�� and � �→ �Js−tl

vl+1���tl+1
�� are continuous, we have
�Js−tl

v
�m�
l+1���tl+1
��m�

# �s��≥−#e−
�s−tl� and �Js−tl
vl+1���tl+1
�#�s��≥−#e−
�s−tl� if s ∈ 	tl
 tl+1� for some l≥ 0.

Moreover, (20) becomes

"�m��s�≥−# ⇔ �tl
≥��m�

# �s�
 s ∈ 	tl
 tl+1�
 0≤ l≤m− 1


"�s�≥−# ⇔ �tl
≥�#�s�
 s ∈ 	tl
 tl+1�
 l≥ 0
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which imply that #-optimal stopping rules ��m�
# �t� in (18) and �#�t� in (19) can be written as

��m�
# �t�=min

{
t ≤ s ≤ tm�

m−1∑
l=0

1	tl
 tl+1��s��tl
≥��m�

# �s�

}

 0≤ t ≤ tm


�#�t�=min
{
s ≥ t�

�∑
l=0

1	tl
 tl+1��s��tl
≥�#�s�

}

 t ≥ 0�

(22)

Proposition 6.1. For every m≥ 1, #≥ 0, and 0≤ s ≤ tm, the sequence ��
�m�
# �s��m≥1 is increasing. Moreover,

�#�s�= limm→� ↑��m�
# �s� for every #≥ 0 and s ≥ 0.

Proof of Proposition 6.1. Because �v
�m�
l �m≥1 is a decreasing sequence, which converges uniformly to vl

for l ≥ 0, we have ��k�
# �s� ≤ ��m�

# �s� ≤ �#�s� for 0 ≤ k ≤ m − 1 and tl ≤ s < tl+1. Hence, ���m�
# �s��m≥1

is increasing, and limm→� ��m�
# �s� ≤ �#�s� for # ≥ 0, s ≥ 0. For the reverse inequality, �Js−tl

vl+1� ·
��tl+1
 limm→� ��m�

# �s�� = limk→��Js−tl
v
�k�
l+1���tl+1
 limm→� ��m�

# �s�� by dominated convergence. Because � �→
�Js−tl

v
�k�
l+1���tl+1
�� is increasing and limm→� ��m�

# �s� ≥ ��k�
# �s�, the righthand side is greater than or equal

to limk→��Js−tl
v
�k�
l+1���tl+1
��k�

# �s�� ≥ −#e−
�s−tl�, and �#�s� ≤ limm→� ��m�
# �s�. This proves that �#�s� =

limm→� ��m�
# �s�. �

Next we characterize optimal stopping boundaries ��m�
0 �s�, s ≥ 0 for all m≥ 0 and �0�s�, s ≥ 0. For all fixed

l ≥ 0 and m> l, we show that lims↑tl+1 �
�m�
0 �s�= lims↑tl+1 �0�s�=+�. Moreover, s �→ �

�m�
0 �s� and s �→ �0�s�

on s ∈ 	tl
 tl+1� either strictly increase or first decrease and then increase; in the latter case, they are strictly
monotone wherever they do not vanish.

Assumption 6.1. Let �t > 0 be a finite real number and w% �+ �→� be a continuous concave nondecreasing
function, which is between −1/c and 0 but does not identically vanish.

By Theorem 4.2, v�m�
l � · �, 0< l≤m− 1 and vl� · �, l > 0 satisfy Assumption 6.1. Define

���t
 y
w�= inf��≥ 0� �Jyw���t
��≥ 0�
 0≤ y <�t�

Then �
�m�
0 �s� = ���tl+1
 s − tl
 v

�m�
l+1� for s ∈ 	tl
 tl+1�, 0 ≤ l ≤ m − 1 and �0�s� = ���tl+1
 s − tl
 vl+1� for

s ∈ 	tl
 tl+1� and l≥ 0, and the analysis of y �→���t
 y
w� on y ∈ 	0
�t� applies to optimal stopping boundaries
s �→�

�m�
0 �s�, m> l and s �→�0�s� on s ∈ 	tl
 tl+1� for l≥ 0.

Proposition 6.2. Let �t > 0 and w% �+ �→� be as in Assumption 6.1. Then, for every �≥ 0 and 0≤ y <�t,
we have �Jyw���t
��≥ 0 if and only if




�≥ e−
y

(
1+ 


c

)
− 1


�1+����t− y�−
(
1


+ 1

c

)
�e−
y − e−
�t�+ e−
�t�Kw���t
��≥ 0




� (23)

Therefore, for every 0 ≤ y < �t, the critical boundary ���t
 y
w� equals inf�� ≥ 	e−
y�1 + 
/c� − 1!+�
�1 + ����t − y� − �1/
 + 1/c��e−
y − e−
�t� + e−
�t�Kw���t
�� ≥ 0�
 and ���
y� ≤ ���t
 y
w� ≤
�̄��t
 y�, where ���t
 y� = 	e−
y�1 + 
/c� − 1!+ and �̄��t
 y� = max�	e−
y�1 + 
/c� − 1!+
 �1/
 + 1/c� ·
��e−
y − e−
�t�/��t− y��+ �1/c��e−
�t/��t− y��− 1��

Remark 6.1. One can find ���t
 y
w� by a binary search on 	���t
 y�
 �̄��t
 y�! for y ∈ 	0
�t�.
Proof of Proposition 6.2. 0 ≤ �Jyw���t
�� implies that (i)

∫ r

y
e−
u���u
�� − 
/c�du ≥ 0 for every

y ≤ r < �t and (ii) 0 ≤ ∫ �t

y
e−
u���u
�� − 
/c�du + e−
�t�Kw���t
�� = �1 + ����t − y� − �1/
 + 1/c� ·

�e−
y − e−
�t� + e−
�t�Kw���t
��. Dividing both sides of (i) by r − y and letting r ↓ y give
�≥ e−
y�1+
/c�− 1, and the inequalities in (23) must hold. If � satisfies (23), then because u �→ ��u
��≥

/c is increasing,

∫ r

y
e−
u���u
�� − 
/c�du ≥ 0 for every y ≤ r < �t. Together with (ii), we conclude

�Jyw���t
��≥ 0. The equivalent form of ���t
 y
w� follows from (23). The lower bound ���t
 y� on
���t
 y
w� follows from alternative form. Note that because w� · � ≥ −1/c, ���t
 y
w� ≤ inf�� ≥ 	e−
y ·
�1+
/c�− 1!+� ��+ 1���t− y�− �1/
+ 1/c�e−
y + 1/
e−
�t ≥ 0�= �̄��t
 y�� �

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

72
.1

98
] 

on
 0

2 
O

ct
ob

er
 2

01
7,

 a
t 0

1:
31

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Dayanik: Wiener Disorder Problem
770 Mathematics of Operations Research 35(4), pp. 756–785, © 2010 INFORMS

Lemma 6.1. Let �t > 0 and w� · � be as in Assumption 6.1. Then �Kw���t
�� < 0 for �≥ 0.

Proof. Recall that ��t
�
 z� in (10) is given by (2), and lim�z�→�
�z>0 ��t
�
 z� = � and
lim�z�→�
�z<0 ��t
�
 z� = 0 by the monotone convergence and bounded convergence theorems, respectively.
Because w �≡ 0 is increasing, there is some �̄ > 0 such that w��� ≤ w��̄� < 0 for every � < �̄. Then for
all � ≥ 0, there is some z̄ = z̄��t
�� such that ��t
�
 z� < �̄ for �z� > z̄ and z� < 0, and �Kw���t
�� ≤
�
∫ −z̄

−� + ∫ �
z̄
�w���t
�
 z���exp�−z2/2�/

√
2)�dz≤w��̄�

∫ −z̄

−��exp�−z2/2�/
√
2)�dz < 0. �

Lemma 6.2. Let �t > 0 and w� · � be as in Assumption 6.1. For every �≥ 0, there is some y��� ∈ 	0
�t�
such that y ∈ 	y���
�t� implies

�<

(
1


+ 1

c

)
e−
y − e−
�t

�t− y
− e−
�t �Kw���t
��

�t− y
− 1 and �Jyw���t
�� < 0�

Proof. Assume that there is some � ≥ 0 and some sequence �yn�n≥1 in 	0
�t� increasing to �t such
that � ≥ �1/
 + 1/c���e−
yn − e−
�t�/��t − yn�� − e−
�t���Kw���t
���/��t − yn�� − 1 for every n ≥ 1.
Note that limn→���e−
yn − e−
�t�/��t − yn�� = 
e−
�t is finite, and Lemma 6.1 implies �Kw���� < 0 and
limn→����Kw���t
���/��t− yn��=−�. Then taking limits in the last inequality as n→� gives �≥ �1/
+
1/c�
e−
�t +�−1=�, which contradicts with the finiteness of �. Finally, �Jyw���t
�� < 0 follows from the
first part of Proposition 6.2. �

Corollary 6.1. Let �t > 0 and w� · � be as in Assumption 6.1. Then limy↑�t ���t
 y
w�=�.

Proof. For every �≥ 0, there is some y��� ∈ 	0
�t� such that �Jyw���t
�� < 0 for all y ∈ 	y���
�t� by
Lemma 6.2, and therefore, limy↑�t ���t
 y
w�≥�. Letting � ↑� proves the result. �

Recall from (9) that
∫ �t

y
e−
u���u
��− 
/c�du+ e−
�t�Kw���t
�� = �Jw���t
�
 y
�t� for every � ≥ 0

and 0≤ y <�t. Because �</<y��Jw���t
�
 y
�t�=−e−
y���y
��−
/c�=−1−�+ �1+
/c�e−
y , we can
rewrite the equivalent form of ���t
 y
�� given by Proposition 6.2 as

���t
 y
��= inf
{
�≥ 0�

<

<y
�Jw���t
�
 y
�t�≤ 0 and �Jw���t
�
 y
�t�≥ 0

}
�

Remark 6.2. The mappings �y
�� �→ �Jw���t
�
 y
�t� and �y
�� �→ �</<y��Jw���t
�
 y
�t� are jointly
continuous in �y
�� ∈ 	0
�t�×�+. Because ���t
 y
w� is finite by Proposition 6.2, we have for every y ∈
	0
�t� that ���t
 y
w�≥ 0,

<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
�=���t
 y
w�

≤ 0 and �Jw���t
���t
 y
w�
 y
�t�≥ 0�

Therefore, ��y
���t
 y
w��� y ∈ 	0
�t�� belongs to the boundary of the closed set{
�y
�� ∈ 	0
�t��

<

<y
�Jw���t
�
 y
�t�≤ 0
 �Jw���t
�
 y
�t�≥ 0

}
�

Fix � ∈�. Because y �→ ��y
�� is strictly increasing, y �→ �</<y��Jw���t
�
 y
�t�=−e−
y���y
��−
/c�
on y ∈� changes its sign exactly once and from positive to negative at y = y∗��� satisfying

��y∗���
��− 


c
= 0 or y∗���= 1



ln
1+
/c

1+�
∈��

Hence, y �→ �Jw���t
�
 y
�t� is strictly increasing on �−�
 y∗���! and strictly decreasing on 	y∗���
�� and
has global maximum at y = y∗���. Because �<2/<y2��Jw���t
�
 y
�t� = −�1+ 
/c�
e−
y < 0, the mapping
y �→ �Jw���t
�
 y
�t� is also strictly concave.
Because � �→ ��u
�� and � �→ �Kw���t
�� are strictly increasing, � �→ �Jw���t
�
 y
�t� is strictly

increasing for every fixed y ∈ �−�
�t!. Note �Jw���t
�
�t
�t� = e−
�t�Kw���t
�� for every � ∈ �, and
the locations of the maximums � �→ y∗��� form a decreasing function, which is negative for every � < 
/c,
and y∗�
/c�= 0.
Remark 6.3. Let �t > 0 and w� · � be as in Assumption 6.1. The followings will later be useful.
(i) Suppose that �</<y��Jw���t
�0
 y
�t��y=y0

≤ 0 for some y0 ∈ �−�
�t! and �0 ∈ �. Then
�Jw���t
�0
 y0
�t� > �Jw���t
�0
 y
�t� > �Jw���t
�
 y
�t� for every y ∈ �y0
�t� and �<�0, and because
y∗��� < y∗��0� for all �>�0, �</<y��Jw���t
�
 y
�t� < 0 for all y ∈ 	y0
�t� and �>�0.
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(ii) Suppose that �</<y��Jw���t
�0
 y
�t��y=y0
= 0 for some y0 ∈ �−�
�t! and �0 ∈ �. Then

�</<y��Jw���t
�
 y
�t� > 0 for every y ∈ �−�
 y0� and �≤�0, because y∗��� > y∗��0�≡ y0 for every �<�0

and y �→ �Jw���t
�
 y
�t� is strictly increasing on y ∈ �−�
 y0� for �≤�0.

Theorem 6.1. Suppose �t > 0 and w% �+ �→ � are as in Assumption 6.1. Then y �→ ���t
 y
w� on y ∈
	0
�t� is either strictly increasing everywhere or first decreases and then increases. It is strictly monotone
at every y ∈ 	0
�t� where ���t
 y
w� > 0. At every y ∈ 	0
�t� where y �→ ���t
 y
w� is decreasing, it
coincides with y �→ e−
y�1+
/c�− 1. The mapping y �→���t
 y
w� is strictly increasing on a nonempty open
neighborhood in 	0
�t� of �t and is continuous everywhere.

Proof. Fix some y0 ∈ 	0
�t� and suppose that ���t
 y0
w� > 0. Note that we always have

<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
y=y0
�=���t
 y0
w�

≤ 0�

Case I. Suppose �</<y��Jw���t
�
 y
�t��y=y0
�=���t
 y0
w� < 0. Then �Jw���t
���t
 y0
w�
 y0
�t� =
0; otherwise, ���t
 y0
w� can be further lowered. By Remark 6.3(i) with �0 = ���t
 y
w�, 0 =
�Jw���t
���t
 y0
w�
 y0
�t� > �Jw���t
�
 y
�t� for y ∈ �y0
�t� and �≤���t
 y0
w�. Thus, ���t
 y
w� >
���t
 y0
w� for every y ∈ �y0
�t� which, in the meantime, implies that

���t
 y
w� > 0 and
<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
�=���t
 y
w�

< 0 for every y ∈ �y0
�t� (24)

by the second part of Remark 6.3(i) with �0 = ���t
 y0
w�. Now (24) implies that Case I applies to every
y ∈ �y0
�t� and that y �→���t
 y
w� is strictly increasing on y ∈ 	y0
�t�.

Case II. Suppose now that �</<y��Jw���t
�
 y
�t��y=y0
�=���t
 y0
w� = 0. Then by Remark 6.3(ii) with
�0 = ���t
 y0
w�, we have �</<y��Jw���t
�
 y
�t� > 0 for every y < y0 and � ≤ ���t
 y0
w�. Therefore,
���t
 y
w� > ���t
 y0
w� for every y < y0. This implies ���t
 y
w� > 0 for every y < y0, and by Case I
�</<y��Jw���t
�
 y
�t���=���t
 y
w� = 0 for every y < y0; otherwise, �</<y��Jw���t
�
 y
�t���=���t
 y
w� < 0
and Case I would imply that ���t
 y
w� < ���t
 y0
w� and �</<y��Jw���t
�
 y
�t��y=y0
�=���t
 y0
w� <0,
which contradicts with the starting assumption of Case II. Because now ���t
 y
w� > 0 and

<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
�=���t
 y
w�

= 0 for every y < y0


Case II applies to every y < y0, and we conclude that y �→ ���t
 y
w� is strictly decreasing on y ∈ 	0
 y0!.
For every y ∈ 	0
 y0!, 0 = �</<y��Jw���t
�
 y
�t���=���t
 y
w� = e−
y���y
���t
 y
w��− 
/c� implies 
/c =
��y
���t
 y
w��= e
y	���t
 y
w�+ 1!− 1 or ���t
 y
w�= e−
y�1+
/c�− 1.
Corollary 6.1 implies that limy↑�t ���t
 y
w� = +� > supy∈	0
�t� e

−
y�1 + 
/c� − 1 = 
/c, which implies
that ���t
 y
w� > 0 and �</<y��Jw���t
�
 y
�t���=���t
 y
w� < 0 for some y ∈ 	0
�t�; otherwise, we would
have ���t
 y
w� > 0 and �</<y��Jw���t
�
 y
�t���=���t
 y
w� = 0 for every y ∈ 	0
�t�, which would imply that
���t
 y
w�= e−
y�1+
/c�− 1≤ 
/c for every y ∈ 	0
�t�, which contradicts with limy↑�t ���t
 y
w�=+�.
Therefore, Case I implies that y �→���t
 y
w� is strictly increasing in some nonempty neighborhood in 	0
�t�
of �t. Let us now define

D=
{
y ∈ 	0
�t�� ���t
 y
w� > 0 and

<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
�=���t
 y
w�

= 0
}



E =
{
y ∈ 	0
�t�� ���t
 y
w� > 0 and

<

<y
�Jw���t
�
 y
�t�

∣∣∣∣
�=���t
 y
w�

< 0
}
�

E �= � by the previous paragraph. We also know that ���t
 y
w� ≥ 	e−
y�1 + 
/c� − 1!+�y=0 = 
/c > 0,
and �</<y��Jw���t
�
 y
�t��y=0
�=���t
0
w� ≤ 0. If 0 ∈ E, then E = 	0
�t� by Case I above, and y �→
�Jw���t
�
 y
�t� is strictly increasing on y ∈ 	0
�t�. If y �→ �Jw���t
�
 y
�t� is not strictly increasing on
y ∈ 	0
�t�, then we must have 0 � E and �</<y��Jw���t
�
 y
�t��y=0
�=���t
0
w� = 0 and 0 ∈D. Hence, D is
not empty in this case, either. Define yl %= supD and yr %= inf E. There is a sequence �y

�n�
l �n≥1 in D increasing

to yl, and on every 	0
 y�n�
l � � y, the mapping y �→���t
 y
w� is strictly decreasing. Therefore, y �→���t
 y
w�

is strictly decreasing on y ∈ 	0
 yl�. Similarly, there is a sequence �y�n�
r �n≥1 in E decreasing to yr , and on
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�
c

c

�
c

y

�

(a)

(c)

∆t0

(b)

y �(∆t, y, w)

y

�

0 ∆t1 ∆t3 ∆t4∆t2

�(∆t1, ·,w) �(∆t2, ·,w) �(∆t3, ·,w) �(∆t4, ·,w)

y     e–�y(1+ �) –1
cy     e–�y(1+ �)–1

Figure 2. The mapping y �→ ���t
 y
w� on y ∈ 	0
�t� either (a) strictly increases, or (b) firstly decreases strictly and then increases
strictly, with unique maximum, or (c) firstly decreases strictly until it hits zero, stays there for a while, and increases strictly afterwards.
Notes. The drawing on the righthand side illustrates that lim�t→� ↓���t
 y
w�= 	e−
y�1+
/c�− 1!+.

every 	y�n�
r 
�t� � y, the mapping y �→ ���t
 y
w� is strictly increasing. Therefore, y �→ ���t
 y
w� is strictly

increasing on y ∈ �yr 
�t�.
We have 0≤ yl ≤ yr < �t, because otherwise y �→���t
 y
w� would be both strictly increasing and strictly

decreasing on a nonempty set. If yl = yr , then y �→ ���t
 y
w� firstly strictly decreases and then strictly
increases on 	0
�t� � y. Suppose yl < yr . Take any yl < y0 < yr . We claim that ���t
 y0
w� = 0. Otherwise,
���t
 y0
w� > 0, and because �</<y��Jw���t
�
 y
�t��y=y0
�=���t
 y0
w� ≤ 0, we must have either y0 ∈ D or
y0 ∈ E. If y0 ∈D, then yl < y0 contradicts with the definition of yl. If y0 ∈ E, then y0 < yr contradicts with the
definition yr . Thus, ���t
 y
w�= 0 for every y ∈ �yl
 yr �.
Finally, y �→ ���t
�
 y
�t� is continuous by Remark 6.3. Hence, if yl = yr , then yl = limy↑yl ↓

���t
�
 y
�t� = limy↓yr ↓ ���t
�
 y
�t� = yr is the unique global minimum of y �→ ���t
�
 y
�t�. If
yl < yr , then ���t
�
 y
�t� = 0 for every y ∈ 	yl
 yr !, D = 	0
 yl! and E = 	yr 
�t�. In all of the cases, y �→
���t
�
 y
�t� is strictly monotone at every y ∈ 	0
�t� where ���t
�
 y
�t� > 0. �
Remark 6.4. The mapping y �→���t
 y
w� is either strictly increasing or decreases first and then increases.

In the latter case, it is strictly monotone at every point where it is strictly positive. Its decreasing part coincides
with y �→ e−
y�1+
/c�− 1; see the drawing on the left in Figure 2.
Finally, lim�t→� ↓ ���t
 y
w� = 	e−
y�1+ 
/c�− 1!+ for y ∈ 	0
�t� because, for � ≥ 0 and 0 ≤ y ≤ y0 <

�t, �Jw���t
�
 y
�t� ≥ �t − y0 − �1/
 + 1/c� − 1/c, and inf0≤y≤y0
�≥0�Jw���t
�
 y
�t� ≥ �t − y0 − 1/

− 2/c →� as �t →�; see the drawing on the right in Figure 2.

7. Numerical methods and their illustrations. For any t ≥ 0, if a change-detection alarm has not yet been
raised before t, then minimum Bayes risk inf�∈� �t� R��p� is given in terms of

"�t�=
�∑

n=0
1	tn
 tn+1��t�e


�t−tn��Jt−tn
vn+1���tn+1
�tn

�

by (16), and an optimal alarm after time t may be raised at the stopping time �0�t� of (22), where �0�s� =
inf��≥ 0� �Js−tn

vn+1���tn+1
��= 0� for every s ∈ 	tn
 tn+1� and n≥ 0. For the evaluation of the minimum Bayes
risks and implementation of optimal alarm times, one needs to calculate the limit vn� · �= limm→� v�m�

n � · � on �+
for n≥ 0 of successive approximations �v�m�

n � · ��0≤n≤m, m≥ 0 defined by (12) and functions �Js−tn
vn+1���tn+1
 ·�

for s ∈ 	tn
 tn+1� and n≥ 0.
In practice, vn� · � cannot be calculated exactly but can be approximated by v�m�

n � · � for some m≥ n with any
desired uniform error margin # > 0 for every n≥ 0. Indeed, if Mn�#�=min�m≥ n� tm − tn ≥ 1/
 ln�1/�c#���
for every n≥ 0 and #> 0, then Theorem 4.2 guarantees sup�≥0 �vn���− v�m�

n ���� ≤ # for every m≥Mn�#�, and
by Lemma 4.1(iii)

sup
�≥0
 s∈	tn
 tn+1�

∣∣�Js−tn
vn+1���tn+1
��− �Js−tn

v
�m�
n+1���tn+1
��

∣∣
≤ e−
�tn+1 sup

�≥0
�vn+1���− v

�m�
n+1���� ≤ e−
�tn+1# for every m≥Mn+1�#�
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which also leads for every n ≥ 0 to the uniform approximation of "�t�, t ∈ 	tk
 tk+1� with
∑�

k=0 1	tk
 tk+1��t� ·
e
�t−tk��Jt−tk

v
�mk+1�
k+1 ���tk+1
�tk

� as in

sup
t∈	tn
 tn+1�

∣∣∣∣"�t�−
�∑

k=0
1	tk
 tk+1��t�e


�t−tk��Jt−tk
v
�mk+1�
k+1 ���tk+1
�tk

�

∣∣∣∣≤ #


where mk ≥Mk�#� is any fixed finite integer for every k≥ 0.

By replacing vn+1� · � in the definition of the optimal stopping boundary �0�s� for every s ∈ 	tn
 tn+1� and n≥ 0
with v

�mn+1�
n+1 � · � for any fixed mn+1 ≥Mn+1�#�, one also gets, instead of impractical optimal alarm times �0�t�

for t ≥ 0, implementable nearly optimal alarm times �#
?�t�, t ≥ 0.

Proposition 7.1. Let Mn�#� and ��m�
# �s� be defined as in Theorem 4.2 and (21), respectively, for every

n
m≥ 0, #> 0, and 0≤ s ≤ tm. Fix any #> 0, ?≥ 0, and mn ≥Mn�#�. Define

�#
?�s� %=
�∑

n=0
1	tn
 tn+1��s��

�mn+1�
? �s�
 s ≥ 0


�#
?�t� %= inf
{
s ≥ t�

�∑
n=0

1	tn
 tn+1��s��tn
≥�#
?�s�

}

 t ≥ 0�

Then for every t ≥ 0, stopping time �#
?�t� ∈� �t� is (#+?)-optimal for inf�∈� �t� R�� · � in (16) if an alarm has

not been raised before time t; namely, "�t�+ #+ ?≥ Ɛ�	
∫ �#
?�t�

t
e−
�u−t���u −
/c�du ��t!.

Proof. Because �
�m�
? �s� ≤ �?�s� for m ≥ 0, ? ≥ 0, and 0 ≤ s ≤ tm by Proposition 6.1, we have �#
?�t� ≤

�?�t� for every t ≥ 0. Then Corollary 5.2 and the optional sampling imply that the stopped process �M�s ∧
�#
?�t��≡M�s∧�#
?�t�∧�?�t��
�s� s ≥ t� is a RCLL ��-martingale, and

∫ t

0
e−
u��u −
/c�du+ e−rt"�t� = M�t�= Ɛ�	M�s∧�#
?�t�� ��t!

= Ɛ�

[∫ s∧�#
?�t�

0
e−
u��u −
/c�du+ e−
�s∧�#
?�t��"�s∧�#
?�t��

∣∣∣�t

]



which gives

"�t�= Ɛ�

[∫ s∧�#
?�t�

t
e−
�u−t���u −
/c�du+ e−
	�s∧�#
?�t��−t!"�s∧�#
?�t��

∣∣∣�t

]
�

As s ↑�, "�t�≥ Ɛ�	
∫ �#
?�t�

t
e−
�u−t���u −
/c�du+ 1��#
?�t�<��e

−
	�#
?�t�−t!"��#
?�t�� ��t! by Fatou.
Because mn+1 ≥ Mn+1�#�, we have "��#
?�t�� ≥ "�mn+1���#
?�t�� − # on ��#
?�t� ∈ 	tn
 tn+1�� by Proposi-

tion 5.1, and 1��#
?�t�<��"��#
?�t�� ≥
∑�

n=0 1	tn
 tn+1���#
?�t��	"
�mn+1���#
?�t�� − #! ≥ −? − #, because the defi-

nition of �#
?�t� implies that �tn
≥ �#
?��#
?�t�� = �

�mn+1�
? ��#
?�t�� on ��#
?�t� ∈ 	tn
 tn+1��, which leads to

"�mn+1���#
?�t��≥−? for every n≥ 0 by definition of ��mn+1�
? � · � in (21). Thus,

"�t�≥ Ɛ�

[∫ �#
?�t�

t
e−
�u−t���u −
/c�du

∣∣∣�t

]
− #− ?


which completes the proof. �
Figure 3 gives a numerical algorithm to find the nearly optimal stopping rules of Proposition 7.1. For the

numerical examples, we suppose that the lengths of successive observation intervals cycle through some p≥ 1
positive constants �t1
 ( ( ( 
�tp. Figures 4 and 5 demonstrate the outputs of the algorithm in Figure 3 applied to
Wiener disorder problems with p= 1, namely, equally �t-spaced observation intervals. Four columns of Figure 4
display for �t = 1
10
20
32 the successive approximations of value function w� · �, successive approximations
of optimal stopping threshold �0�0� at observation times, optimal stopping boundary �0�y�, y ∈ 	0
�t� between
observations, and the contours of value function �y
�� �→ e
yJy��t
��, where y is the time since the last
observation and � is the conditional odds-ratio calculated at the last observation time.
As time �t between observations increases, the number of iterations needed for an accurate value-function

approximation decreases, the value functions increase pointwise, the optimal stopping regions expand, and
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Input. Fix any #> 0, ?≥ 0, and n≥ 0.
Step 1. Let mn+1 =  Mn+1�#�! be the smallest integer m≥ n+ 1 such that tm − tn ≥−�1/
� ln�c#�.
Step 2. Find v

�mn+1�
n � · � by calculating v

�mn+1�
mn+1 � · �≡ 0 and v

�mn+1�
k � · �= �J0v

�mn+1�
k+1 ���tn+1
 ·� for k=mn+1 − 1
 ( ( ( 
 n+ 1
 n

successively.
Step 3. Calculate �Jt−tn

v
�mn+1�
n ���tn+1
�� for all t ∈ 	tn
 tn+1�, 0≤�≤ �̄��tn+1
 t− tn�, where

�̄��t
 y�=max
{[

e−
y

(
1+ 


c

)
− 1

]+



(
1



+ 1
c

)
e−
y − e−
�tn+1

�tn+1 − y
+ 1

c

e−
�t

�t− y
− 1

}



and we know that �Jt−tn
v
�mn+1�
n ���tn+1
��= 0 for �≥ �̄��tn+1
 t− tn�.

Step 4. Find �
�mn+1�
? �s� = min�� ≥ 0� �Js−tn

v
�mn+1�
n ���tn+1
�� ≥ −?e−
�s−tn�� by a binary search on 	0
 �̄��tn+1
 s − tn�!

for every s ∈ 	tn
 tn+1��
Output. For every t ∈ 	tn
 tn+1�, we obtain �"�t�− e
�t−tn��Jt−tn

v
�mn+1�
n+1 ���tn+1
�tn

�� ≤ #, and �
�mn+1�
? �t�, t ∈ 	tn
 tn+1� is the

critical boundary of �#+ ?�-optimal rule �#
?�t�, t ∈ 	tn
 tn+1�.

Figure 3. A numerical algorithm to calculate the minimum Bayes risk and the critical boundary of a nearly-optimal optimal stopping
rule between observation times.

optimal continuation regions shrink; compare the graphs along the row in Figure 4(i) and the superposition of
the value functions in Figure 5(i).
It is never optimal to raise an alarm at any observation time when the conditional odds-ratio is less than


/c = 10. If the conditional odds-ratio is greater than or equal to 
/c, waiting may still be favorable (with the

(i) Successive approximations to value function w(q–1)(·) = ν4n+q–1(·), 1 ≤ q ≤ 4, n ≥ 0

(ii) Successive approximations to �0(tq–1) at observation times t4n+q–1, 1 ≤ q ≤ 4

(iii) Optimal stopping boundary �0(·) between observations

(iv) Contours of value function((y, �) → e�y(Jyw)(∆tq, �), 0 ≤ y < ∆tq, � ≥ 0, 1 ≤ q ≤ 4
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Figure 4. Wiener disorder problem with equally �t-spaced observation intervals, 
= 0�1, �= 1, and c = 0�01.
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Figure 5. Wiener disorder problem with equally �t-spaced observation intervals, 
= 0�1, �= 1, and c = 0�01.

hope that the conditional odds-ratio will jump into the advantageous region 	0

/c� after a favorable observa-
tion), but this possibility vanishes rapidly as time �t between observations is increased; compare the graphs in
Figure 4(ii).
As pointed out by Theorem 6.1, optimal stopping boundary between two adjacent observation times either

increases strictly or first decreases and then increases; it is strictly monotone whenever it does not vanish. As
time �t between observations increases, optimal stopping boundary tends to decrease more with the passing
time, and this encourages early stopping to curb the increasing risk of failing to detect the disorder time; see
the graphs in Figure 4(iii) for numerical evidence and Remark 6.4 for rigorous justification.
To forgo the contribution of a very near new observation in resolving the ambiguity about the unobservable

disorder time, the odds of that the disorder must have already happened must intuitively be very large. Therefore,
one expects that the optimal stopping boundary increases to infinity as time of next observation is nearing. All
of the graphs in Figure 4(iii) confirm this intuition, which was also analytically established in Corollary 6.1.
Finally, the approximate contours of the value function �y
�� �→ e
y�Jyw���t
�� in Figure 4(iv) help visualize

the changes in the process "�t�= e
�t−tn��Jt−tn
w���t
�tn

�, t ∈ 	tn
 tn+1� for every n≥ 0, which is fundamental for
the calculation of minimum Bayes risks inf�∈� �t� R�� · � in (16) for every t ≥ 0 and is essentially the conditionally
minimum Bayes risk given the past observations if an alarm has not yet been raised before time t ≥ 0.
Suppose that the optimal stopping boundary is strictly increasing. Then t �→ "�t� is strictly decreasing on

t ∈ 	tn
 tn+1� if "�tn�= �J0w���t
�tn
�=w��tn

� < 0 or �tn
< �0�0�. Otherwise, it remains at zero momentarily

before it starts to decrease; see Figure 4(iv) for �t = 1. Suppose now that the optimal stopping boundary first
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Figure 6. Wiener disorder problem with unequally spaced observation intervals, the lengths of which cycle trough �t1 = 5, �t2 = 15,
�t3 = 5, �t4 = 20, and 
= 0�1, �= 1, and c = 0�01.

decreases and then increases. If �tn
≤ 
/c, then t �→ "�t�, t ∈ 	tn
 tn+1� strictly increases; if it reaches to zero, it

may stay there for a while, but it always eventually starts to strictly decrease. Otherwise, it remains at zero for
a while before it starts to strictly decrease; see Figure 4(iv) for �t = 10
20
32.
Figures 4(iii) and 5(ii) show that the following three cases are possible:
(i) An optimal alarm may sound only at some observation time. If the optimal stopping boundary is increas-

ing, then, whenever postponing an alarm is optimal, it remains so at least until after the next observation. If
�t = 1, then the optimal stopping boundary is increasing, and an alarm may be raised only at observation times
tn = n�t, n≥ 0.

(ii) An optimal alarm may sometimes sound strictly between some observation times. If the optimal stopping
boundary is not strictly increasing, then it must firstly decrease and then increase, and it is strictly monotone
wherever it does not vanish. Moreover, it starts from level 
/c > 0, and its decreasing portion always coincides
with t �→ e−
t�1+ 
/c�− 1 independently of time �t between observations; see Figure 5(ii) and Theorem 6.1.
Therefore, an optimal alarm time falls strictly between two observation times, if the conditional odds-ratio
calculated at the last observation lies between the minimum of the optimal stopping boundary and its initial
value, 
/c. Postponing an alarm at least until after the next observation is still optimal if the conditional odds-
ratio at the last observation is below the minimum of the optimal stopping boundary. If it is at or above 
/c,
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then it is optimal to raise the alarm immediately after the last observation time. If �t = 10 or 20, all three
optimal alarm types may appear with positive probability.
(iii) An optimal alarm will always be set by the next observation time. This is a special case of (ii), which

occurs if the optimal stopping boundary vanishes some time between two observations. If �t = 32, then optimal
alarm will always sound before the next observation.
It is important to remember that one can always tell with certainty if optimal alarm will sound before the

next observation, and its precise time if it will. Figure 5(iii) shows the sample paths of conditional odds-ratio
processes � and optimal alarm times for different times between observations, �t = 1
20
32. Observe also that
if optimal stopping boundary is not strictly increasing, then it is not differentiable at its minimum, because its
left derivative at the minimum is the derivative of the strictly decreasing function t �→ e−
t�1+
/c�− 1, which
is always strictly negative.
Finally Figure 6 illustrates the outcome of the numerical algorithm described in Figure 3 for the Wiener

disorder problem with unequal observation intervals, the lengths of which cycle through �t1 = 5, �t2 = 15,
�t3 = 5, �4 = 20. Optimal stopping boundaries between observations are strictly increasing over 	t4n
 t4n+1� ∪
	t4n+2
 t4n+3� but first decrease and then increase strictly over 	t4n+1
 t4n+2�∪ 	t4n+3
4n+4� for every n≥ 0. Thus,
if the alarm is not set before or at time t4n (respectively, t4n+2), then it is optimal to wait at least until time t4n+1
(respectively, t4n+3) for every n≥ 0. However, an optimal alarm may sound some time strictly between t4n+1 and
t4n+2 or strictly between t4n+3 and t4n+4 for some n≥ 0.

8. Calculation of false alarm probabilities, variational and general Bayesian formulations. In this sec-
tion, we shall show how one can calculate the probability of false alarm

pfa�p�= �

{
�0�0� <�

∣∣∣∣�0 =
p

1−p

}

 0≤ p < 1 (25)

for the optimal alarm time �0�0�=min�s ≥ 0�
∑�

l=0 1	tl
 tl+1��s��tl
≥�0�s�� of (22), which is by Proposition 2.1

and Theorem 5.3 an optimal stopping time for the problem in (7) and has the smallest Bayes risk R�p� of (3)
for every 0≤ p < 1.
Because �0�s� equals ���tl+1
 s− tl
 vl+1� for s ∈ 	tl
 tl+1� and l≥ 0, recall from Remark 6.4 and Figures 1

and 2 that the critical boundary s �→ �0�s� is continuous on every observation interval 	tl
 tl+1�, l ≥ 0, either
increases strictly everywhere or first decreases along s �→ e−
�s−tl��1+
/c�−1 and then increases. Let us define
the minimum

�0
 l %=min��0�s�� s ∈ 	tl
 tl+1��
 l≥ 0 (26)

of �0� · � on the observation interval 	tl
 tl+1� for every l ≥ 0. Note that, when at time t = 0 the surveillance
starts, one can determine the exact time �0�0� of the optimal alarm by only knowing the values �0
 l, l ≥ 0.
Indeed, we have

�0�0�= �0�tl�=




tl
 �tl
≥ 


c
∨�0
 l

tl −
1


log

1+�tl

1+
/c






c
∧�0
 l ≤�tl

<



c

�0�tl+1�
 �tl
< �0
 l




on ��0�0�≥ tl�, ∀ l≥ 0, � -a.s. (27)

Let us introduce the “conditional probability of false alarm (CPFA)” process

CPFAn %= ���0�tn� <� ��tn

� > tn� (28)

= Ɛ�	Ztn∧�1��0�tn�<�� ��tn

� > tn!

Ɛ�	Ztn∧� ��tn

� > tn!

= ����0�tn� <� ��tn

� > tn�
 n≥ 0


where Ztn∧� = 1 � -a.s. on �� > tn�. Note that CPFA0 = ���0�0� <� ��0
� > 0�= pfa�p�/�1−p��p=�0/�1+�0�
.

We shall show that � -a.s. CPFAn = cpfan��tn
� for every n ≥ 0 for some sequence �cpfan� · ��n≥0 of 	0
1!-

valued functions, each element cpfan� · � of which is the pointwise uniform limit of some suitable successive
approximations

(
cpfa�m�

n � · �)
m≥0. We will then be able calculate the probability of false alarm by

pfa�p�= �1−p� cpfa0

(
p

1−p

)
= �1−p� lim

m→� cpfa
�m�
0 �p� for every 0≤ p < 1.

To calculate the conditional probability in (28), we shall need the following lemma.
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Lemma 8.1. Let ��
	
�� be a probability space, X be a bounded random variable, � be a sub-�-algebra
of 	 , and A be an � -measurable event. Then

Ɛ	X �� ∧��A�!= Ɛ	X1A �� !

��A �� �
1A + Ɛ	X1�\A �� !

���\A �� �
1�\A�

Therefore, Ɛ	X �� 
A!= Ɛ	X1A �� !/��A �� �.

Proof. Take a bounded � -measurable random variable Y and constants a and b. Then

Ɛ	Y �a1A + b1�\A�Ɛ	X �� ∨��A�!! = Ɛ	Y �a1A + b1�\A�X!= aƐ	YX1A!+ bƐ	YX1�\A!

= aƐ	YƐ	X1A �� !!+ bƐ	YƐ	X1�\A �� !!

= aƐ

[
Y
Ɛ	X1A �� !

��A �� �
��A �� �

]
+ bƐ

[
Y
Ɛ	X1�\A �� !

P��\A �� �
P��\A �� �

]

= aƐ

[
Ɛ

(
Y
Ɛ	X1A �� !

��A �� �
1A

∣∣∣∣�
)]

+ bƐ

[
Ɛ

(
Y
Ɛ	X1�\A �� !

P��\A �� �
1�\A

∣∣∣∣�
)]

= Ɛ

[
Y
Ɛ	X1A �� !

��A �� �
a1A + Ɛ	X1�\A �� !

P��\A �� �
b1�\A

]

= Ɛ

[
Y �a1A + b1�\A�

(
Ɛ	X1A �� !

��A �� �
1A + Ɛ	X1�\A �� !

P��\A �� �
1�\A

)]



which completes the proof of the lemma. �

Because �tn
and � are independent under ��, and �0�tn� in (27) depends on �tn

through the future values of
the Markov process ��t
 t�t≥tn

, Lemma 8.1 implies that

CPFAn = ����0�tn� <� ��tn

� > tn�=

����0�tn� <� ��tn
�

���� > tn ��tn
�

= ����0�tn� <� ��tn
�

���� > tn�

= �1+�0�
−1Ɛ�	e−
�0�tn� ��tn

!

�1+�0�
−1e−
tn

= Ɛ�	e
−
��0�tn�−tn� ��tn

!= cpfan��tn
�


where for every �≥ 0 and n≥ 0 we define

cpfan��� %= Ɛ�	e
−
��0�tn�−tn� ��tn

=�! = 1	�
/c∨�0
 n�
�����+ 1+�

1+
/c
1	�
/c∧�0
 n�

/c�

���

+ 1	0
�0
�0
 n
����e−
�tn+1Ɛ�	cpfan+1��tn+1� ��tn

=�!


and the second equality follows from the second equality in (27). Using the explicit dynamics in (2) of � and
the definition in (10) of K operator, we can evaluate the expectation

Ɛ�	cpfan+1��tn+1� ��tn
=�! = Ɛ�

[
cpfan+1

(


(
�tn+1
�


�Xn+1√
�tn+1

))∣∣∣∣�tn
=�

]

=
∫ �

�
cpfan+1���tn+1
�
 z��

e−z2/2

√
2)

dz= �Kcpfan+1���tn+1
���

The next proposition summarizes our findings up to now.

Proposition 8.1. Let L be the operator on bounded functions w% �+ �→ 	0
1! defined by

�Lw��y
�t
��= 1	�
/c∨y�
�����+ 1+�

1+
/c
1	�
/c∧y�

/c����+ 1	0
 y����e−
�t�Kw���t
��

for every y
�t
� ≥ 0. Then the probability of false alarm pfa�p� in (25) equals �1−p�cpfa0�p/�1−p��
for every 0 ≤ p < 1, where cpfan� · �, n ≥ 0 are unique 	0
1!-valued functions satisfying cpfan��� =
�Lcpfan+1���0
 n
�tn+1
�� for every �≥ 0 and n≥ 0, and each �0
 n is defined by (26).
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To prove the uniqueness of cpfan� · �, n≥ 0, suppose that fn� · �, n≥ 0 be a sequence of 	0
1!-valued func-
tions satisfying fn��� = �Lfn+1���0
 n
�tn
�� for every � ≥ 0 and n ≥ 0. Then we have cpfan���− fn��� =
1	0
�0
�0
 n

����e−
�tn+1�K�cpfan+1 − fn+1����tn+1
��≤ e−
�tn+1#cpfan+1 − fn+1# for every �≥ 0 and n≥ 0. Sim-

ilarly, fn��� − cpfan��� =≤ e−
�tn+1#cpfan+1 − fn+1# for every � ≥ 0 and n ≥ 0. Therefore, #cpfan − fn# ≤
e−
�tn+1#cpfan+1 − fn+1# for every n ≥ 0. Reiterating this inequality m ≥ 1 times leads to #cpfan − fn# ≤
e−
��tn+1+···+�tn+m�#cpfan+m − fn+m# ≤ e−
��tn+1+···+�tn+m� for every n≥ 0. Letting m ↑� implies that #cpfan − fn#
= 0 for every n≥ 0.
To calculate cpfan� · � for every n≥ 0, we define the successive approximations

cpfa�m�
m � · �≡ 1
 cpfa�m�

n ��� %= �Lcpfa�m�
n+1���0
 n
�tn+1
��
 �≥ 0
 0≤ n≤m− 1� (29)

Proposition 8.2. For every �≥ 0 and n≥ 0, the sequence �cpfa�m�
n ����m≥n is decreasing, and its limit as

m → � coincides with cpfan���. Moreover, the convergence is uniform in � ≥ 0; more precisely, #cpfa�m�
n −

cpfan# ≤ e−
��tn+1+···+�tm� for every m>n.

Proof. For every m ≥ 0 and � ≥ 0, we have 1 = cpfa�m�
m ��� ≥ cpfa�m+1�

m ���. Suppose that cpfa�m�
n � · � ≥

cpfa�m+1�
n � · � for every 1≤ n≤m. Then

cpfa�m�
n−1���= �Lcpfa�m�

n ���0
 n
�tn+1
��≥ �Lcpfa�m+1�
n ���0
 n
�tn+1
��= cpfa�m+1�

n−1 ����

Hence by induction on n=m
m−1
 ( ( ( 
0, we conclude that �cpfa�m�
n ����m≥ n� is decreasing for every fixed

n ≥ 0 and � ≥ 0. Therefore, limm→� cpfa
�m�
n ��� exists, and by the bounded convergence theorem it satisfies

limm→� cpfa
�m�
n−1���= �L limm→� cpfa

�m�
n ���0
 n
�tn+1
�� for every �≥ 0 and n≥ 0. Because by Proposition 8.1

the 	0
1!-valued functions cpfan� · �, n ≥ 0 uniquely satisfy cpfan��� = �Lcpfan+1���0
 n
�tn+1
�� for every
�≥ 0 and n≥ 0, we conclude that cpfan���= limm→� cpfa

�m�
n ��� for every �≥ 0 and n≥ 0. Moreover,

cpfan���− cpfa�m�
n ��� = 1	0
�0
 n�

���e−
�tn+1�K�cpfan+1 − cpfa�m�
n+1����tn+1
��

≤ e−
�tn+1#cpfan+1 − cpfa�m�
n+1# for every �≥ 0 and m>n.

Therefore, cpfa�m�
n ��� − cpfan��� ≤ e−
�tn+1#cpfan+1 − cpfa�m�

n+1# for every � ≥ 0 and m > n. Then #cpfan −
cpfa�m�

n # ≤ e−
�tn+1#cpfan+1−cpfa�m�
n+1# ≤ · · · ≤ e−
��tn+1+···+�tm�#cpfam−cpfa�m�

m # ≤ e−
��tn+1+···+�tm� for every m>
n≥ 0. Hence, �cpfa�m�

n ����m≥1 decreases to cpfan��� as m ↑� uniformly in �≥ 0. �
Remark 8.1. For every # > 0, let M�#� %= min�m ≥ 1��t1 + · · · + �tm ≥ −1/
 log#�. Because #cpfa0 −

cpfa�M�#��
0 # ≤ # by Proposition 8.2, we have supp∈	0
1! ��1−p�cpfa�M�#��

0 �p/�1−p��−pfa�p�� ≤ supp∈	0
1!�1−p� ·
�cpfa�M�#��

0 �p/�1−p��− cpfa�p/�1−p��� ≤ #cpfa�M�#��
0 − cpfa0# ≤ #. Hence, we can approximate the probability

of false alarm pfa� · � in (25) uniformly in p with �1− p�cpfa�M�#��
0 �p/�1− p��, which can easily be calculated

with successive approximations in (29).
Remark 8.2. Suppose that �tn = �t > 0 for every n ≥ 1; namely, all observation intervals have the same

length �t. Then �0
 n ≡�0
0 and cpfan� · �≡ cpfa� · � are the same for all n≥ 0. Moreover, cpfa� · � is the unique
	0
1!-valued function satisfying cpfa���= �Lcpfa���0
0
�t
�� for every �≥ 0 and is the limit of successive
approximations

cpfa�0�� · �≡ 1
 cpfa�n����= �Lcpfa�n−1����0
0
�t
��
 �≥ 0
 n≥ 1

with #cpfa − cpfa�n�# ≤ e−n
�t for every n ≥ 0. For every # > 0, we now have M�#� =  − log#/�
�t�!, and
supp∈	0
1! ��1−p�cpfa�M�#���p/�1−p��− pfa�p�� ≤ #.

8.1. Variational formulation. In certain applications, one seeks a strict and explicit control on the proba-
bility of false alarms. For example, one may not want the probability of false alarm to exceed a prespecified low
number 0<D< 1. If � �D�= �� ∈� � ��� <��≤ D� denotes the collection of all �-stopping times with false
alarm probabilities less than or equal to D, then in the variational formulation of the Wiener disorder problem
one seeks an alarm time � in � �D� that has the smallest expected detection delay time Ɛ	�� −��+!.
The solutions of the variational and Bayesian formulations are closely related. For every c > 0 and every

sequence of observation times t1 < t2 < · · · , the Bayes optimal alarm time �0�0� for the problem in (3) is also
optimal for the variational formulation when D equals ���0�0� < ��, which can be numerically calculated by
Remarks 8.1 or 8.2. Indeed, for every � ∈� �D�⊆� , the inequality

���0�0� <��+ cƐ	��0�0�−��+!≤ ��� <��+ cƐ	�� −��+!
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Figure 7. On the left �0
0 =min��0�s�� s ∈ 	0
�t�� and on the right �0
0/�1+�0
0� are plotted for a range of unit cost c of detection
delay and common length �t of all observation intervals (
= 0�1 and �= 1).

implies that Ɛ	��0�0� − ��+! ≤ �1/c����� < �� − ���0�0� < ��� + Ɛ	�� − ��+! = �1/c����� < �� − D� +
Ɛ	�� −��+!≤ Ɛ	�� −��+! or Ɛ	��0�0�−��+!≤ Ɛ	�� −��+!, and because �0�0� ∈� �D�, we conclude that

inf
�∈� �D�

Ɛ	�� −��+!= Ɛ	��0�0�−��+!=
[
1−p+ �1−p�c V

(
p

1−p

)
−D

]
1
c

where the second equation follows from Proposition 2.1.
It is unclear if for every 0<D< 1 there are always some c > 0 and t1 < t2 < · · · such that the optimal alarm

time of the Bayesian formulation has the probability of false alarm exactly equal to D. A quick and effective
solution of the variational formulation will be to tabulate the probability of false alarms of Bayes optimal alarm
times on a fine grid of cost c > 0 and the lengths �tn, n≥ 1 of observation intervals.
Figures 7 and 8 illustrate this practical approach when observation intervals have some common length �t. In

those numerical illustrations, we set 
= 0�1 and �= 1. For every fixed c > 0 and �t > 0, we solve the Bayesian
formulation and find for the Bayes optimal alarm time �0�0� the minimum threshold �0
0 = min��0�s�� s ∈
	0
�t��; see Figure 7. We then calculate the probability of false alarm of �0�0� as described in Remark 8.2.
Figure 8 display the contourplots of false alarm probabilities and expected detection delay times of Bayes
optimal alarm times for every pair of c and �t values. One can in principle spot the solution of the variational
formulation by an inspection of the pictures in Figures 7 and 8. For example, if we are certain that the disorder
has not happened yet (namely, p= 0), and if we want the probability of false alarm to be less than or equal to
1/50, then we can choose any pair ��t
 c� located on the contour labeled with “0.02” in the upper left corner
of the picture on the left in Figure 8. For the pair ��t
 c� we picked, we can read from the upper left corner of
the picture on the right in the same figure the minimum expected detection delay time and find the minimum
critical threshold �0
0 from the picture on the left in Figure 7.

Appendix. Selected proofs

A.1. Derivation of the dynamics in (2) of the conditional odds-ratio process �. Because � is indepen-
dent of X and has zero-modified exponential distribution with parameters p ∈ 	0
1� and rate 
 > 0 under ��,
we have

�t =
e
t

1−p
Ɛ�	Zt���1��≤t� ��t!=

e
t

1−p

[
pZt�0�+ �1−p�

∫ t

0

e−
uZt�u�du

]
�

Suppose that tn−1 ≤ t < tn for some n≥ 1. Because Zt�u�= Ztn−1�u� for every u≥ 0 and Ztn−1�u�= 1 for every
tn−1 ≤ u< tn, we have that �t equals

e
t

1−p

[
pZtn−1�0�+ �1−p�

∫ t

0

e−
uZtn−1�u�du

]

= e
t

1−p

[
1−p

e
tn−1
�tn−1 + �1−p��e−
tn−1 − e−
t�

]

= e
�t−tn−1��tn−1 + e
�t−tn−1� − 1= e
�t−tn−1���tn−1 + 1�− 1= ��t− tn−1
�tn−1��
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Figure 8. The probability of false alarms (on the left) and expected detection delay times (on the right) of Bayes optimal alarm times
for prior probabilities p = 0
1/6
1/3
1/2 of a change at or before time zero and for a range of unit cost c of detection delay and equal
observation interval length �t (
= 0�1 and �= 1).

On the other hand, �tn−1 = ��e
tn−1�/�1−p��	pZtn−1�0�+ �1−p�
∫ tn−1
0 
e−
uZtn−1�u�du!. Because Ztn−1�u�= 1

for every u≥ tn−1, we have that

Ztn
�u�=Ztn−1�u� exp

{
�Xn�	tn − �u∨ tn−1�!+

tn − tn−1
− �2�	tn − �u∨ tn−1�!+�2

2�tn − tn−1�

}

 u≥ 0

and

�tn
= e
tn

1−p

[(
pZtn−1�0�+ �1−p�

∫ tn−1

0

e−
uZtn−1�u�du

)
exp

{
�Xn�− �2

2
�tn

}

+ �1−p�
∫ tn

tn−1

e−
u exp

{
�Xn��tn − u�

tn − tn−1
− �2�tn − u�2

2�tn − tn−1�

}
du

]

= exp
{
��Xn −

�2

2
�tn

}
e
�tn−tn−1��tn−1

+
∫ tn

tn−1

e
�tn−u� exp

{
�Xn��tn − u�

tn − tn−1
− �2�tn − u�2

2�tn − tn−1�

}
du


which gives (2) after a change of variable in the integral on the righthand side.

A.2. Proof of Lemma 4.1. (i) If w� · �≥−1/c, then �Jw���t
�
 y
 r�≥−�1/c�
∫ �t

y

e−
t dt−�1/c�e−
�t =

−�1/c��e−
y − e−
�t� − �1/c�e−
�t = −�1/c�e−
y for every �t > 0, � ≥ 0, 0 ≤ y ≤ �t, and r ≥ 0. Then
�Jyw���t
�� = inf r≥y�Jw���t
�
 y
 r� ≥ −�1/c�e−
y , and �Jyw���t
�� ≤ �Jw���t
�
 y
 y� = 0; therefore,
−1/c ≤ e
y�Jyw���
��≤ 0 for every �t > 0, �≥ 0, and 0≤ y ≤�t.
Both � �→ ���t
�� and � �→ ��t
�
 z� are increasing affine functions for every fixed �t >

0 and z ∈ �. If w� · � is nondecreasing, concave, and continuous, then so are �Kw���t
 ·� and
�Jw���t
 ·
 y
 r� for every fixed �t > 0, 0 ≤ y ≤ �t, and r ≥ 0 by the dominated conver-
gence. Therefore, �Jyw���t
 ·� = inf r≥y�Jw���t
 ·
 y
 r� is also nondecreasing and concave. The con-
tinuity on �0
�� of �Jyw���t
 ·� follows from its concavity on 	0
��. It is also continuous at
� = 0, because lim�↘0�Jyw���t
�� = inf�>0 inf r≥y�Jw���t
�
 y
 r� = inf r≥y inf�>0�Jw���t
�
 y
 r� =
inf r≥y�Jw���t
0
 y
 r�= �Jyw���t
0�, because �Jyw���t
 ·� and �Jw���t
 ·
 y
 r� are nondecreasing.
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Let us now prove that �Jyw���t
�� vanishes for large � ≥ 0. For every � > 
/c and u ≥ 0, note
that ��u
�� > 
/c and

∫ r

y
e−
u���u
�� − 
/c�du > 0 for every r > y. Moreover, there is some finite

���t
 y� > 
/c such that
∫ �t

y
e−
u���u
��− 
/c�du+ e−
�t�Kw���t
�� ≥ ∫ �t

y
��+ 1− e−
u�1− 
/c��du−

e−
�t/c = �� + 1���t − y� + �1 + 
/c��1/
��e−
y − e−
�t� − �1/c�e−
�t > 0 for every � > ���t
 y� and
�Jyw���t
�� = �inf r∈	y
�t!

∫ r

y
e−
u���u
��− 
/c�du�∧ 	

∫ �t

y
e−
u���u
��− 
/c�du+ e−
�t�Kw���t
��! = 0

for every �>���t
 y�.
(ii) Clearly, if w1� · �≤w2� · �, then �Kw1���t
��≤ �Kw2���t
�� for every �t > 0 and �≥ 0, which implies

that �Jw1���t
�
 y
 r�≤ �Jw2���t
�
 y
 r� for every �t > 0, �≥ 0, 0≤ y ≤�t, and r ≥ 0, and taking infimum
of both sides over r ≥ y yields the result.
(iii) Let w3� · � and w4� · � be two bounded functions. Fix �t > 0 and 0 ≤ y ≤ �t. Then for every

�≥ 0, �Jyw3���t
�� and �Jyw4���t
�� are finite, and there is ri��
#� ≥ y such that �Jywi���t
�� + # ≥
�Jwi���t
�
 y
 ri��
#�� for �≥ 0, #> 0, i= 3
4. Therefore,

�Jyw3���t
��− �Jyw4���t
��≤ �Jw3���t
�
 y
 r4��
#��− �Jw4���t
�
 y
 r4��
#��+ #

= 1	�t
���r4��
#��e−
�t	�Kw3���t
��− �Kw4���t
��!+ #≤ e−
�t�w3���−w4���� + #�

Because # > 0 is arbitrary, this leads to �Jyw3���t
�� − �Jyw4���t
�� ≤ e−
�t�w3��� − w4����. Changing
the order of w3� · � and w4� · � and replacing r4��t
�� with r3��t
�� in the last displayed equation simi-
larly gives �Jyw4���t
��− �Jyw3���t
��≤ e−
�t�w3���−w4���� + #, and we conclude that ��Jyw4���t
��−
�Jyw3���t
��� ≤ e−
�t�w3���−w4���� for every �t > 0, 0≤ y ≤�t, and �≥ 0. Taking the supremum of both
sides over �≥ 0 proves (iii).
(iv) Because �Kw���t
��≤ 0, the mapping

r �→ �Jw���t
�
 y
 r�=




∫ r

y
e−
u

(
��u
��− 


c

)
du
 y ≤ r < �t

∫ �t

y
e−
u

(
��u
��− 


c

)
du+ e−
�t�Kw���t
��
 r ≥�t

is lower semicontinuous, and its infimums over r ∈ 	y
�� and the compact interval r ∈ 	y
�t! are the same.
Because the mapping is lower semicontinuous, (13) follows.
Because �Jw���t
�
 y
 r� = �Jw���t
�
0
 r� − ∫ y

0 e−
u���u
�� − 
/c�du, we have �Jyw���t
�� =
inf r∈	y
�t!�Jw���t
�
0
 r�− ∫ y

0 e−
u���u
��−
/c�du. Because y �→ ∫ y

0 e−
u���u
��−
/c�du is continuous,
we only need to establish that y �→ inf r∈	y
�t!�Jw���t
�
0
 r� is continuous.
For convenience, let us define f �r� %= �Jw���t
�
0
 r� and F �y� %= minr∈	y
�t! f �r� for every r
 y ∈

	0
�t!. Because r �→ f �r� is lower semicontinuous, we will show that y �→ F �y� is left-continuous. Take any
0≤ u< v≤�t. Then

0≥ F �u�− F �v�=min� min
s∈	u
 v!

f �s�− F �v�
0�≥ min
s∈	u
 v!

f �s�− f �v�� (30)

Fix v ∈ �0
�t! and show that F � · � is left-continuous at v. Because f � · � is lower semicontinuous at v, for every
#> 0 there is some ?> 0 such that �x− v� ≤ ? implies f �x� > f �v�− #. Therefore, for every �v− ?�+ ≤ u< v
we have mins∈	u
 v! f �s� ≥ f �v� − # and 0 ≥ F �u� − F �v� ≥ mins∈	u
 v! f �s� − f �v� ≥ f �v� − # − f �v� = −#;
namely, F � · � is left-continuous at v.
Because r �→ f �r� is right-continuous, y �→ F �y� is also right-continuous. In (30), fix u ∈ 	0
�t� and show that

F � · � is right-continuous at u. Because f � · � is right-continuous at u, for all #> 0 there is ?> 0 such that u< x <
�u+?�∧�t implies �f �x�−f �u��<#/2. Thus for all u< v < �u+?�∧�t we have mins∈	u
 v! f �s�≥ f �u�−#/2
and f �v� < f �u�+#/2; therefore, 0≥ F �u�− F �v�≥mins∈	u
 v! f �s�− f �v�≥ f �u�−#/2− 	f �u�+#/2!=−#.
Hence, y �→ F �y� is continuous.
(v) For y0 ≤ y ≤ r ≤ z≤ y1, adding

∫ r

y
e−
u���u
��−
/c�du to 0> �Jrw���t
�� gives

∫ r

y
e−
u

(
��u
��− 


c

)
du> inf

r̃≥r

[∫ r̃∧�t

y
e−
u

(
��u
��− 


c

)
du+ 1	�t
���r̃�e

−
�t�Kw���t
��

]

≥ inf
r̃≥y

[∫ r̃∧�t

y
e−
u

(
��u
��− 


c

)
du+ 1	�t
���r̃�e

−
�t�Kw���t
��

]
= �Jyw���t
���
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Because r �→ ∫ r

y
e−
u���u
��− 
/c�du is continuous on r ∈ 	y
 z!, its minimum on r ∈ 	y
 z! is attained, say,

at some r0 ∈ 	y
 z!. Because the inequalities also hold for r = r0, we have

inf
r∈	y
 z!

∫ r∧�t

y
e−
u

(
��u
��− 


c

)
du= min

r∈	y
 z!

∫ r

y
e−
u

(
��u
��− 


c

)
du> �Jyw���t
��


and �Jyw���t
��= inf r≥z	
∫ r∧�t

y
e−
u���u
��−
/c�du+ 1	�t
���r�e

−
�t�Kw���t
��! equals

∫ z

y
e−
u

(
��u
��− 


c

)
du+ inf

r≥z

[∫ r∧�t

z
e−
u

(
��u
��− 


c

)
du+ 1	�t
���r�e

−
�t�Kw���t
��

]



which is
∫ z

y
e−
u���u
��−
/c�du+ �Jzw���t
�� and completes the proof of (v) and the lemma.

A.3. Proof of Proposition 5.2. By Theorem 5.1, −1/c ≤ "�m��t�≤ 0 is ��-a.s. bounded, and because

Ɛ��u = Ɛ�

[
Ɛ�	Zu1��≤u� ��u!

Ɛ�	Zu1��>u� ��u!

]
= Ɛ�	Zu1��≤u�!

�1−p�e−
u
≤ Ɛ�	Zu!

�1−p�e−
u
= e
u

1−p



we have Ɛ��M�m��t�� ≤ Ɛ�	
∫ t

0 e
−
u�u du! + �1/c�

∫ t

0 
e
−
u du + �1/c�e−
t ≤ ∫ t

0 �1/�1 − p��du + 1/c =
t/�1−p�+ 1/p <�, and M�m��t� is integrable under �� for every 0≤ t ≤ tm.
Fix some m≥ 1, 0≤ t ≤ tm, � ∈� �t�, and #≥ 0. Then there exists some 0≤ k≤m−1 such that tk ≤ t < tk+1.

Let us prove by induction on n= k+ 1
 k+ 2
 ( ( ( 
m that Ɛ�	M�m��tn ∧ � ∧��m�
# �t��!= Ɛ�	M�m��t�! for every

k+ 1≤ n≤m
#≥ 0.
Basis case. Because Ɛ�	M�m��tk+1 ∧ � ∧��m�

# �t��!− Ɛ�	M�m��t�! equals

Ɛ�

[∫ tk+1∧�∧�
�m�
# �t�

t
e−
u

(
�u −




c

)
du+ e−
�tk+1∧�∧�

�m�
# �t��"�m��tk+1 ∧ � ∧��m��t��− e−
t"�m��t�

]



the basis case n = k + 1 will be established if the displayed expectation equals zero. Because "�m��tk+1� =
�J0v

�m�
k+2���tk+2
�tk+1� = v

�m�
k+1��tk+1�, "�m��t� = e
�t−tk��Jt−tk

v
�m�
k+1���tk+1
�tk

�, and "�m��� ∧ ��m�
# �t�� =

e
�	�∧�
�m�
# �t�!−tk��J

	�∧�
�m�
# �t�!−tk

v
�m�
k+1���tk+1
�tk

� on ��∧��m�
# �t� < tk+1� because ��-a.s. � ∧��m�

# �t�≥ t ≥ tk, we can
rewrite the displayed expectation as

Ɛ�

[∫ tk+1∧�∧�
�m�
# �t�

t
e−
u

(
��u− tk
�tk

�− 


c

)
du+ 1

��∧�
�m�
# �t�≥tk+1�

e−
tk+1v
�m�
k+1��tk+1�

+ 1
��∧�

�m�
# �t�<tk+1�

e−
tk �J��∧��m��t��−tk
v
�m�
k+1���tk+1
�tk

�− e−
tk �Jt−tk
v
�m�
k+1���tk+1
�tk

�

]
�

There is some �tk
-measurable nonnegative random variable Rk such that tk+1 ∧ � ∧ ��m�

# �t�= �tk +Rk�∧ tk+1,
�� ∧ ��m�

# �t� ≥ tk+1� = �tk + Rk ≥ tk+1�, and �� ∧ ��m�
# �t��1

��∧�
�m�
# �t�<tk+1�

= �tk + Rk�1��∧�
�m�
# �t�<tk+1�

. Because

�tk+1 = ��tk+1
�tk

�Xk+1/

√
�tk+1�, last displayed expectation equals e−
tk times expectation of

�Jv
�m�
k+1���tk+1
�tk


 t− tk
Rk ∧�tk+1�+ 1	0
�tk+1��Rk��JRk
v
�m�
k+1���tk+1
�tk

�− �Jt−tk
v
�m�
k+1���tk+1
�tk

�
 (31)

which, we shall show, ��-a.e. vanishes. Because ��m�
# �t� = min�s ≥ t� "�m��s� > −#�, we have 0 > −# ≥

"�m��s� = e
�s−tk��Js−tk
v
�m�
k+1���tk+1
�tk

� or 0 > �Js−tk
v
�m�
k+1���tk+1
�tk

� for every t ≤ s < tk+1 ∧ ��m�
# �t� ∧ � ≡

tk+1 ∧ �tk +Rk� or for every t− tk ≤ s− tk < Rk ∧�tk+1.
Basis case with Rk < �tk+1. On �Rk < �tk+1�, we have 0 > �Js−tk

v
�m�
k+1���tk+1
�tk

� for t − tk ≤ s − tk < Rk,
and by Lemma 4.1(v) with y0 = t − tk, y1 = Rk − ?, �t = �tk+1, � = �tk

, y = y0, z = y1, and w = v
�m�
k+1,

we conclude �Jt−tk
v
�m�
k+1���tk+1
�tk

�= ∫ Rk−?

t−tk
e−
u���u
�tk

�− 
/c�du+ �JRk−?v
�m�
k+1���tk+1
�tk

� for all 0< ?<

Rk − �t − tk�. By Lemma 4.1(iv), �Jyv
�m�
k+1���tk+1
�tk

� is continuous at y = Rk ∈ 	0
�tk+1!, and ? ↓ 0 gives
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�Jt−tk
v
�m�
k+1���tk+1
�tk

�= ∫ Rk

t−tk
e−
u���u
�tk

�− 
/c�du+ �JRk
v
�m�
k+1���tk+1
�tk

�. Therefore, the random variable
in (31) equals zero ��-a.s. on �Rk <�tk+1�.
Basis case with Rk ≥ �tk+1. On �Rk ≥ �tk+1�, we have 0 > �Js−tk

v
�m�
k+1���tk+1
�tk

� for every t − tk ≤
s − tk ≤ �tk+1 ∧ Rk = �tk+1. By Lemma 4.1(v) with y0 = t − tk, y1 = �tk+1 − ?, �t = �tk+1, �=�tk

,
y = y0, z = y1, and w = v

�m�
k+1, we conclude that �Jt−tk

v
�m�
k+1���tk+1
�tk

� = ∫ �tk+1−?

t−tk
e−
u���u
�tk

� − 
/c�du +
�J�tk+1−?v

�m�
k+1���tk+1
�tk

� for every 0<?<�tk+1−t+tk ≡ tk+1−t. By Lemma 4.1(iv), y �→ �Jyv
�m�
k+1���tk+1
�tk

�

is continuous on 	0
�tk+1! � y, and letting ? ↓ 0 above implies that on �Rn ≥ �tn+1� �Jt−tk
v
�m�
k+1���tk+1
�tk

�=∫ �tk+1
t−tk

e−
u���u
�tk
�−
/c�du+ �J�tk+1v

�m�
k+1���tk+1
�tk

�= �Jv
�m�
k+1���tk+1
�tk


 t− tk
�tk+1� and shows that the
random variable in (31) equals zero ��-a.s. on �Rk ≥ tk+1�. This completes the proof of the basis case n= k+1.
Inductive step. Suppose that Ɛ�	M�m��tn ∧ � ∧ ��m�

# �t��! = Ɛ�	M�m��t�! for some k+ 1≤ n≤m− 1
and show that it also holds for n + 1. Because Ɛ�	M�m��tn+1 ∧ � ∧ ��m�

# �t��! − Ɛ�	M�m��tn ∧ � ∧
��m�

# �t��! equals Ɛ�	1��∧�
�m�
# �t�≥tn�

�M�m��tn+1 ∧ � ∧ ��m�
# �t�� − M�m��tn��!
 the result follows from the induc-

tion hypothesis, if the last expectation equals zero. Because "�m��tn+1� = v
�m�
n+1��tn+1� and "�m��� ∧ ��m�

# �t�� =
e
��∧�

�m�
# �t�−tn��J

�∧�
�m�
# −tn

v
�m�
n+1���tn+1
�tn

� on �tn ≤ � ∧��m�
# �t� < tn+1�, we have

Ɛ�	1��∧�
�m�
# �t�≥tn�

�M�m��tn+1 ∧ � ∧��m�
# �t��−M�m��tn��!

= Ɛ�

[
1
��∧�

�m�
# �t�≥tn�

(∫ tn+1∧�∧�
�m�
# �t�

tn

e−
u

(
��u− tn
�tn

�− 


c

)
du+ 1

��∧�
�m�
# �t�≥tn+1�

e−
tn+1v
�m�
n+1��tn+1�

+ 1
��∧�

�m�
# �t�<tn+1�

e−
tn�J
�∧�

�m�
# −tn

v
�m�
n+1���tn+1
�tn

�− e−
tnv�m�
n ��tn

�

)]



and because there is an �tn
-measurable random variable Rn such that 	tn+1 ∧ � ∧ ��m�

# �t�!1
��∧�

�m�
# �t�≥tn�

=
	tn+1 ∧ �tn + Rn�!1��∧�

�m�
# �t�≥tn�

and �� ∧ ��m�
# �t� ≥ tn+1� = �� ∧ ��m�

# �t� ≥ tn
 tn + Rn ≥ tn+1�, last dis-

played expectation equals e−
tn times the expectation of 1
��∧�

�m�
# �t�≥tn�

	�Jv
�m�
n+1���tn+1
�tn


0
Rn ∧ �tn+1� +
1	0
�tn+1��Rn��JRn

v
�m�
n+1���tn+1
�tn

�− v�m�
n ��tn

�!, which vanishes ��-a.s., as in the basis case.

A.4. Proof of Corollary 5.1. Fix any m≥ 1, 0≤ t ≤ u≤ v≤ tm, and #≥ 0. Let F be a �u-measurable event,
and define �-stopping time � %= u1F + v1�\F . Then by Proposition 5.2 Ɛ�	M�m��v∧��m�

# �t��!= Ɛ�	M�m��t�!=
Ɛ�	M�m���∧��m�

# �t��!= Ɛ�	M�m��u∧��m�
# �t��1F !+Ɛ�	M�m��v∧��m�

# �t��1�\F !, and Ɛ�	M�m��u∧��m�
# �t��1F !=

Ɛ�	M�m��v∧��m�
# �t��1F !. Because F ∈�u is arbitrary, we have M�m��u∧��m�

# �t��= Ɛ��M�m��v∧��m�
# �t�� ��u�,

��-a.s.
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