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SOLUTIONS OF LARGE-SCALE ELECTROMAGNETICS
PROBLEMS USING AN ITERATIVE INNER-OUTER
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MULTILEVEL FAST MULTIPOLE ALGORITHMS
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Abstract—We present an iterative inner-outer scheme for the efficient
solution of large-scale electromagnetics problems involving perfectly-
conducting objects formulated with surface integral equations.
Problems are solved by employing the multilevel fast multipole
algorithm (MLFMA) on parallel computer systems. In order
to construct a robust preconditioner, we develop an approximate
MLFMA (AMLFMA) by systematically increasing the efficiency of
the ordinary MLFMA. Using a flexible outer solver, iterative MLFMA
solutions are accelerated via an inner iterative solver, employing
AMLFMA and serving as a preconditioner to the outer solver.
The resulting implementation is tested on various electromagnetics
problems involving both open and closed conductors. We show that
the processing time decreases significantly using the proposed method,
compared to the solutions obtained with conventional preconditioners
in the literature.

1. INTRODUCTION

For numerical solutions of electromagnetics problems involving metallic
(conducting) objects, simultaneous discretizations of surfaces and the
integral-equation formulations lead to N ×N dense matrix equations,
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which can be solved iteratively by using a Krylov subspace algorithm.
On the other hand, most of the real-life applications involve large
geometries that need to be discretized with millions of unknowns. For
such large-scale problems, it is necessary to reduce the complexity
of the matrix-vector multiplications required by an iterative solver.
The required acceleration is provided by the multilevel fast multipole
algorithm (MLFMA), which is based on calculating the interactions
between the discretization elements in a group-by-group manner [1].
This is achieved by applying the addition theorem to factorize the free-
space Green’s function and performing a diagonalization to expand the
spherical wave functions in a series of plane waves [2]. Constructing
a tree structure of clusters‡ by recursively dividing a computational
box enclosing the object, MLFMA computes the interactions in a
multilevel scheme and reduces the processing time of a dense matrix-
vector multiplication from O(N2) to O(N log N). In addition, only a
sparse part of the full matrix, namely, the near-field matrix, needs to be
stored so that the memory requirement is also reduced to O(N log N).
Consequently, MLFMA renders the solution of large matrix equations
possible on relatively inexpensive computing platforms.

MLFMA offers remarkable advantages for the iterative solution
of integral-equation formulations by reducing the complexity of the
matrix-vector multiplications [3, 4]. However, particularly for large-
scale problems, it is desirable to further reduce the total cost of the
iterative solutions. For example, Bouras and Frayssé [5] proposed
decreasing the accuracy of the matrix-vector multiplications in the
jth iteration by relating the relative error δj of the matrix-vector
multiplication to the norm of the residual vector ρj , i.e.,

δj =





ε, ‖ρj‖2 > 1
ε

‖ρj‖2
, ε ≤ ‖ρj‖2 ≤ 1

1, ‖ρj‖2 < ε,

(1)

where ε ≤ 1 denotes the target residual error. Using (1), the relative
error of the matrix-vector multiplication is relaxed from ε to 1 as the
iterations proceed. However, using a similar relaxation strategy by
adjusting the accuracy of MLFMA during the course of an iterative
solution is not trivial. This is because the implementation details of
MLFMA depend on the targeted accuracy. In principle, it is possible
to construct a fixed number of MLFMA versions with various levels
of accuracy. Nevertheless, each version increases the cost of the
setup substantially. Moreover, a less-accurate MLFMA obtained by
‡ Throughout this paper, the term “clusters” is used to indicate “boxes” and “sub-boxes”
in an MLFMA oct-tree.
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decreasing the number of accurate digits is not significantly cheaper
than the ordinary MLFMA.

Another option for reducing the cost of an iterative solution
is to use preconditioners to accelerate the iterative convergence.
In MLFMA, the sparse near-field matrix is available to construct
effective preconditioners for relatively small problems. However, as the
problem size grows, sparsity of the near-field matrix increases, and the
resulting preconditioners become insufficient to accelerate the iterative
convergence.

In this paper, we present efficient solutions of large-scale
electromagnetics problems using ordinary and approximate versions
of MLFMA in an inner-outer scheme [6, 7]. Outer iterative
solutions are performed by using a flexible solver accelerated by an
ordinary MLFMA. Those solutions are effectively preconditioned by
another Krylov-subspace algorithm accelerated by an approximate
MLFMA (AMLFMA). There are two explanations to describe the
advantages of the proposed strategy:

(i) Matrix-vector products performed by an ordinary MLFMA
are replaced with more efficient multiplications performed by
AMLFMA. Different from the relaxation strategies, however,
only a single specific implementation of AMLFMA is sufficient
to construct an inner-outer scheme. In addition, a reasonable
accuracy (without strict limits) is sufficient for the approximation.

(ii) Iterative solutions by an ordinary MLFMA are preconditioned
with a very strong preconditioner that is constructed by
approximating the full matrix instead of the sparse part of the
matrix.

In this paper, AMLFMA is introduced and proposed as a tool
to construct effective preconditioners. We consider the iterative
solutions of large-scale electromagnetics problems and demonstrate the
acceleration provided by the proposed strategy based on AMLFMA,
compared to the conventional preconditioners.

The rest of the paper is organized as follows. Section 2 outlines
efficient solutions of surface formulations via MLFMA. In Section 3,
we discuss various techniques to construct less-accurate versions of
MLFMA, and point out the advantages of the proposed AMLFMA
scheme. Sections 4 and 5 present examples of conventional near-
field preconditioners and some details of the proposed preconditioning
technique based on AMLFMA, respectively. Then, we provide
numerical examples in Section 6, followed by our conclusion in
Section 7.
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2. SOLUTIONS OF SURFACE INTEGRAL EQUATIONS
VIA MLFMA

Using MLFMA, matrix-vector multiplications required by the iterative
solvers are performed as

Z · x = ZNF · x + ZFF · x, (2)

where only the near-field interactions denoted by ZNF are calculated
directly and stored in memory, while the far-field interactions denoted
by ZFF are calculated approximately and efficiently [8]. Consider a
metallic object of size D discretized with low-order basis functions,
such as the Rao-Wilton-Glisson (RWG) [9] functions on λ/10 triangles,
where λ = 2π/k is the wavelength. For smooth objects, the number
of unknowns is N = O(k2D2). A tree structure of L + 2 = O(log N)
levels is constructed by recursively dividing the object until the box
size is about 0.25λ. We note that the highest two levels are not used
explicitly in MLFMA, and the number of active levels is L. At each
level l from 1 to L, the number of clusters is Nl, where N1 = O(N)
and NL = O(1). To calculate the interactions between the clusters,
radiation and receiving patterns are defined and sampled at O(T 2

l )
angular points, where Tl is the truncation number. For a cluster of
size al = 2l−3λ at level l, the truncation number is determined by
using the excess bandwidth formula [10] for the worst-case scenario
and the one-box-buffer scheme [11], i.e.,

Tl ≈ 1.73kal + 2.16(d0)2/3(kal)1/3, (3)

where d0 is the desired digits of accuracy. We note that

Tmin = T1 =
⌊
2.72 + 2.51d

2/3
0

⌋
+ 1 (4)

for the lowest level (l = 1) with a = 0.25λ, where b·c represents the
floor operation. Table 1 presents a list of truncation numbers for
different box sizes and when the number of accurate digits varies from
d0 = 1 to d0 = 5. In general, the truncation number grows rapidly
as a function of the cluster size. In fact, for a large-scale problem,
Tmax = TL = O(kD) and the maximum truncation number is linearly
proportional to the electrical size of the object. We also note that
the truncation number loosely depends on the value of d0 for large
clusters [12].

2.1. Setup of MLFMA

The following calculations are performed during the setup of MLFMA.
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Table 1. Truncation numbers (Tl) determined by the excess
bandwidth formula for the worst-case scenario and the one-box-buffer
scheme.

Box Size (λ) d0 = 1 d0 = 2 d0 = 3 d0 = 4 d0 = 5

0.25 6 7 8 10 11

0.5 9 11 13 14 15

1 15 18 20 21 23

2 27 30 33 35 37

4 50 54 57 60 62

8 95 100 104 108 111

16 184 190 195 200 204

32 361 368 375 380 385

Input and Clustering: In the input and clustering stage, the
discretized object is read from a file and a tree structure is
constructed in O(N) time. The amount of memory required to
store the data is also O(N).
Near-Field Interactions and the Right-Hand-Side (RHS)
Vector: Near-field interactions and the elements of the RHS
vector are calculated. Both the processing time for those
calculations and the memory required to store the data are O(N).
Radiation and Receiving Patterns of the Basis and
Testing Functions: Since they are used multiple times during
the iterative solution part, radiation and receiving patterns of the
basis and testing functions are calculated and stored in memory.
These patterns are evaluated with respect to the centers of the
smallest clusters, and O(T 2

min) samples are required for each basis
and testing function. Then, the complexity of the radiation and
receiving patterns is O(NT 2

min) = O(N), since Tmin is independent
of N .
Translation Functions: Translations are performed between
pairs of distant clusters, if their parent clusters are close to each
other. Using cubic (identical) clusters, the number of translation
operators can be reduced to O(1), which is independent of N ,
using the symmetry at each level. Consequently, for level l, O(T 2

l )
memory is required to store the translation operators. On the
other hand, direct calculation of those operators requires O(T 3

l )
time, which is significant for the higher levels of the tree structure.
Specifically, at the highest level with TL = O(kD) = O(N1/2), the
processing time required to evaluate the translation operators is
O(N3/2). Due to this relatively high complexity, calculating the
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translation operators results in a bottleneck when the problem size
is large. As a remedy, local interpolation methods can be used to
reduce the complexity to O(N) without decreasing the accuracy
of the results [12].

2.2. Matrix-vector Multiplications via MLFMA

During an iterative solution, each matrix-vector multiplication involves
the following stages.

Near-Field Interactions: Near-field interactions that are
stored in memory are used to compute the partial matrix-vector
multiplications ZNF · x in O(N) time.
Aggregation: In the aggregation stage, radiated fields of clusters
are calculated from the bottom of the tree structure to the highest
level. At the lowest level, radiation patterns of the basis functions
are combined in O(NT 2

min) time. Then, the radiated fields of the
clusters in the higher levels are obtained by combining the radiated
fields of the clusters in the lower levels. Between two consecutive
levels, interpolations are employed to match the different sampling
rates of the fields. Using a local interpolation method, such as
the Lagrange interpolation, aggregation operations for level l are
performed in O(NlT

2
l ) time [8]. The amount of memory required

to store the radiated fields is also O(NlT
2
l ).

Translation: In the translation stage, radiated fields of clusters
are converted into incoming fields for other clusters. For a cluster
at any level, there are O(1) clusters to translate the radiated
field to. Since the radiated and incoming fields are sampled at
O(T 2

l ) points, the total amount of the translated data at level l is
O(NlT

2
l ).

Disaggregation: In the disaggregation stage, total incoming
fields at cluster centers are calculated. The total incoming
field for a cluster is the combination of the incoming fields
due to translations and the incoming field from its parent
cluster. The incoming field to the center of a cluster is
shifted to the centers of its subclusters by using transpose
interpolations (anterpolations) [13]. Finally, at the lowest level,
incoming fields are received by the testing functions via angular
integrations. The complexity of the disaggregation stage is the
same as the complexity of the aggregation stage, i.e., O(NlT

2
l ).

In MLFMA, complexities of both processing time and memory are
O(NlT

2
l ) for level l. At the lowest level, T1 = Tmin = O(1),

N1 = O(N), and O(N1T
2
1 ) = O(N). At the highest level, TL =
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O(N1/2), NL = O(1), and O(NLT 2
L) = O(N). In fact, considering the

numbers of clusters and samples, the complexity remains the same as
O(N) for each level. Thus, the overall complexity of a matrix-vector
multiplication is O(N log N).

3. STRATEGIES FOR BUILDING A LESS-ACCURATE
MLFMA

MLFMA can perform a matrix-vector multiplication with a specific
level of accuracy, which is controlled by the excess bandwidth formula
in (3). There are many studies that further improve the reliability of
the implementations by refining formulas for the truncation numbers,
especially for small clusters [11]. In most cases, the purpose is to obtain
accurate results by suppressing the error sources in MLFMA. On the
other hand, it is also desirable to build less-accurate forms of MLFMA,
which can be more efficient than the original MLFMA. A less-accurate
MLFMA can be used to construct a strong preconditioner, where the
accuracy is not critical, but a reasonable approximation with high
efficiency is required.

A direct way to construct a less-accurate MLFMA is to reduce the
truncation numbers using (3). For example, if the ordinary MLFMA
has four digits of accuracy, i.e., d0 = 4, then a less-accurate MLFMA
may have one or two digits of accuracy [14]. This strategy, however,
has two major disadvantages:

(i) A less-accurate MLFMA obtained by decreasing d0 in (3) is not
significantly faster than the ordinary MLFMA, because, as listed
in Table 1, the truncation number loosely depends on d0 for large
boxes at the higher levels of MLFMA. As an example, let d0 be
reduced from 4 to 1. At the lowest level involving 0.25λ boxes, the
truncation number drops significantly by 40% (from 10 to 6). On
the other hand, for a higher level with 16λ boxes, the truncation
number decreases from 200 to 184, which corresponds to a mere
8% reduction. Therefore, reducing the value of d0 does not provide
a significant acceleration, especially when the problem size is large.

(ii) The extra cost of a less-accurate MLFMA obtained by decreasing
d0 can be significant due to the calculation of the radiation and
receiving patterns of the basis and testing functions during the
setup stage. In addition to the ordinary patterns employed by
the ordinary MLFMA, a new set of patterns is required for the
less-accurate MLFMA with the reduced truncation numbers.

Because of the above drawbacks, better strategies are required to
construct less-accurate yet efficient versions of MLFMA.
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Another strategy to build a less-accurate MLFMA is by omitting
some of the far-field interactions. In this case, the number of
accurate digits is the same as that for the ordinary MLFMA, but
the aggregation, translation, and disaggregation stages are omitted
for a number of the higher levels of the tree structure. The resulting
less-accurate MLFMA is called the incomplete MLFMA (IMLFMA),
which does not require extra computations during the setup stage.
In addition, IMLFMA can easily be obtained via minor modifications
to the ordinary MLFMA. However, this strategy fails to provide an
acceptable accuracy with a sufficient speedup. For example, half of
the levels must be ignored to obtain a two-fold speedup with IMLFMA
compared to the ordinary MLFMA; this leads to a poor approximation
since it results in most of the interactions (much more than 50%) being
ignored.

In this paper, we propose AMLFMA, which is based on
systematically reducing the truncation numbers, i.e.,

T r
l = Tmin + af (Tl − Tmin), (5)

where Tmin is the minimum truncation number defined in (4) and Tl

is the ordinary truncation number for level l. In (5), af represents an
approximation factor in the range from 0.0 to 1.0. As af is increased
from 0.0 to 1.0, AMLFMA becomes more accurate but less efficient,
and it corresponds to the ordinary MLFMA when af = 1.0. Since the
truncation number at the lowest level is not modified, AMLFMA does
not require extra computations for the radiation and receiving patterns
of the basis and testing functions. Only a new set of translation
functions is required, which leads to a negligible extra cost.

As an example, we consider the solution of electromagnetics
problems involving a sphere of radius 6λ and a 20λ × 20λ patch,
discretized with 132,003 and 137,792 unknowns, respectively. For both
problems, matrix-vector multiplications are performed by AMLFMA
with various values of af . In addition to AMLFMA, we also consider
IMLFMA, which is constructed by omitting the interactions at only
the highest level. The number of active levels (L) is five and six for the
sphere and patch problems, respectively. The input array is filled with
ones, and the output arrays provided by AMLFMA and IMLFMA are
compared with a reference array provided by the ordinary MLFMA
with three digits of accuracy. For each element of the output vector
m = 1, 2, . . . , N , a base error is defined as

∆b[m] = dlog10(∆r[m])e, (6)

where d·e denotes the ceiling operation and ∆r[m] represents the
relative error with respect to the reference value provided by the
ordinary MLFMA.
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Figure 1. Errors in the matrix-vector multiplications performed by
AMLFMA with af in the 0.0–0.8 range and by IMLFMA (omitting the
highest level) for a sphere problem discretized with 132,003 unknowns.
The reference data is obtained by using an ordinary MLFMA with
three digits of accuracy.

Figures 1 and 2 present the number of elements satisfying
various base errors for the sphere and patch problems, respectively.
Fig. 1 shows that the accuracy of the matrix-vector multiplication
deteriorates only slightly when af is 0.8 and 0.6 for the sphere problem,
i.e., the base error is −3 or less for most of the elements. Since the
ordinary MLFMA has three digits of accuracy, those elements with a
base error of less than −2 are considered to be calculated with a high
accuracy. Reducing the value of af to 0.4 and 0.2, the accuracy of
AMLFMA decreases and the number of elements satisfying −2 and
−1 base errors increases. Finally, when af = 0.0, i.e., when the
truncation number is Tmin for all levels, there are many elements with
0 base error, which corresponds to at least 10% relative error, which is
unacceptably high. Fig. 2 presents similar results for a completely
different geometry, i.e., a 20λ × 20λ patch. Using AMLFMA, we
are able adjust the accuracy of the matrix-vector multiplications by
varying the approximation factor af from 1.0 to 0.0. On the other
hand, IMLFMA, which is obtained by omitting only the highest level,
provides inaccurate results compared to AMLFMA with af between
0.2 and 0.4 for both problems.
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Figure 2. Errors in the matrix-vector multiplications performed by
AMLFMA with af in the 0.0–0.8 range and by IMLFMA (omitting the
highest level) for a patch problem discretized with 137,792 unknowns.
The reference data is obtained by using an ordinary MLFMA with
three digits of accuracy.

Figures 1 and 2 show that we obtain relatively accurate matrix-
vector multiplications by AMLFMA when using af in the 0.2–0.4
range. This cannot be predicted by the excess bandwidth formula
in (3), which suggests significantly large truncation numbers, as listed
in Table 1. This is because the excess bandwidth formula is based
on the worst-case scenario for the positions of the basis and testing
functions inside the clusters [11]. In fact, the ordinary MLFMA must
use the truncation numbers obtained with (3) to guarantee the desired
level of accuracy. However, for a typical problem, there are many
interactions that can be computed accurately using lower truncation
numbers. We employ those interactions in AMLFMA, which can be
used to construct powerful preconditioners. Due to the nature of
preconditioning, perfect accuracy is not required, instead, the fastest
possible solution with the least possible approximation is desired.

Finally, Table 2 lists the processing time required for a matrix-
vector multiplication performed by the ordinary MLFMA, AMLFMA,
and IMLFMA, measured on a parallel computer system containing 16
AMD Opteron 870 processors. For both sphere and patch problems,
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Table 2. Processing time (seconds) for a single matrix-vector
multiplication.

Problem-Unknowns MLFMA
AMLFMA

IMLFMA
0.8 0.6 0.4 0.2 0.0

Sphere-132,003 34.9 28.3 23.2 19.8 16.0 13.0 32.4

Patch-137,792 24.5 19.4 15.2 12.8 10.1 8.1 21.6

AMLFMA with af = 0.2 provides a significant acceleration by reducing
processing time more than 50% compared with the ordinary MLFMA.
We also note that the speedup provided by IMLFMA is less than the
speedup provided by AMLFMA, even when af = 0.8.

4. PRECONDITIONERS BUILT FROM NEAR-FIELD
MATRICES

In MLFMA, there are O(N) near-field interactions available for
the construction of various preconditioners. For example, using
the self-interactions of the lowest-level clusters leads to the block-
diagonal (BD) preconditioner, which effectively reduces the number
of iterations for the combined-field integral equation (CFIE) [1, 15].
On the other hand, the BD preconditioner usually decelerates the
iterative solutions of the electric-field integral equation (EFIE) [15]. In
addition, for large problems involving complicated objects, acceleration
provided by the BD preconditioner may not be sufficient, even when
the problems are formulated with CFIE. For the efficient solution of
those problems, it is necessary to construct better preconditioners [16]
by using all of the available near-field interactions instead of using only
the diagonal blocks.

One of the most common preconditioning techniques based on
the sparse matrices is the incomplete LU (ILU) method [17]. This
is a forward-type preconditioning technique, where the preconditioner
matrix M approximates the system matrix, and we solve for

M
−1 · Z · a = M

−1 · v (left preconditioning) (7)

or (
Z ·M−1

)
· (M · a)

= v (right preconditioning), (8)

instead of the original matrix equation Z · a = v. In (7) and (8),
the solution of M · x = y for a given y should be cheaper than the
solution of the original matrix equation. During the factorization of
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the preconditioner matrix, the ILU method sacrifices some of the fill-ins
and provides an approximation to the near-field matrix, i.e.,

M = L · U ≈ ZNF . (9)

Recently, we showed that an ILU preconditioner without a threshold
provides an inexpensive and good approximation to the solution of the
near-field matrix for CFIE, hence it reduces the iteration counts and
solution times substantially [18]. For ill-conditioned EFIE matrices,
however, ILUT (i.e., threshold-based ILU) with pivoting [19] is required
to prevent the potential instability. Other successful adoptions of the
ILU preconditioners are presented by Lee et al. [20].

Despite the remarkable success of the ILU preconditioners, they
are limited to sequential implementations due to difficulties in paral-
lelizing their factorization algorithms and forward-backward solutions.
Hence, the sparse-approximate-inverse (SAI) preconditioner that is
well-suited for parallel implementations has been more preferable for
the solution of large-scale electromagnetics problems [14, 21, 22]. The
SAI preconditioner is based on a backward-type scheme, where the in-
verse of the system matrix is directly approximated, i.e., M ≈ Z

−1. In
MLFMA, only the near-field matrix is considered [23], and we minimize

∥∥I −M · ZNF

∥∥
F

, (10)

where ‖ · ‖F represents the Frobenius norm. Using the pattern of
the near-field matrix for the nonzero pattern of M provides some
advantages by decreasing the number of QR factorizations required
during the minimization in (10) [14]. In parallel implementations, we
use a row-wise partitioning to distribute the near-field interactions
among the processors. Therefore, left-preconditioning must be used
to accelerate the iterative solutions with the SAI preconditioner.
However, right-preconditioning can also be used for the symmetric
matrix equations derived from EFIE [22].

Recently, we showed that the SAI preconditioner is useful in
reducing the iteration counts for closed and complicated surfaces
formulated with CFIE, as well as open surfaces formulated with
EFIE. However, for EFIE, the SAI preconditioner is less successful
than the ILU methods, although they are based on the same near-
field matrix. As a remedy, we use an inner-outer scheme [6] by
employing the SAI preconditioner to accelerate the iterative solution
of the near-field system, which is then used as a preconditioner for the
full matrix equation [24]. The resulting forward-type preconditioner
is called the iterative near-field (INF) preconditioner. Contrary to
the ILU preconditioners, which approximate the near-field matrix
(M ≈ ZNF ), the INF preconditioner employs the near-field matrix
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exactly (M = ZNF ), but the preconditioner system is solved iteratively
and approximately. Since the preconditioner is changed during the
iterations, a flexible Krylov-subspace method should be used for the
outer solutions [19]. In the next section, we introduce a robust
preconditioning technique, which is based on a similar inner-outer
scheme, but this time we employ AMLFMA for the inner solutions
to construct more effective preconditioners.

5. ITERATIVE PRECONDITIONING BASED ON
AMLFMA

Preconditioners that are based on the near-field interactions can be
insufficient to accelerate the iterative solutions of large-scale problems,
especially those formulated with EFIE. For more efficient solutions,
it is possible to use the far-field interactions in addition to the near-
field interactions and construct more effective preconditioners. This
can be achieved by using flexible solvers and employing approximate
and ordinary versions of MLFMA in an inner-outer scheme. Using
a reasonable approximation for the inner solutions, the number of
outer iterations can be reduced substantially. In addition to more
efficient solutions, the inner-outer scheme prevents numerical errors
that arise because of the deviations of the computed residual from the
true residual by significantly decreasing the number of outer iterations.
This is because the “residual gap,” i.e., the difference between the true
and computed residuals, increases with the number of iterations [25].
Another benefit of the reduction in iteration counts appears when the
iterative solutions are performed with the generalized minimal residual
(GMRES) algorithm, which is usually an optimal method for EFIE in
terms of the processing time [14, 18]. Even though flexible variants of
GMRES, namely, FGMRES [19] or GMRESR [26], require the storage
of two vectors per iteration instead of one, nested solutions require
significantly less memory than the ordinary GMRES solutions since
nested solutions dramatically reduce the iteration counts.

There are many factors that affect the performance of an inner-
outer scheme, such as the primary preconditioning operator, the choice
of the inner solver and the secondary preconditioner to accelerate the
inner solutions, and the inner stopping criteria. Now, we discuss these
factors in detail.

5.1. Preconditioning Operator

In an extreme case, one can use the full matrix itself as a preconditioner
by employing the ordinary MLFMA to perform the matrix-vector
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multiplications for the inner solutions. On the other hand, an inner-
outer scheme usually increases the total number of matrix-vector
multiplications compared to the ordinary solutions [25]. In addition, an
approximate solution instead of an ordinary solution can be sufficient
to construct a robust preconditioner. As discussed in Section 3,
AMLFMA is an appropriate choice to perform the inner solutions.
By using the approximation factor af , the accuracy of AMLFMA can
be adjusted to achieve a maximum overall efficiency.

5.2. Inner Solver and the Secondary Preconditioner

For the inner solutions, GMRES is preferable due to its rapid
convergence in a small number of iterations. The inner solutions
are also accelerated by using a secondary preconditioner based on
the near-field interactions. Among the various choices discussed in
Section 4, we prefer the SAI preconditioner, which effectively increases
the convergence rate, especially in the early stages of the iterative
solutions [14].

5.3. Inner Stopping Criteria

The relative residual error εin and the upper limit for the number
of inner iterations jin

max are also important parameters that affect the
overall efficiency of the inner-outer scheme. Van den Eshof et al. [25]
showed that fixing εin is nearly optimal if relaxation is not applied.
However, even 0.1 (10%) residual error can cause a significant number
of inner iterations for large-scale problems. Therefore, in addition to
εin, the maximum number of iterations jin

max should be set carefully
to avoid unnecessary iterations during the inner solutions. For large
problems, a small value of jin

max is more likely to keep the inner iteration
counts under control than a large value of εin.

6. NUMERICAL RESULTS

Finally, we demonstrate the performance of the proposed inner-
outer scheme using AMLFMA, compared to the solutions accelerated
with BD, SAI, and INF preconditioners. Fortran 90 programming
language is used for all implementations. Solutions are performed
on a distributed-memory parallel computer containing Intel Xeon
Harpertown processors with 3.0 GHz clock rate. A total of 32
cores located in 16 nodes (2 cores per node) are used, and the
nodes are connected via an Infiniband network. A hierarchical
partitioning strategy is used for the parallelization of MLFMA [3].
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Iterative solvers, namely, GMRES and FGMRES, are provided by the
PETSc library [27]. In all solutions, matrix-vector multiplications
are performed by MLFMA with three digits of accuracy. For the
inner solutions with AMLFMA, the target residual error and the
approximation factor are set to 10−1 and 0.2, respectively. To avoid
unnecessary work, inner solutions are stopped at maximum 10th
iteration (jin

max = 10). For the INF preconditioner, however, the target
residual error for the inner solutions is in the range of 10−2 to 10−1,
whereas the maximum number of iterations is set to between 3 and
5, depending on the problem. A small number of inner iterations
is usually sufficient for INF since the SAI preconditioner used to
accelerate the inner solutions provides a good approximation to ZNF .

Parameters for the preconditioners are determined by testing
the implementations on a wide class of problems and choosing the
optimal combination to minimize the total processing time for each
preconditioner. For example, by setting the approximation factor to
0.2 in AMLFMA, most of the matrix elements are calculated with less
than 10% error. Then, using 10−1 residual error for the inner iterations
provides the best performance. Choosing a smaller error threshold
leads to unnecessary iterations and a larger error threshold wastes the
relatively high accuracy of AMLFMA. Setting the maximum number of
iterations to more than 10 increases the processing time, even though
the accuracy of the inner solutions is not improved significantly.

EFIE is notorious for generating ill-conditioned matrix equations,
which are difficult to solve iteratively, especially when the problem
size is large [18, 28]. Therefore, the proposed inner-outer scheme
employing AMLFMA is particularly useful for open surfaces that must
be formulated with EFIE. In addition, we show that the iterative
solutions of complicated problems involving closed surfaces that are
formulated with CFIE are also improved by the proposed method.

6.1. EFIE Results

Figure 3 presents three different metallic objects involving open
surfaces, namely, a square patch (P), a half sphere (HS), and a
reflector antenna (RA). The patch is illuminated by a horizontally-
polarized plane wave propagating at 45◦ angle from the normal of
the patch. The half sphere and the reflector antenna are illuminated
by plane waves propagating along the axes of symmetry of these
objects. Discretizations of the objects for various frequencies lead to
large matrix equations with millions of unknowns, as listed in Table 3.
Dimensions of the objects in terms of the wavelength and the number
of active levels (L) in MLFMA are also listed in Table 3.
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Patch (P) Half Sphere (HS)

Reflector Antenna (RA)

Figure 3. Metallic objects modeled with open surfaces.

Table 3. Electromagnetics problems involving open metallic objects.

Problem
Frequency Size MLFMA Number of

(GHz) (λ) Levels Unknowns

P1 96 96 8 3,062,400

P2 128 128 8 5,511,680

P3 192 192 9 12,253,440

HS1 96 96 8 3,838,496

HS2 128 128 8 6,535,168

HS3 192 192 9 15,356,992

RA1 32 107 8 2,991,067

RA2 48 160 9 6,849,398

RA3 64 214 9 11,967,620

Table 4 presents the number of iterations and the processing time
for the solutions of the problems in Table 3. We observe that using the
INF preconditioner accelerates the solutions significantly compared to
the SAI preconditioner used alone. Employing the inner-outer scheme
with AMLFMA further reduces the processing time, and we are able to
solve the largest problem discretized with about 12 million unknowns
in less than 7 hours. Although not shown in Table 4, the memory
required for the iterative algorithm is also reduced substantially by the
proposed method since the memory requirements of both GMRES and
FGMRES increase with the number of iterations. As an example, for
the solution of P3 with SAI, GMRES requires 2614 MB per processor.
Using an inner-outer scheme and AMLFMA, the memory requirement
is reduced to 820 MB.
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Table 4. Processing time (seconds) and the number of iterationsa
for the solution of electromagnetics problems involving open metallic
objects.

Problem
SAIb SAI INF AMLFMA

Setup Outer Time Outer Inner Time Outer Inner Time

P1 132 194 6,225 131 391 4,393 35 345 3,278

P2 308 234 27,902 160 478 19,620 43 425 9,860

P3 1,136 276 36,677 174 868 25,650 52 516 17,454

HS1 350 480 23,458 367 1,101 18,374 68 680 11,085

HS2 839 546 66,778 406 1,218 51,285 75 750 23,143

HS3 5,620 357 59,734 276 1,380 48,786 51 510 31,740

RA1 201 200 7,276 138 408 5,138 33 327 4,233

RA2 671 252 31,784 172 509 22,404 42 417 13,746

RA3 2,077 336 43,912 228 1,138 32,710 57 567 24,595

aThe relative residual error is 10−3 for HS3 and RA3, and 10−6 for other

problems.
bSetup of the SAI preconditioner is also required for INF and AMLFMA.

Helicopter (H) Flamme (F)

Figure 4. Metallic objects modeled with closed surfaces.

6.2. CFIE Results

Figure 4 presents two objects modeled with closed conducting surfaces,
namely, a helicopter (H) and a stealth airborne target named
Flamme (F) [29]. The Flamme is illuminated by a plane wave
propagating towards the nose of the target, whereas the helicopter
is illuminated from the top. Electromagnetics problems involving
those objects in Fig. 4 and listed in Table 5 are formulated with
CFIE (α = 0.2). Table 6 presents the number of iterations and
the processing time when the solutions are accelerated with the BD
and SAI preconditioners, as well as the inner-outer scheme using
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Table 5. Electromagnetics problems involving closed metallic objects.

Problem
Frequency Size MLFMA Number of

(GHz) (λ) Levels Unknowns

F1 40 80 8 1,248,480

F2 60 120 8 3,166,272

F3 80 160 9 4,993,920

H1 1.7 96 8 1,302,660

H2 2.4 136 9 2,968,512

H3 3.4 193 9 5,210,640

Table 6. Processing time (seconds) and the number of iterationsa
for the solution of electromagnetics problems involving closed metallic
objects.

Problem
BDb SAIc SAI AMLFMA

Outer Time Setup Outer Time Outer Inner Time

H1 117 2,287 183 90 1,869 16 239 813

H2 138 10,192 644 97 7,515 19 137 2,562

H3 125 10,986 627 104 9,386 25 240 4,938

F1 211 4,451 163 174 3,836 40 305 1,917

F2 347 10,087 402 316 9,276 58 331 6,641

F3 724 66,094 505 706 64,365 125 733 28,593

aThe relative residual error is 10−6 for all problems.
bThe BD preconditioner has a negligible setup time.
cSetup of the SAI preconditioner is also required for AMLFMA.

AMLFMA. We observe that the proposed method reduces the solution
time significantly compared to both the BD and SAI preconditioners.

7. CONCLUSION

MLFMA enables the iterative solution of very large problems
in electromagnetics. However, achieving a rapid convergence in
a reasonable iteration count is only viable by means of robust
preconditioners. In the context of MLFMA, the general trend is to
develop sparse preconditioners by using the near-field interactions.
However, as the problem size gets larger and the number of unknowns
also increases, those preconditioners become sparser and they may not
be sufficient to obtain an efficient solution.
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In this paper, we propose an inner-outer scheme to improve
iterative solutions with MLFMA. For the inner solutions, matrix-
vector multiplications are performed efficiently by AMLFMA, which
is obtained by systematically reducing the accuracy of the ordinary
MLFMA. We show that the resulting solver accelerates the iterative
solutions of electromagnetics problems involving open and closed
geometries formulated with EFIE and CFIE, respectively.

ACKNOWLEDGMENT

This work was supported by the Scientific and Technical Research
Council of Turkey (TUBITAK) under Research Grants 105E172 and
107E136, the Turkish Academy of Sciences in the framework of
the Young Scientist Award Program (LG/TUBA-GEBIP/2002-1-12),
and by contracts from ASELSAN and SSM. Özgür Ergül was also
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