
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Bilkent University] Date: 13 November 2017, At: 02:37

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

Real time selection of scheduling rules and
knowledge extraction via dynamically controlled
data mining

Gokhan Metan , Ihsan Sabuncuoglu & Henri Pierreval

To cite this article: Gokhan Metan , Ihsan Sabuncuoglu & Henri Pierreval (2010) Real
time selection of scheduling rules and knowledge extraction via dynamically controlled
data mining, International Journal of Production Research, 48:23, 6909-6938, DOI:
10.1080/00207540903307581

To link to this article: http://dx.doi.org/10.1080/00207540903307581

Published online: 15 Jan 2010.

Submit your article to this journal

Article views: 399

View related articles

Citing articles: 20 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207540903307581
http://dx.doi.org/10.1080/00207540903307581
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207540903307581
http://www.tandfonline.com/doi/mlt/10.1080/00207540903307581
http://www.tandfonline.com/doi/citedby/10.1080/00207540903307581#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00207540903307581#tabModule

International Journal of Production Research
Vol. 48, No. 23, 1 December 2010, 6909–6938

Real time selection of scheduling rules and knowledge extraction via

dynamically controlled data mining

Gokhan Metana*y, Ihsan Sabuncuoglub and Henri Pierrevalc

aDepartment of Industrial and Systems Engineering, Lehigh University, Bethlehem,
PA 18015, USA; bDepartment of Industrial Engineering, Bilkent University, Bilkent,
Ankara 06533, Turkey; cLIMOS, UMR CNRS 6158, IFMA, Campus des Cezeaux,

BP 265, F-63175 Aubiere Cedex, France

(Received 8 August 2007; final version received 24 August 2009)

A new scheduling system for selecting dispatching rules in real time is developed
by combining the techniques of simulation, data mining, and statistical process
control charts. The proposed scheduling system extracts knowledge from data
coming from the manufacturing environment by constructing a decision tree, and
selects a dispatching rule from the tree for each scheduling period. In addition,
the system utilises the process control charts to monitor the performance of
the decision tree and dynamically updates this decision tree whenever the
manufacturing conditions change. This gives the proposed system the ability to
adapt itself to changes in the manufacturing environment and improve the quality
of its decisions. We implement the proposed system on a job shop problem, with
the objective of minimising average tardiness, to evaluate its performance.
Simulation results indicate that the performance of the proposed system is
considerably better than other simulation-based single-pass and multi-pass
scheduling algorithms available in the literature. We also illustrate knowledge
extraction by presenting a sample decision tree from our experiments.

Keywords: adaptive control; data mining; simulation; dispatching rules; dynamic
scheduling; game theory; inventory management; pricing theory; radio frequency
identification; scheduling

1. Introduction

The scheduling problems encountered in many real life applications are stochastic and
dynamic in nature, making dispatching rules a commonly used technique in practice.
There are numerous such rules in the literature and simulation is the primary tool to test
the performance of these rules in complex environments (i.e. stochastic and dynamic job
shop problems). The results indicate that none of the dispatching rules is superior in every
setup. Hence, selection of the appropriate rule(s) is not a trivial task. Another result
prevalent in the literature is that switching to different rules (multi-pass) yields better
performance than using one rule (single-pass) for the entire horizon.

In a single-pass scheduling algorithm, a set of candidate dispatching rules is simulated
and the one with the best long-run performance is selected and used during the whole
planning horizon. On the other hand, multi-pass algorithms evaluate all the candidate

*Corresponding author. Email: gom204@lehigh.edu
yThis study was conducted when Gokhan Metan was at Bilkent University.

ISSN 0020–7543 print/ISSN 1366–588X online

� 2010 Taylor & Francis

DOI: 10.1080/00207540903307581

http://www.informaworld.com

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

dispatching rules in each relatively short scheduling period and select the best performer
to be used in that interval. Thus, in the long run, this type of algorithm results in a
combination of different dispatching rules.

We group the most relevant studies in the literature into five categories and provide a
summary in Table 1. We start our discussion with the studies in the first category, optimal
design and configuration of manufacturing systems.

Huyet and Paris (2004) developed a data-mining-based approach for optimal design
and configuration of production systems. They utilised simulation and evolutionary
algorithms to optimally configure production systems while utilising data mining to
determine production system parameters such as transport lot sizes, number of kanbans,
and dispatching rules. Later, Huyet (2006) implemented the same technique on a job shop
configuration problem. Although, in both studies, the dispatching rule is considered as a
configuration parameter that should be optimally selected, it is not dynamically adjusted
over time for changes in shop floor conditions. Yildirim et al. (2006) studied a different
approach, based on simulation and neural networks, to design flexible manufacturing
systems. One of the fundamental differences between these studies and our study is that
they approached dispatching rule selection at a tactical level, whereas our approach
considers the problem from an operational perspective by continuously selecting a new
dispatching rule for each scheduling period.

In the second category of research, Sha and Liu (2005) studied the due-date assignment
problem and developed a data mining approach for extracting knowledge on different
due-date assignment rules. In the experiments, they considered dispatching rules as a
predictor for due-date assignment rules. As a result, their decision tree makes a decision by
selecting a due-date assignment rule for a given dispatching rule, number of jobs in the
system, processing time requirement of jobs, etc.

Another direction of research studies the generation of new dispatching rules via data
mining and evolutionary algorithms. Li and Olafsson (2005) proposed a data-
mining-based approach for discovering new dispatching rules. Their technique is based
on extracting knowledge from the performances of a given set of dispatching rules (earliest
due-date, minimum slack, etc.) by constructing a decision tree. The final output is a
decision tree that is referred to as a new dispatching rule. This decision tree is later used to
make a decision for releasing or not releasing a job to the machine based on attribute
values such as processing time requirement and processing time difference. Once a new
dispatching rule (a decision tree) is constructed, it is not dynamically updated in time for
changing manufacturing conditions. Geiger et al. (2006), and Geiger and Uzsoy (2006)
approached the same problem of new dispatching rule discovery by combining simulation
and GA techniques.

The most relevant research category for our study is dispatching rule selection. There
are various studies concerning scheduling via dispatching rules that employ different
techniques such as iterative simulation, neural networks (NN), optimisation, and data
mining. One common feature of the very early works in this category is that they used
simulation as the primary tool for assessing the efficiency of dispatching rules, and selected
the best-performing rule for scheduling jobs on machines. Examples of such studies are
those of Wu and Wysk (1988, 1989), Ishii and Talavage (1991, 1994), Tayanithi et al.
(1993a, b), Kim and Kim (1994), Jeong and Kim (1998) and Kutanoglu and Sabuncuoglu
(2001).

One of the very first studies that applies learning techniques to scheduling problems is
the work of Pierreval and Ralambondrainy (1990). In their research, learning algorithms

6910 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

T
a
b
le

1
.
S
u
m
m
a
ry

o
f
th
e
li
te
ra
tu
re
.

C
a
te
g
o
ry

S
tu
d
y

T
ec
h
n
iq
u
es

u
se
d

T
es
t
p
ro
b
le
m

K
n
w
.

E
x
tr
c.

D
y
n
.

U
p
d
t.

O
p
ti
m
a
l
d
es
ig
n
a
n
d
co
n
fi
g
u
ra
ti
o
n

H
u
y
et

a
n
d
P
a
ri
s
(2
0
0
4
)

S
im

u
la
ti
o
n
,
G
A
,
C
4
.5

K
a
n
b
a
n
sy
st
em

Y
es

–
o
f
th
e
m
a
n
u
fa
ct
u
ri
n
g
sy
st
em

H
u
y
et

(2
0
0
6
)

S
im

u
la
ti
o
n
,
G
A
,
C
4
.5

Jo
b
sh
o
p

Y
es

–
Y
il
d
ir
im

et
a
l.
(2
0
0
6
)

S
im

u
la
ti
o
n
,
N
N

F
M
S

N
o

–
D
u
e-
d
a
te

a
ss
ig
n
m
en
t

S
h
a
a
n
d
L
iu

(2
0
0
5
)

S
im

u
la
ti
o
n
,
C
4
.5

Jo
b
sh
o
p

Y
es

N
o

d
is
p
a
tc
h
in
g
ru
le

g
en
er
a
ti
o
n

L
i
a
n
d
O
la
fs
so
n
(2
0
0
5
)

C
4
.5

S
in
g
le

m
a
ch
in
e

Y
es

N
o

G
ei
g
er

et
a
l.
(2
0
0
6
)

S
im

u
la
ti
o
n
,
G
A

S
in
g
le

m
a
ch
in
e

N
o

N
o

G
ei
g
er

a
n
d
U
zs
o
y
(2
0
0
6
)

S
im

u
la
ti
o
n
,
G
A

S
in
g
le

m
a
ch
in
e

N
o

N
o

D
is
p
a
tc
h
in
g
ru
le

se
le
ct
io
n

W
u
a
n
d
W
y
sk

(1
9
8
8
,
1
9
8
9
)

S
im

u
la
ti
o
n

F
M
S

N
o

N
o

Is
h
ii
a
n
d
T
a
la
v
a
g
e
(1
9
9
1
,
1
9
9
4
)

S
im

u
la
ti
o
n

F
M
S

N
o

N
o

T
a
y
a
n
it
h
i
et

a
l.
(1
9
9
3
a
,
b
)

S
im

u
la
ti
o
n

F
M
S

N
o

N
o

K
im

a
n
d
K
im

(1
9
9
4
)

S
im

u
la
ti
o
n

F
M
S

N
o

N
o

Je
o
n
g
a
n
d
K
im

(1
9
9
8
)

S
im

u
la
ti
o
n

F
M
S

N
o

N
o

K
u
ta
n
o
g
lu

a
n
d
S
a
b
u
n
cu
o
g
lu

(2
0
0
1
)

S
im

u
la
ti
o
n

Jo
b
sh
o
p

N
o

N
o

C
h
o
a
n
d
W
y
sk

(1
9
9
3
)

S
im

u
la
ti
o
n
,
N
N

F
M
S

N
o

N
o

P
ie
rr
ev
a
l
a
n
d
M
eb
a
rk
i
(1
9
9
7
)

S
F
S
R

h
eu
ri
st
ic

Jo
b
sh
o
p

Y
es

N
o

P
ie
rr
ev
a
l
a
n
d

R
a
la
m
b
o
n
d
ra
in
y
(1
9
9
0
)

S
im

u
la
ti
o
n
,
le
a
rn
in
g

Jo
b
sh
o
p

Y
es

N
o

P
ie
rr
ev
a
l
(1
9
9
3
)

S
im

u
la
ti
o
n
,
N
N

F
lo
w

sh
o
p

N
o

N
o

E
l-
B
o
u
ri
a
n
d
S
h
a
h
(2
0
0
6
)

N
N

Jo
b
sh
o
p

N
o

N
o

S
u
n
et

a
l.
(2
0
0
4
)

S
im

u
la
ti
o
n
-o
p
ti
m
is
a
ti
o
n

Jo
b
sh
o
p

N
o

N
o

L
ee

et
a
l.
(1
9
9
7
)

S
im

u
la
ti
o
n
,
G
A
,
C
4
.5

Jo
b
sh
o
p

Y
es

N
o

M
in

a
n
d
Y
ih

(2
0
0
3
)

S
im

u
la
ti
o
n
,
N
N

Jo
b
sh
o
p

N
o

N
o

A
is
sa
n
i
et

a
l.
(2
0
0
8
)

L
ea
rn
in
g

Jo
b
sh
o
p

N
o

N
o

A
tt
ri
b
u
te

se
le
ct
io
n

S
h
iu
e
a
n
d
G
u
h
(2
0
0
5
)

S
im

u
la
ti
o
n
,
G
A
,
N
N

F
M
S

N
o

N
o

S
h
iu
e
a
n
d
G
u
h
(2
0
0
6
)

S
im

u
la
ti
o
n
,
G
A
,
N
N

F
M
S

N
o

N
o

R
ev
ie
w

H
a
rd
in
g
et

a
l.
(2
0
0
6
)

–
–

–
–

International Journal of Production Research 6911

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

are used to mine the information captured by simulation experiments. The output of
learning algorithms is a set of production rules that are then utilised as a knowledge base
for selecting scheduling rules. In other studies, such as those of Cho and Wysk (1993),
Pierreval (1993), Min and Yih (2003) and El-Bouri and Shah (2006), techniques that
combine simulation and neural networks are proposed. One drawback of such studies is
the neural networks, which lack the ability to extract knowledge for decision-makers to
understand the system dynamics.

Lee et al. (1997) developed a scheduling approach using simulation, GA and data
mining (C4.5 algorithms) to select dispatching rules, and release jobs onto the shop floor.
They used data mining for learning about releasing jobs, leaving the decision on
dispatching rule selection to heuristic optimisation (GA).

Under the last research category we have identified the work of Shiue and Guh (2005,
2006). They studied the problem of attribute selection for learning-based production
control systems. They emphasised the issue of selecting essential system attributes in a
manufacturing system where an excessive amount of information is available.

This study extends the previous work of Metan and Sabuncuoglu (2005), which
addresses the problem of selecting the right dispatching rule from a set of candidate rules.
The proposed system integrates the machine learning technique of data mining from
computer science, the process control charts from statistical process control, and computer
simulation. The objective of our system is to learn about the characteristics of the
manufacturing system by constructing a decision tree and then selecting a dispatching rule
for a scheduling period from this tree on-line. Moreover, we use control charts to monitor
the actual performance of the decision tree. If these charts signal that the current decision
tree is beginning to perform poorly, a new tree is constructed based on the recent
information gathered from the manufacturing system via simulation.

In summary, our study is different from the existing literature in several ways. First, we
utilise data mining, rather than black box methods such as iterative simulation or neural
networks, to extract knowledge on dispatching rule selection. Second, we use statistical
process control (SPC) techniques to monitor the performance of the decision tree. This
approach, represented by the last criterion (i.e. Dyn. Updt., which stands for dynamic
update) in Table 1, to the least of our knowledge has not been utilised in a single study in
the literature. However, the world does change and there is a need for such techniques that
dynamically update themselves to better respond to changing conditions. Our proposed
system addresses this need by providing the power of adaptation to changes in the shop
floor state. Our proposed system is able to make real-time scheduling decisions, extract
knowledge, and combine SPC and learning principles to achieve adaptation to changes in
the manufacturing environment.

The rest of the paper is organised as follows. In Section 2 we present the proposed
system. We describe the experimental design in Section 3. Computational results along
with a sample decision tree are presented in Section 4. Finally, we give concluding remarks
and future research directions in Section 5.

2. Proposed system

The goal of the proposed system is to select the best DR among candidates dispatching
rules (CDRs) for a particular scheduling period. The general structure is shown in
Figure 1. In the architecture of the system, there are five main subroutines, called modules.

6912 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

They operate in harmony to achieve the goal of selecting the best-performing dispatching
rule for each scheduling period. The database is composed of two layers, D1 and D2, and
provides necessary data for both the Simulation Module and the Learning Module. It
holds two types of data. The instance data, which is composed of a number of attributes
that take values of the manufacturing conditions and a class value that corresponds to the
DR selected for a specific condition, is stored in layer D1 and is supplied to the learning
algorithm to generate the learning tree. The realised scheduling period data includes the
actual events that occur in a specific scheduling period, such as the processing times,
inter-arrival times and system conditions at the beginning of a scheduling period. This data
is also stored in the database (layer D2) for assessment of DRs via simulation. Note that
the realised scheduling period data consists of random number generator seed numbers
when experimenting in a computerised environment (rather than reflecting a real-life
manufacturing system).

The simulation module is used to measure the performances of the candidate
dispatching rules. It is invoked by the process controller module whenever necessary. The
simulation module’s outputs (instance data) are sent to the database to be further used by
the learning module to generate the decision tree. The learning module is mainly composed
of two parts: learning module 1 (LM1) and learning module 2 (LM2) (see Figure 2). LM1
contains the decision tree that is constructed by the learning algorithm in LM2. LM1 is
responsible for selecting a new DR from the existing decision tree based on the current
system state, which is described by the attribute values. The on-line controller module
provides the current values of these attributes to LM1 and requests a new DR. In response,
LM1 recommends the best DR to the on-line controller (see Figure 2). LM2 contains
the learning algorithm that is used to generate the decision tree in LM1. As seen in

Figure 1. Proposed system – general structure.

International Journal of Production Research 6913

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Figures 1 and 2, the algorithm is invoked by the process controller module and the
necessary data (instance data) are retrieved from the D1 database.

The C4.5 algorithm (Quinlan 1993) is used to create the decision tree. Our choice of
selecting the C4.5 algorithm as the learning mechanism is due to its wide acceptance in
academia and industry as an efficient learning algorithm (see, for example, Lee et al.
(1997), Huyet and Paris (2004), Sha and Liu (2005) and Li and Olafsson (2005)). It has also
recently been identified as one of the top 10 data mining algorithms by the IEEE
International Conference on Data Mining (ICDM) (Wu et al. 2008). It has also been
further enhanced recently as C5 and is available as a commercial learning tool. We
illustrate our new approach using C4.5, investigate its performance and the knowledge it
extracts from data. Indeed, other types of algorithms could be used (either based on trees
or on rule induction) without modifying the approach. The numerical experiments in later
sections show the efficiency of what can be done with C4.5.

Whenever a scheduling decision is to be made according to the current scheduling
strategy (e.g., hybrid approach), the decision tree selects a new dispatching rule and this
decision is implemented by the on-line controller module (i.e. it employs the selected DR
in actual manufacturing conditions) (see Figure 3). The on-line controller module also
supplies the realised scheduling period data to the database and monitors the real system
for new rule selection symptoms, the triggering events that are defined in the scheduling
strategy to answer the question of ‘when-to-schedule’. The process controller module
monitors the performance of the decision tree (see Figure 4). It takes its inputs (realised
value of average tardiness) from the on-line controller module and monitors the

Figure 2. Learning module.

6914 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Figure 4. Process controller module and its relationships with other modules.

Figure 3. On-line controller module.

International Journal of Production Research 6915

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

performance of the decision tree. When the performance of the current decision tree is

found to be insufficient, it requests the simulation module to provide new training data

(instance data) for the learning module and then sends a signal to the learning module to

update the current decision tree using this new data set. As a result, new dispatching rules

are selected from this updated decision tree and the process continues in this manner.
The scheduling strategy employed in this research is composed of two critical decisions:

how-to-schedule and when-to-schedule. The how-to-schedule decision determines the way

in which the schedules are revised or updated. As discussed by Sabuncuoglu and Goren

(2003), there are mainly three issues: scheduling scheme, amount of data used, and type of

response. Our implementation is based on the ‘on-line’ scheduling scheme. Specifically,

DRs are selected by the decision tree and the scheduling decisions are made one at a time

using these selected rules. In terms of the amount of data, we apply the ‘full’ scheme, and

as the type of response, we use the ‘reschedule’ option, since a new DR is selected at any

time when the performance of the existing DR in use is found to be poor. The

‘when-to-schedule’ determines the responsiveness of the system to various kinds of

disruption. The hybrid approach is employed for ‘when-to-schedule’ decisions, in which

two different triggering events, called new rule selection symptoms, are defined to determine

the time to select a new DR. These new rule selection symptoms and their definitions are

given in Table 2.
One of the distinguishing features of the proposed scheduling system is its mechanism

that continuously updates the decision tree. This continuous update is important since the

manufacturing system often undergoes various types of changes over time. In this context,

the process control charts (X and R charts) act as a regulator of the learning tree.

Moreover, the process control charts might also need to be updated due to changes in

manufacturing conditions. Hence, as the proposed system evolves over time, two

important decisions need to be made.

. Is it necessary to update the existing decision tree at current time t?

. Is it necessary to update the existing process control charts at current time t?

These two questions have to be answered every time a new data point is plotted on the

process control chart (X and R charts). The decisions are made by the rules defined in the

logical controller sub-module of the process controller module. These rules are defined in

Tables 3 and 4 and are adapted from the literature (see, for example, DeVor et al. (1992)).
In Figure 5, we illustrate the data points plotted on the X chart. The horizontal axis

represents the time and the vertical axis is the average tardiness (i.e. performance measure).

When the system continues, the Yi values (average tardiness per scheduling period) are

collected by the on-line controller at the end of each scheduling period. These observations

are then grouped in size of five to create the Xi values (average of average tardiness).

Table 2. New rule selection symptoms.

Abbreviation Name Description

BSP Beginning of each
scheduling period

Triggers the selection of a new DR at the
beginning of each new scheduling period

MP Monitoring points Triggers the selection of a new DR at the
monitoring points whenever necessary

6916 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

That is,

Yi ¼
total tardiness in period i

number of tardy jobs in period i
, ð1Þ

Xi ¼
Yi�2 þ Yi�1 þ Yi þ Yiþ1 þ Yiþ2

5
: ð2Þ

Figure 5. Operation of the X chart.

Table 3. Update only decision tree rules.

Signal Definition Apply to

Extreme points Xi or Ri points that fall beyond the control limits
of the X and R charts, respectively

X and R charts

Zone A signal Two out of three Xi points in Zone A (between 2�
and 3�) or beyond

X chart only

Zone B signal Four out of five Xi points in Zone B (between �
and 2�) or beyond

X chart only

Table 4. Update both the decision tree and the process control chart rules.

Signal Definition Apply to

Eight successive points Eight or more successive points strictly above
or below the centerline

X and R charts

Two successive signals
from Rule Set 1

Two successive occurrences of ‘update only
decision tree signals’

X and R charts

International Journal of Production Research 6917

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Similarly, we plot the Ri values on the R chart, which are calculated as

Ri ¼ Ylargest � Ysmallest, where Ylargest, Ysmallest 2 Yi�2,Yi�1,Yi,Yiþ1,Yiþ2

� �
: ð3Þ

The number of Yi values grouped to generate Xi and Ri values is a parameter of the
algorithm. We set the level of this parameter to five in our experiments to give the current
decision tree a chance of survival. In other words, the performance of the decision tree is
judged in a reasonable time period without leading to nervousness. In such settings where
data collection is not costly, the value of this parameter can be increased to further smooth
out the randomness in the data.

In Figure 5, the first circled point is captured by the extreme point signal given in
Table 3. Therefore, a new decision tree is constructed at this point and the system
continues with the updated decision tree. The second and third circled points are captured
by zone A and extreme point signals, respectively, and the decision tree is also updated at
these points. The fourth circled point in Figure 5 (i.e. X14) is captured by the ‘two
successive signals from Rule Set 1’ signal given in Table 4. Since two successive updates of
the decision tree do not bring the process into balance, we conclude that the mean and/or
variance of the process has shifted and thus we update the control charts as well as the
decision tree. By this mechanism, the proposed scheduling system controls and updates
itself to disturbances and survives over time.

2.1 Defining the system attributes

The learning module of the system generates a decision tree that learns from and relies
on the manufacturing system characteristics. Decisions on selecting dispatching rules are
given by the existing decision tree on-line. In such a system, the learning algorithm requires
a number of attributes that can provide valuable information about the current
manufacturing system conditions. These attributes therefore play a key role in the
performance of the proposed system, since they affect the quality of the tree in the
construction phase as well as in the decision phase (i.e. selection of the right DRs from
the decision tree for a scheduling period). Hence, appropriate attributes should be defined
and used in such a way that they can represent a variety of important manufacturing
system characteristics. In this section we present the guidelines that we follow when
defining our attributes, and selecting the subset of attributes to be embodied into our
system. Moreover, we provide an inventory of attributes we have used in this research in
Appendix A, which we believe might be helpful in future research as well as industrial
practice.

First of all, each attribute should capture some portion of the important information
about the manufacturing system. In addition, it is important to define attributes so that
their values can be calculated easily. This is due to the fact that our proposed system is an
on-line scheduling system, and hence the time required to select a new dispatching rule
should be negligible. Moreover, when setting the values of the attributes at any time epoch
t, all we can use is the available information at that time, such as the number of jobs
currently in the system, processing times and due-dates of the jobs, the realised
performance of the system in the last scheduling period, etc. Based on these observations,
we define a number of attributes such as total remaining processing time, maximum queue
length at time t, average remaining time until due-date, etc. These attributes represent the
general characteristics of the manufacturing system and its status in time. In addition, we

6918 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

also take into account the characteristics and dynamics of the candidate dispatching rules

and try to determine the conditions under which a specific rule performs well or poorly.
In light of this idea, we define a number of attributes for each dispatching rule that might

be helpful to differentiate that rule from the others. For instance, an attribute named
‘nLongProcTime’, which is the number of jobs with longer processing times than the

average processing time of all jobs, is defined to distinguish the shortest processing time
(SPT) rule from the others. The idea behind this is as follows: if there are many jobs with

long processing time requirements, then the probability that new arriving jobs have a

shorter processing time requirement than the existing jobs will be higher. This implies that
the existing jobs, which have long processing times, will most probably be scheduled too

late under SPT, resulting in a large average tardiness value.
After defining a number of attributes, the problem is to choose the most representative

subset of attributes. To decide on this subset, we first performed a preliminary

investigation on the behaviour of attribute subsets and gained the following valuable
insights.

(1) Increasing the number of attributes in the subset does not necessarily improve the
quality of the decision tree.

(2) The effect of each attribute in the subset on the performance of the generated

decision tree also depends on the other attributes in the subset. In other words,
their performances are correlated.

(3) The performance of the generated tree deteriorates when the attribute subset

contains maximum relative machine workload and completed processing times
percentage, Attributes 2 and 3 in Appendix A, respectively.

Our first observation has also been pointed out by other researchers in the literature

(see, for instance, Shiue and Guh (2006)). Based on these observations we disregard

Attributes 2 and 3 in Appendix A from further consideration. However, we still have 24
remaining attributes to consider for selection and considering every combination of these

attributes requires testing of 224 attribute sets, which is impractical. Therefore, we ignore
the second observation above and assume that the effect of each attribute on the quality of

the decision tree is independent of the other attributes in that set, and use a backward step
selection heuristic to select the subset of attributes to be used.

At this point we find it necessary to make some remarks about defining and selecting

system attributes. First of all, in most practical real-life applications of data mining, the

attribute set is generally given as an input, and therefore there is no need to put any effort

into ‘defining an attribute set’. However, in our application, there is no ‘natural’ attribute

set given to use as predictors. Therefore, we need to artificially define these attributes,

which are potentially capable of capturing the system characteristics efficiently. Next, we

need to select the best subset of these attributes as our predictors of the response variables.

Unfortunately, the prediction performance of an attribute also depends on the other

attributes in the subset. To the best of our knowledge, there is no other method than

complete enumeration to find the optimal attribute subset. Therefore, we use a heuristic

approach, sacrificing optimality, and look for a set of attributes that is the best of many

attribute combinations considered within the search space of the heuristic. Also, the

heuristic optimisation technique proposed by Shiue and Guh (2005, 2006) for attribute

selection might alternatively be used to further enhance the performance of the proposed

system. However, we should also note the fact that even if we seek to find the optimal

International Journal of Production Research 6919

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

attribute combination, there is no guarantee that a better set cannot exist, since, in theory,

one can fabricate infinitely many different attributes.

3. Experimental settings

The simulation experiments are carried out under the following assumptions.

(1) The problem considered is a classical job shop problem with four machines as
given by Baker (1984).

(2) There is no machine breakdown in the system.
(3) There is a set of candidate dispatching rules (CDR) that can be used (i.e. shortest

processing time (SPT), modified due-date (MDD), modified operation due-date
(MOD) and operation due-date (ODD)).

When explaining the experimental results, we use three performance measures, called
Multi-pass Performance (MultiPass), Best Performance (BestPerf) and the Learning
Performance (LearnPerf). They are all measured in terms of average tardiness and defined
in the following paragraphs.

Assume that we have two simulation models of the same manufacturing system, called
SM1 and SM2. SM1 will represent the real-life and SM2 will represent the simulation
environment, which is the imitation of SM1. Note that SM1 is the simulation model used
in the on-line controller and SM2 is the multi-pass scheduling simulator, which is used
to compare the performance of our proposed system with the performance of multi-pass
scheduling. Since the random events occurring in real life differ from the simulated
environment, these two models operate under different random number seeds.
For example, SM1 uses random number seed 1 and SM2 uses seed 2. Now, assume a
third simulation model, SM3, which also uses seed 1. We can think of SM3 as the
playback of the realised events that occurred in SM1 in scheduling period n. Therefore,
SM3 can be run for scheduling period j only if the realisation of period j in SM1 (real life)
is completed. These three simulation models help us to measure the three performances
we need.

Figure 6(a) shows how we measure MultiPass for scheduling period j. At the beginning
of period j, the system state of SM2 is set equal to the system state of SM1. Then SM2 is
run for each candidate dispatching rule (i.e. SPT, MDD, ODD, MOD) and r*, the rule
resulting with the minimum average tardiness value, is selected to be used in scheduling
period j. r* is passed to SM1 to realise its actual performance. At the end of scheduling
period j, the realised average tardiness value is ourMultiPass value for scheduling period j.
In this sense, MultiPass is the average tardiness value achieved by the decisions of a
multi-pass scheduling simulator.

BestPerf is the minimum average tardiness value that can ever be achieved for a
scheduling period, say period j, by using any rule given in the candidate rule set. In other
words, it is the best average tardiness value that we can achieve in period j subject to the
parameter values of the system, such as the scheduling and monitoring period lengths, the
candidate dispatching rules, etc. We can calculate this value for a scheduling period j if
the realisation of period j is already completed by SM1. Then we can impose the same
realisation of the random events on SM3 to answer the question: what would have been
the average tardiness values if we had used dispatching rule SPT (or MDD or ODD or
MOD) in period j? Then we simply set the value of BestPerf to the minimum of those

6920 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

tardiness values (see Figure 6(b)). We measure this performance value to see how far our
proposed system’s performance (LearnPerf) and multi-pass scheduling simulator perfor-
mance (MultiPass) are away from the ideal. Note that, BestPerf gives a lower bound for
the other two performance functions.

Finally, the learning performance in period j, LearnPerf, is the realised average
tardiness value of the rule selected by the decision tree (see Figure 7). That is, we request a
dispatching rule from the decision tree at the beginning of scheduling period j based on the
current values of the system attributes. This rule is used during period j and the average
tardiness value is computed. Since this is the real performance of the dispatching rule

Figure 6. Performance measures. (a) Determination of multi-pass performance (MultiPass).
(b) Determination of best Performance (BestPerf).

International Journal of Production Research 6921

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

selected by the tree, realisation of the rule is carried out by SM1. In the experiments,
LearnPerf represents the performance of our proposed system.

In the simulation experiments, two levels of utilisation (i.e. low and high) and two
levels of due-date tightness (i.e. loose and tight) are considered. The two levels of
utilisation are 80% and 90%. Due-dates are set by using the total work (TWK) due-date
assignment rule. The high and low levels are set in such a way that the percentage of tardy
(PT) jobs is approximately 10% and 40% under the FCFS rule for the loose and tight
due-date cases, respectively.

4. Computational results

In an early research study, Metan and Sabuncuoglu (2005) investigated the impact of
various decision variables such as the scheduling period length (SPL) and the monitoring
period length (MPL) on system performance. In this section we refer to their experimental
results when fine-tuning the same experimental parameters.

4.1 Job shop scheduling using a static decision tree

In this section, we use our learning-based scheduling system in a job shop environment
(Baker 1984) and measure the performance of the proposed system when the tree is

Figure 7. Performance measures: determination of the learning performance (LearnPerf).

6922 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

constructed only once. That is, the decision tree is not updated over time. For that reason,
we call this application scheduling with a static decision tree.

The nested experimental design is given in Table 5. Two different dispatching rule sets
are also considered in the experiments, where one of the sets contains MOD and the other
set does not. In the simulation experiments, we take 20 replications for each experimental
condition and each replication is composed of two phases: the Warm-up Phase and the
Testing Phase. In the warm-up phase we generate the necessary instance data for our
learning algorithm to construct the decision tree. This phase is composed of 2000
scheduling periods, which provides us a training data set that contains 2000 instance data
(i.e. each scheduling period provides one instance data). At the end of this warm-up phase,
a decision tree is constructed using this training data set. Then the second phase, the
testing phase, starts. In the testing phase, the dispatching rules for each scheduling period
are selected from the decision tree. This phase also contains 2000 scheduling periods for
each replication and the statistics (i.e. BestPerf, LearnPerf and MultiPass) are collected
in this phase.

Tables 6 through 8 summarise the experimental results. As mentioned before, BestPerf
gives the lower bounds on both MultiPass and LearnPerf. In all of the experimental
conditions, our learning-based scheduling system performs better than the simulation-
based multi-pass scheduling (see Tables 6 and 7). However, LearnPerf approaches
MultiPass as we increase the length of the monitoring period. At the extreme, when there is
no monitoring at all, the performances of learning-based and simulation-based scheduling
approaches become almost equal. This result is consistent with the findings reported by

Table 6. Summary of performance values for Rule Set {SPT, MDD, ODD}.

Utilisation (%) MPL BestPerf LearnPerf MultiPass Single pass D1 (%) D2 (%)

80 250 0.648 0.799 0.894 0.905 23.3 37.96
80 500 0.655 0.876 0.896 0.905 33.74 36.79
80 1000 0.679 0.891 0.895 0.905 31.22 31.81
90 500 1.1 1.383 1.494 1.545 25.72 35.81
90 2500 1.139 1.487 1.532 1.545 30.55 34.5
90 7500 1.196 1.51 1.514 1.545 26.25 26.58

D1 ¼ 100
LearnPerf� BestPerf

BestPerf
, D2 ¼ 100

MultiPass� BestPerf

BestPerf
:

Table 5. Experimental design of scheduling using a static decision tree.

Factors Levels

Due-date tightness Tight
Dispatching rule set {SPT, MDD, ODD} {SPT, MDD, ODD, MOD}
Utilisation 80% 90%
SPL 1000 7500
MPL 250 500 1000 500 2500 7500
� 0.2 1 – 0.2 1 –

International Journal of Production Research 6923

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Metan and Sabuncuoglu (2005), where smaller values for MPL result in better average
tardiness values for BestPerf. Therefore, it is very important to set the appropriate SPL,
MPL and � values to obtain the maximum efficiency from the learning-based system.

For small values of MPL (i.e. 250 for 80% and 500 for 90% utilisation levels), the
percentage difference between LearnPerf and BestPerf (D1 in Tables 6 and 7) is
considerably smaller (at least half) than the percentage difference between MultiPass
and BestPerf (D2 in Tables 6 and 7). Also, the percentage difference between LearnPerf
and BestPerf is found to be better in the high-utilisation case (i.e. 90% utilisation) than
in the low-utilisation case. This indicates that our proposed scheduling system provides
improvement opportunities even more when the utilisation of the manufacturing system
increases. As a final note, these performance values are statistically different at the 0.95
confidence level.

The main difference in the underlying experimental conditions, which the results given
in Tables 6 and 7 are based upon, is the candidate dispatching rule set used. Our intention
here is to investigate the impact of a very competitive dispatching rule, such as MOD, on
the performances of different scheduling methods. When we compare the results given in
Table 6 with the results in Table 7, we observe that inserting MOD into the existing
candidate dispatching rule set (i.e. {SPT, MDD, ODD}) improves all the performance
metrics (BestPerf, LearnPerf and MultiPass) significantly (almost 50% better results).
Moreover, LearnPerf and MultiPass move closer to BestPerf (small D1 and D2 values in
Table 7 compared with Table 6) when MOD is added to the rule set. Alternatively, we
expect LearnPerf and MultiPass to move away from BestPerf when a low-quality DR is
added to the candidate dispatching rule set.

We also keep track of the dispatching rule usage in the experiments for bothMultiPass,
LearnPerf and BestPerf (see Table 8). For small values of MPLs, the learning-based
scheduling system uses a mix of dispatching rules very close to the best dispatching rule
mix. On the other hand, for small MPLs, simulation-based multi-pass scheduling yields a
significantly different mix than the best mix of dispatching rules. For large values of MPL,
the dispatching rule mixes used by each scheduling system converge.

4.2 Job shop scheduling using dynamically updated decision trees

In the preceding section, we presented the experimental results for the new scheduling
system when the decision tree was static. That is, we created a decision tree based on the

Table 7. Summary of performance values for Rule Set {SPT, MDD, ODD, MOD}.

Utilisation (%) MPL BestPerf LearnPerf MultiPass Single pass D1 (%) D2 (%)

80 250 0.359 0.415 0.492 0.52 15.59 37.04
80 500 0.374 0.428 0.44 0.52 14.43 17.64
80 1000 0.383 0.435 0.44 0.52 13.57 14.88
90 500 0.52 0.568 0.684 0.704 9.23 31.53
90 2500 0.539 0.587 0.632 0.704 8.9 17.25
90 7500 0.559 0.591 0.595 0.704 5.72 6.44

D1 ¼ 100
LearnPerf� BestPerf

BestPerf
, D2 ¼ 100

MultiPass� BestPerf

BestPerf
:

6924 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

data collected from the manufacturing system during the warm-up period, and used this
decision tree during the entire planning horizon to select DRs. In this sense, we have not
yet utilised the statistical control charts to monitor the performance of the constructed
decision tree. In this section, we now dynamically monitor the performance quality of the
decision tree using the control charts and update the decision tree whenever the control
charts signal an update. Therefore, the scheduling system generates a sequence of decision
trees over time, which is governed by the statistical control charts and the set of decision
tree update signals defined in Table 3.

In the simulation experiments, we consider a manufacturing system in which the
internal parameters change over time (i.e. arrival rate of jobs, due-date tightness levels).
The details of the experimental design are given in Table 9. We use five planning horizons,
where each horizon contains 1000 scheduling periods. At the beginning of each horizon,
we change some of the parameters of the manufacturing system. For example, in Table 9,
the factor ‘arrival rate parameter sequence’ represents the value used as the job arrival rate
during each horizon. Specifically, in horizons 1, 2, 3, 4 and 5, the jobs’ inter-arrival times
are exponentially distributed with parameters 0.8, 0.9, 0.7, 0.9 and 0.8, respectively. For
the construction of the decision tree, we consider two different strategies, which are
represented by the factor ‘Training Data Set’ in Table 9. When this factor is set to ‘Full’,
the decision tree is constructed based upon all the accumulated data points since the
beginning of the experiment. On the other hand, if the level is set to ‘Partial’, then the most
recent 200 data points (one-fifth of a horizon length) are used each time the decision tree
is updated.

Table 8. Dispatching rule mix (%) used by scheduling method.

Utilisation: 80% 80% 80% 90% 90% 90%
Rules/MPL: 250 500 1000 500 2500 750

Multi-pass SPT 13 14 14 2 2 2
Multi-pass MDD 34 34 34 58 58 58
Multi-pass ODD 52 51 51 38 39 39
Learning SPT 10 14 14 2 4 2
Learning MDD 54 38 32 84 63 58
Learning ODD 34 46 53 12 32 38
Best SPT 9 13 14 2 3 2
Best MDD 54 39 33 82 63 58
Best ODD 36 47 52 14 33 38

Table 9. Experimental design of scheduling using dynamically updated decision trees.

Factors Levels

DR set {MOD, MDD, ODD, SPT}, {MDD, ODD, SPT}
Arrival rate parameter sequence {0.8, 0.9, 0.7, 0.9, 0.8}
Horizon lengths (number of SPs) 1000
Training data set Full, partial (one-fifth of horizon length)
SM2 type Reactive, non-reactive, partially reactive
Due-date tightness Adjusted, not adjusted
(SPL, MPL, �) {(1000, 250, 0.2), (7500, 500, 0.2)}

International Journal of Production Research 6925

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

We consider three levels for the SM2 type: reactive, non-reactive and partially reactive.
When the SM2 type is ‘reactive’, the multi-pass simulation model is updated immediately
when there is any parameter change in the actual manufacturing environment. In other
words, if the arrival rate of the jobs changes in the real world, this information is made
available for the multi-pass simulation model immediately. Intuitively, this is very difficult
to achieve, if not impossible, in real-world implementation, because when any parameter
of the manufacturing system changes it can be made available to the simulation model of
the system only after a period of time. This time delay in updating the simulation
parameters is almost inevitable, since detecting a shift in the parameters requires data
collection and statistical analysis. For this reason, we also consider the scenario of the
‘partially reactive’ SM2 type. Under this scenario, the multi-pass simulation model is still
updated for the arrival rate changes, but with some time delay and inaccuracy. Specifically,
the arrival rate is updated with a delay of 200 scheduling periods (one-fifth of a horizon
length) after the actual change in the real world takes place, and its value is set to values in
the sequence 0.8, 0.875, 0.725, 0.875, 0.8 for horizons 1 through 5, respectively. As another
extreme, we consider the scenario in which SM2 is a ‘non-reactive’ model. In this case the
simulation model is not updated for any changes in the manufacturing environment. For
example, when the arrival rate changes from 0.8 to 0.9 in the real world, the multi-pass
simulation model (SM2) continues to operate under the initial arrival rate, which is 0.8.

Another factor considered in the experiments is the due-date tightness, which has two
different levels: adjusted and not adjusted. For the adjusted case, we set the allowance
factor k for setting the due-dates such that the percent tardy is always 40% under the
FCFS rule. For the not adjusted case, the flow allowance factor is always set to 5.5.
Therefore, the first case corresponds to a policy such that the manufacturing firm adjusts
its due-date setting policy when the arrival rate of the jobs changes. Alternatively, in the
second case, no action is taken for setting the due-dates of the jobs when the utilisation
of the shop floor fluctuates.

From the results of Metan and Sabuncuoglu (2005), two levels, (1000, 250, 0.2) and
(7500, 500, 0.2), are considered for SPL, MPL and � parameter combinations. At the
beginning of each experiment, there is a warm-up period with a length of 200 scheduling
periods to supply necessary initial data to the system to construct the first decision tree as
well as the control charts. Statistics are collected after the warm-up period and each
experimental condition is run for five consecutive time horizons, which is equivalent to a
total of 5000 scheduling periods. Experimental results are summarised in Tables 10 and 11.
Recall that BestPerf provides the lower bound on both MultiPass and LearnPerf.

Based on these results, the proposed scheduling system outperforms the
simulation-based scheduling approach (MultiPass) in 38 experimental conditions out of
48 cases. In these 38 cases, LearnPerf is found to be closer to BestPerf by 2.34–40.87%
compared with MultiPass. In two cases, both MultiPass and LearnPerf are found to be
equal. In the remaining eight cases, simulation-based scheduling (MultiPass) performs
slightly better than LearnPerf (i.e. between 1.68% and 7.83% better). However, in these
cases, the SM2 type is reactive, which is an extremely idealistic condition to achieve in the
real world.

We also cross-compare LearnPerf with itself for full and partial training data set cases.
Using all available data points in constructing a decision tree always results in better
performance (see Tables 10 and 11). At first glance, this seems to be counter-intuitive,
because when parameters of the manufacturing system change, learning using only the
most recent data points is expected to yield better performance. However, the results show

6926 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Table 11. Average tardiness values for DR set {MDD, ODD, SPT, MOD}.

Training Full Full Partial Partial
Due-date
tightness SM2 typea

data set
{SPL, MPL, �}

{1000,
250, 0.2}

{7500,
500, 0.2}

{1000,
250, 0.2}

{7500,
500, 0.2}

Adjusted Reactive MultiPass 0.81 0.65 0.81 0.65
Adjusted Reactive LearnPerf 0.81 0.65 0.82 0.68
Adjusted Reactive BestPerf 0.71 0.60 0.71 0.60
Adjusted Non-reactive MultiPass 0.96 0.73 0.96 0.73
Adjusted Non-reactive LearnPerf 0.81 0.65 0.82 0.68
Adjusted Non-reactive BestPerf 0.71 0.60 0.71 0.60
Adjusted P. reactive MultiPass 0.87 0.69 0.87 0.69
Adjusted P. reactive LearnPerf 0.81 0.65 0.82 0.68
Adjusted P. reactive BestPerf 0.71 0.60 0.71 0.60
Not adjusted Reactive MultiPass 1.52 1.20 1.52 1.20
Not adjusted Reactive LearnPerf 1.20 1.15 1.61 1.27
Not adjusted Reactive BestPerf 1.15 1.10 1.15 1.10
Not adjusted Non-reactive MultiPass 1.67 1.35 1.67 1.35
Not adjusted Non-reactive LearnPerf 1.20 1.15 1.61 1.27
Not adjusted Non-reactive BestPerf 1.15 1.10 1.15 1.10
Not adjusted P. reactive MultiPass 1.60 1.26 1.60 1.26
Not adjusted P. reactive LearnPerf 1.20 1.15 1.61 1.27
Not adjusted P. reactive BestPerf 1.15 1.10 1.15 1.10

aP. reactive is the partially reactive setting.

Table 10. Average tardiness values for DR set {MDD, ODD, SPT}.

Training Full Full Partial Partial
Due-date
tightness SM2 typea

data set
{SPL, MPL, �}

{1000,
250, 0.2}

{7500,
500, 0.2}

{1000,
250, 0.2}

{7500,
500, 0.2}

Adjusted Reactive MultiPass 1.18 1.25 1.18 1.25
Adjusted Reactive LearnPerf 1.1 1.11 1.13 1.2
Adjusted Reactive BestPerf 0.98 1.02 0.98 1.02
Adjusted Non-reactive MultiPass 1.37 1.52 1.37 1.52
Adjusted Non-reactive LearnPerf 1.1 1.11 1.13 1.2
Adjusted Non-reactive BestPerf 0.98 1.02 0.98 1.02
Adjusted P. reactive MultiPass 1.25 1.32 1.25 1.32
Adjusted P. reactive LearnPerf 1.1 1.11 1.13 1.20
Adjusted P. reactive BestPerf 0.98 1.02 0.98 1.02
Not adjusted Reactive MultiPass 2.38 1.79 2.38 1.75
Not adjusted Reactive LearnPerf 2.30 1.75 2.42 1.90
Not adjusted Reactive BestPerf 2.15 1.71 2.15 1.71
Not adjusted Non-reactive MultiPass 2.59 2.26 2.59 2.26
Not adjusted Non-reactive LearnPerf 2.30 1.75 2.42 1.90
Not adjusted Non-reactive BestPerf 2.15 1.71 2.15 1.71
Not adjusted P. Reactive MultiPass 2.49 2.02 2.49 2.02
Not adjusted P. Reactive LearnPerf 2.30 1.75 2.42 1.90
Not adjusted P. Reactive BestPerf 2.15 1.71 2.15 1.71

aP. reactive is the partially reactive setting.

International Journal of Production Research 6927

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

that the learning algorithm benefits from the availability of past data as well as
recent data.

For the rule set {MOD, MDD, ODD, SPT}, regardless of the type of training data set
used (i.e. full or partial), the parameter combination (7500, 500, 0.2) always results in
better performance for LearnPerf compared with the performance of the combination
(1000, 250, 0.2) (Table 11). The reason for the combination (7500, 500, 0.2) yielding better
results when MOD is in the DR set is simply due to the performance of MOD dominating
the performance of the other rules when it is used for a long period of time.

As stated before, partially reactive SM2 is a more realistic case, where the simulation
model used for the scheduling decisions of the multi-pass approach is updated with some
time delay and inaccuracy. Such imperfections may originate from delayed detection of the
parameter changes in the actual manufacturing environment. Therefore, the comparison
of the learning-based (LearnPerf) and the simulation-based (MultiPass) systems for this
factor level is of special importance. When the SM2 type is partially reactive, LearnPerf is
better than MultiPass in 14 cases out of 16. Specifically, compared with MultiPass in these
14 cases, LearnPerf is found to be much closer to BestPerf by 3.26–34.79%. In the
remaining two cases, MultiPass is closer to BestPerf only 0.9% more than LearnPerf,
which means they are practically equal.

4.3 Extracting knowledge from the decision tree

In addition to the performance improvement that can be achieved by using the proposed
scheduling system, there is another advantage of this system: extracting knowledge to
collect expertise on job shop control. Table 12 presents a sample decision tree generated by
the proposed system. The size of the tree reaches as small as two and as many as eight
decision nodes before stopping at a leaf node. Thirteen unique attributes are used in
the decision tree. The actual attribute names are replaced by acronyms in order to fit the
decision tree on a single page. However, we preserve the numbering of each attribute so
that they are consistent with the attribute list provided in the appendix. The classification
variable is the dispatching rule and it has three possible values in this example, which are
SPT, MDD, and ODD. The decision tree originates from node 0, which has a total of
200 observations. The three numbers in parentheses under node 0 represent the number of
observations associated with each class value. In other words, there are 20, 113 and 67
observations in the training data set having SPT, MDD and ODD as their associated class
values, respectively. The same numbering scheme is used at each branching node. The sum
of observations at child nodes is equal to the total number of observations at the
immediate parent node.

First, branching is performed over the attribute MeanTardiness (ATT26), which is the
last period’s average tardiness value. This result is also consistent over different decision
trees generated in different experimental settings. This observation suggests that the
previous period’s average tardiness value carries the most relevant information towards
making a decision on the next period’s dispatching rule selection. Branching on this
attribute is also in parallel with our objective function, minimising the average tardiness.
Since a large value of the previous period’s average tardiness value might strongly indicate
a large average tardiness value for the next period, the decision tree can better respond to
the situation by choosing the most appropriate dispatching rule. For instance, when we
look at the mix of best dispatching rules when the previous period’s average tardiness is

6928 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

T
a
b
le

1
2
.
A

sa
m
p
le

d
ec
is
io
n
tr
ee

g
en
er
a
te
d
b
y
th
e
p
ro
p
o
se
d
sy
st
em

.

N
o
d
e
0

N
o
d
e
1

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
6

N
o
d
e
7

N
o
d
e
8

N
o
d
e
9

(2
0
,1
1
3
,6
7
)

A
T
T
2
6
¼
0

–
(7
,6
0
,6
2
)

A
T
T
1
1
�
2
9

–
–

(7
,6
0
,5
1
)

A
T
T
9
�
1

–
–

–
(6
,1
6
,2
5
)

A
T
T
1
�
1
5

–
–

–
–

(6
,1
2
,2
5
)

A
T
T
1
4
�
6
9
5

–
–

–
–

–
(3
,1
2
,2
5
)

A
T
T
5
¼
B
S
P

–
–

–
–

–
–

(3
,5
,6
)

A
T
T
1
8
�
5
5

–
–

–
–

–
–

–
(1
,5
,6
)

A
T
T
7
�
4
.2
7

–
–

–
–

–
–

–
–

(0
,5
,1
)

:
M
D
D

–
–

–
–

–
–

–
þ

A
T
T
7
4
4
.2
7

–
–

–
–

–
–

–
(1
,0
,5
)

:
O
D
D

–
–

–
–

–
–

þ
A
T
T
1
8
4
5
5

–
–

–
–

–
–

(2
,0
,0
)

:
S
P
T

–
–

–
–

–
þ

A
T
T
5
¼
M
P

–
–

–
–

–
(0
,7
,1
9
)

:
O
D
D

–
–

–
–

þ
A
T
T
1
4
4
6
9
5

–
–

–
–

(3
,0
,0
)

:
S
P
T

–
–

–
þ

A
T
T
1
4

1
5

–
–

–
(0
,4
,0
)

:
M
D
D

–
–

þ
A
T
T
9
4
1

–
–

(1
,4
4
,2
6
)

A
T
T
4
�
1
4
8
9

–
–

–
(1
,3
0
,7
)

A
T
T
2
3
�
4
7

–
–

–
–

(1
,1
2
,7
)

A
T
T
1
3
�
9
7

–
–

–
–

–
(1
,6
,7
)

A
T
T
1
9
�
1
0
6

–
–

–
–

–
–

(0
,6
,3
)

A
T
T
7
�
4
.0
2

–
–

–
–

–
–

–
(0
,6
,0
)

:
M
D
D

–
–

–
–

–
–

þ
A
T
T
7
4
4
.0
2

–
–

–
–

–
–

(0
,0
,3
)

:
O
D
D

–
–

–
–

–
þ

A
T
T
1
9
4
1
0
6

–
–

–
–

–
(1
,0
,4
)

:
O
D
D

–
–

–
–

þ
A
T
T
1
3
4
9
7

–
–

–
–

(0
,6
,0
)

:
M
D
D

(c
o
n
ti
n
u
ed

)

International Journal of Production Research 6929

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

T
a
b
le

1
2
.
C
o
n
ti
n
u
ed
.

N
o
d
e
0

N
o
d
e
1

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
6

N
o
d
e
7

N
o
d
e
8

N
o
d
e
9

–
–

–
þ

A
T
T
2
3
4

4
7

–
–

–
(0
,1
8
,0
)

:
M
D
D

–
–

þ
A
T
T
4
4
1
4
8
9

–
–

(0
,1
4
,1
9
)

A
T
T
1
4
�
4
5
6

–
–

–
(0
,3
,1
5
)

:
O
D
D

–
–

þ
A
T
T
1
4
4
4
5
6

–
–

(0
,1
1
,4
)

:
M
D
D

–
þ

A
T
T
1
1
4
2
9

–
(0
,0
,1
1
)

:
O
D
D

þ
A
T
T
2
6
4
0

(1
3
,5
3
,5
)

A
T
T
6
�
3
3

–
(9
,1
0
,2
)

A
T
T
1
8
�
3
3

–
–

(0
,0
,2
)

:
O
D
D

–
þ

A
T
T
1
8
4
3
3

–
(9
,1
0
,0
)

A
T
T
1
�
1
2

–
–

(5
,1
0
,0
)

A
T
T
7
�
4
.5
3

–
–

–
(1
,1
0
,0
)

:
M
D
D

–
–

þ
A
T
T
7
4
4
.5
3

–
–

(4
,0
,0
)

:
S
P
T

–
þ

A
T
T
1
4

1
2

–
(4
,0
,0
)

:
S
P
T

þ
A
T
T
6
4
3
3

(4
,4
3
,3
)

:
M
D
D

6930 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

zero (i.e. numbers given under the branch ATT26¼0), we observe that each of the
dispatching rules (i.e. MDD and ODD) performs the best approximately half of the time.
However, when the previous period’s average tardiness is greater than zero, ODD loses
its attractiveness, SPT gains more importance and MDD becomes the dominant
dispatching rule.

At the second level of the decision tree, we see further branching on
AvgRemainTimeDDate (ATT11), which is the average remaining time until the due-date,
and TotRemainProcTime (ATT6), which captures the total remaining processing time
of all jobs. Let us first discuss the branching on AvgRemainTimeDDate under the parent
branch of ATT26¼ 0. When the average remaining time until the due-date exceeds a
threshold, the decision tree clearly identifies ODD as the best dispatching rule for the next
time period. However, if the system operates under a tighter due-date schedule (i.e.
ATT11� threshold value), the best dispatching rule is not immediately clear at this level
and further branching is necessary. However, we observe under this scenario that the best
dispatching rule mix (i.e. (SPT, MDD, ODD)¼(7, 60, 51)) favours MDD slightly more
than the other candidates as the system operates under tighter due-dates.

The second branching at the same level is performed on the attribute that captures the
total remaining processing time of all jobs (i.e. TotRemainProcTime (ATT6)). When the
total processing requirements of the jobs currently in the system are greater than a
threshold, and given the fact that the last period’s average tardiness is already greater than
zero, the best dispatching rule is identified to be MDD by the decision tree. However, if the
jobs in the system do not have larger processing time requirements, SPT and ODD become
competitive with MDD in some cases, which are identified by further deep branches.

Another interesting attribute used in the decision tree is AvgRemainProcTime (ATT7),
which is the acronym for the average remaining processing time. This attribute’s value is
simply calculated by dividing the total remaining processing time by the number of jobs
currently in the system. We observe branching over this attribute at three different places
in our decision tree right before we reach a leaf. In two of these three cases, it differentiates
MDD and ODD at the leaf and in another case it differentiates MDD and SPT.

As is clear from the above discussion, it is a very challenging task, if not impossible,
to extract such knowledge to gain such expertise on job shop control without using a
scheduling system similar to the one proposed in this research. We know from previous
research in the literature that there is no single dispatching rule that performs the best
under all conditions. However, we can extract the information that is hidden and dissolved
in the data concerning the conditions and circumstances that make a dispatching rule more
efficient and desirable over other rules. This expertise can be utilised in many applications
such as designing new and more efficient dispatching rules, categorising existing rules
based on the conditions under which they efficiently operate, and for providing more
insights into job shop scheduling to practitioners in industry.

5. Conclusion

We have developed a novel scheduling approach that combines simulation, data mining,
and statistical process control (SPC) principles. Our experiments have shown that its
performance compares very well with approaches such as simulation-based multi-pass that
are known to be very efficient. The resulting scheduling system can be implemented on the
shop floor. Another alternative benefit offered by the proposed scheduling system is that

International Journal of Production Research 6931

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

production managers can use the knowledge extracted in the form of decision trees to

make decisions. Such knowledge highlights the important factors to take into account

when making decisions and what is advisable to do when, depending on the operating

conditions.
We have developed a data-mining-based scheduling system that extracts knowledge

from the data that comes from a job shop manufacturing configuration. We have

compared the performance of the proposed scheduling system (using both a static and a

dynamically updated decision tree) via simulation and emphasised the conditions in which

the proposed system works better than the simulation-based multi-pass scheduling

method. This knowledge provides extremely valuable insights into job shop control and

the proposed system is an effective tool for collecting such expertise. Finally, we have

provided an extensive list of manufacturing attributes in the appendix. These attributes

describe a wide range of shop floor conditions and can be used to mine the information

hidden beneath the vast amount of data in different manufacturing settings.
Our key insights are as follows.

(i) It is important to set the monitoring policy appropriately. Monitoring too

frequently prevents dispatching rules from performing their functions and

monitoring very infrequently overlooks the underperformers.
(ii) Selecting the right rules for the candidate dispatching rule set is also important

for achieving further improved performance.
(iii) When creating the decision tree, utilising all historical data points, rather than

using only the most recent subset of observations, improves the performance.
(iv) The proposed scheduling system provides an attractive and cost-efficient method

for capturing and adjusting to changes in manufacturing environments using

SPC concepts.

All the results presented in this paper should be interpreted with reference to the

assumptions and experimental conditions and the job shop system studied. One future

research direction would be to study the performance of the proposed scheduling system in

different manufacturing configurations. Such an investigation would potentially help

extract common knowledge that applies to a variety of settings. The general principles of

using simulation, data mining and certain SPC concepts can be used for other types of

dynamic scheduling problems such as flowshop problems and AGV dispatching. Other

future research avenues include the following. (i) New and more advanced attributes can

be defined and their performances can be investigated for alternative manufacturing

conditions, preferably in real-life settings. (ii) We have provided a heuristic technique for

selecting a good combination of attributes that can capture the information hidden within

the manufacturing data. More powerful techniques that guarantee the selection of optimal

or near-optimal combinations of the attributes are needed to be developed. We have

identified two recent studies (Shiue and Guh 2005, 2006) in this direction and more

research on this problem is needed. This would significantly enhance the decision tree

quality and in turn improve the system performance. (iii) Alternative data mining

approaches can be substituted for the C4.5 algorithm and their performances can be

compared. This will also provide a valuable guideline to practitioners in choosing the right

tool among the many competing learning algorithms for their applications. Investigating

the performance of ‘rules induction’ techniques is of special importance since these

techniques extract knowledge in terms of a list of simple ‘if . . . then . . .’ logical rules.

6932 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

References

Aissani, N., Beldjilali, B., and Trentesaux, D., 2008. Use of machine learning for continuous

improvement of the real time heterarchical manufacturing control system performances.

International Journal of Industrial and Systems Engineering, 3 (4), 474–497.
Baker, K.R., 1984. Sequencing rules and due-date assignments in a job shop. Management Science,

30 (9), 1093–1104.
Cho, H. and Wysk, R.A., 1993. A robust adaptive scheduler for an intelligent workstation

controller. International Journal of Production Research, 31 (4), 771–789.
DeVor, R.E., Chang, T-h., and Sutherland, J.W., 1992. Statistical quality design and control.

Engelwood Cliffs, NJ: Prentice Hall.
El-Bouri, A. and Shah, P., 2006. A neural network for dispatching rule selection in a job shop.

International Journal of Advanced Manufacturing Technology, 31 (3–4), 342–349.
Geiger, C.D. and Uzsoy, R., 2006. Learning effective dispatching rules for batch processor

scheduling. International Journal of Production Research, 46 (6), 1431–1454.
Geiger, C.D., Uzsoy, R., and Aytug, H., 2006. Rapid modeling and discovery of priority dispatching

rules: An autonomous learning approach. Journal of Scheduling, 9 (1), 7–34.
Harding, J.A., et al., 2006. Data mining in manufacturing: A review. Journal of Manufacturing

Science and Engineering, 128 (4), 969–976.
Huyet, A.L., 2006. Optimization and analysis aid via data-mining for simulated production systems.

European Journal of Operational Research, 173 (3), 827–838.
Huyet, A.L. and Paris, J.L., 2004. Synergy between evolutionary optimization and induction graphs

learning for simulated manufacturing systems. International Journal of Production Research,

42 (20), 4295–4313.
Ishii, N. and Talavage, J.J., 1991. A transient-based real-time scheduling algorithm in FMS.

International Journal of Production Research, 29 (12), 2501–2520.
Ishii, N. and Talavage, J.J., 1994. A mixed dispatching rule approach in FMS scheduling.

International Journal of Flexible Manufacturing Systems, 2 (6), 69–87.
Jeong, K.-C. and Kim, Y.-D., 1998. A real-time scheduling mechanism for a flexible manufacturing

system: using simulation and dispatching rules. International Journal of Production Research,

36 (9), 2609–2626.

Kim, M.H. and Kim, Y.-D., 1994. Simulation-based real-time scheduling in a flexible manufacturing

system. Journal of Manufacturing Systems, 13 (2), 85–93.

Kutanoglu, E. and Sabuncuoglu, I., 2001. Experimental investigation of iterative simulation-based

scheduling in a dynamic and stochastic job shop. Journal of Manufacturing Systems, 20 (4),

264–279.
Lee, C.-Y., Piramuthu, S., and Tsai, Y.-K., 1997. Job shop scheduling with a genetic algorithm and

machine learning. International Journal of Production Research, 35 (4), 1171–1191.
Li, X. and Olafsson, S., 2005. Discovering dispatching rules using data mining. Journal of

Scheduling, 8 (6), 515–527.
Metan, G. and Sabuncuoglu, I., 2005. A simulation based learning mechanism for scheduling

systems with continuous control and update structure. Proceedings of the 2005 winter

simulation conference, 2148–2156.
Min, H.-S. and Yih, Y., 2003. Selection of dispatching rules on multiple dispatching decision points

in real-time scheduling of a semiconductor wafer fabrication system. International Journal

of Production Research, 41 (16), 3921–3941.

Pierreval, H., 1993. Neural network to select dynamic scheduling heuristics. Journal of Decision

Systems, 2 (1), 173–190.

Pierreval, H. and Ralambondrainy, H., 1990. A simulation and learning technique for generating

knowledge about manufacturing systems behavior. Journal of the Operational Research

Society, 41 (6), 461–474.

International Journal of Production Research 6933

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Pierreval, H. and Mebarki, N., 1997. Dynamic selection of dispatching rules for manufacturing

system scheduling. International Journal of Production Research, 35 (6), 1575–1591.
Quinlan, J.R., 1993. C4.5 programs for machine learning. San Francisco, California: Morgan

Kaufmann.
Sabuncuoglu, I. and Goren, S., 2003. A review of reactive scheduling research: proactive scheduling

and new robustness and stability measures, Technical working paper. Department of

Industrial Engineering, Bilkent University.
Sha, D.Y. and Liu, C.-H., 2005. Using data mining for due date assignment in a dynamic job shop

environment. International Journal of Advanced Manufacturing Technology, 25 (11–12),

1164–1174.

Shiue, Y.-R. and Guh, R.-S., 2005. Learning-based multi-pass adaptive scheduling for a dynamic

manufacturing cell environment. Robotics and Computer-Integrated Manufacturing, 22 (3),

203–216.
Shiue, Y.-R. and Guh, R.-S., 2006. The optimization of attribute selection in decision tree-

based production control systems. International Journal of Advanced Manufacturing

Technology, 28, 737–746.
Sun, R.-L., et al., 2004. Iterative learning scheduling: a combination of optimization and dispatching

rules. Journal of Manufacturing Technology Management, 15 (3), 298–305.
Tayanithi, P., Minivannan, S., and Banks, J., 1993a. A knowledge-based simulation architecture to

analyze interruptions in a flexible manufacturing system. Journal of Manufacturing Systems,

11 (3), 195–214.
Tayanithi, P., Minivannan, S., and Banks, J., 1993b. Complexity reduction during interruption

analysis in a flexible manufacturing system using knowledge-based on-line simulation. Journal

of Manufacturing Systems, 12 (2), 153–169.
Wu, S.D. and Wysk, R.A., 1988. Multi-pass expert control system – a control/scheduling structure

for flexible manufacturing cells. Journal of Manufacturing Systems, 7 (2), 107–120.
Wu, S.D. and Wysk, R.A., 1989. An application of discrete-event simulation to on-line control

and scheduling in flexible manufacturing. International Journal of Production Research, 27 (9),

1603–1623.
Wu, X., et al., 2008. Top 10 algorithms in data mining. Knowledge and Information Systems, 14 (1),

1–37.
Yildirim, M.B., et al., 2006. Machine number, priority rule, and due date determination in flexible

manufacturing systems using artificial neural networks. Computers & Industrial Engineering,

50 (1–2), 185–194.

Appendix A: Notation and definition of the system attributes

Notation

M set of machines, M¼ {1, 2, 3, 4}
m number of machines in the manufacturing system, which is equal to the cardinality

of M, jMj
Q set of queues in front of the machines, Q¼ {1, 2, 3, 4}
Iq set of jobs in queue q at time t, q2Q

Om set of operations of all jobs in the system that is to be processed on machine m,
m2M

It set of jobs in the system at time t
n cardinality of It, that is the number of jobs in the system at time t
Ji set of all operations of job i, i2 I

Ĵi set of all remaining operations of job i, i2 I, Ĵ � J
ri release time of job i, i2 I
pij processing time of operation j of job i, i2 I, j2 J

pi,cur processing time of job i at the machine just after its current queue, i2 I, j2 J

6934 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

ih ji machinery location of the jth operation of job i, i2 I, j2 J
di due-date of job i, i2 I
dij due-date of operation j of job i, i2 I, j2 J
oi number of operations of job i, i2 I
k flow allowance factor

Definition of the system attributes

Attribute 1: Number of jobs in the system (n_Jobs)

This attribute stores the number of jobs in the system at time t.

Attribute 2: The percentage of maximum relative machine workload
(MaxRelativeMachLoad%)

MaxRelativeMachLoad% ¼ 100
maxq2Qð

P
i2Iq

pi,curÞP
i2It

P
j2Ĵ pij

%: ðA1Þ

Attribute 3: Percentage of completed processing times (CompletedProcTime%)

CompletedProcTime% ¼ 100

P
i2It

P
j2J�Ĵ pijP

i2It

P
j2J pij

%: ðA2Þ

Attribute 4: Relative tightness ratio (RelativeTightness)

RelativeTightness ¼
�dt
�p
, where �dt ¼ max 0,

P
i2It
ðdi � tÞ

n

� �
, �p ¼

P
i2It

P
j2Ĵ pij

n
: ðA3Þ

Attribute 5: Rule updating signal (RuleUpdtSgnl)

RuleUpdtSgnl ¼
0, if the signal is BSP,

1, if the signal is MP.

�
ðA4Þ

Attribute 6: Total remaining processing time (TotRemainProcTime)

TotRemainProcTime ¼
X
i2It

X
j2Ĵ

pij: ðA5Þ

Attribute 7: Average remaining processing time (AvgRemainProcTime)

AvgRemainProcTime ¼
TotRemainProcTime

n
¼

P
i2It

P
j2Ĵ pij

n
: ðA6Þ

International Journal of Production Research 6935

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Attribute 8: Average slack time (AvgSlackTime)

AvgSlackTime ¼

P
i2Iðdi � tÞ �

P
i2I

P
j2Ĵ pij

n
: ðA7Þ

Attribute 9: Average period queue length (AvgQueueLength)

AvgQueueLength ¼

P
q2Q QTqðt� SPL, tÞ

jQjSPL
: ðA8Þ

Attribute 10: Maximum queue length at time t (MaxQueueLength)

MaxQueueLength ¼ max
q2Q
fjIqjg, where jIqj is the cardinality of set Iq: ðA9Þ

Attribute 11: Average remaining time until due-dates (AvgRemainTimeDDate)

AvgRemainTimeDDate ¼

P
i2Iðdi � tÞ

n
: ðA10Þ

Attribute 12: Number of jobs with a long processing time (n_LongProcTime)

n LongProcTime ¼ jLj, such that L ¼ fi j pi � �p, i 2 Itg, where �p ¼

P
i2I

P
j2J pij

n
: ðA11Þ

Attribute 13: Percentage of jobs with long processing times (LongProcTime%)

LongProcTime% ¼ 100
n LongProcTime

n
%: ðA12Þ

Attribute 14: Difference between the maximum and average processing times
("MaxAvgProcTime)

DMaxAvgProcTime ¼ max
i2I

X
j2J

pij

()
� �p, where �p ¼

P
i2I

P
j2J pij

n
: ðA13Þ

6936 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Attribute 15: Percentage difference between maximum and average processing times
("MaxAvgProcTime%)

DMaxAvgProcTime% ¼ 100
DMaxAvgProcTime

�p
%: ðA14Þ

Attribute 16: Maximum due-date (MaxDDate)

MaxDDate ¼ max 0, max
i2I
fdig � t

� �
: ðA15Þ

Attribute 17: Number of jobs with long due-dates (n_LongDDate)

n LongDDate ¼ jSj, where S ¼ fi j di � �d, i 2 Ig, �d ¼

P
i2I di
n

: ðA16Þ

Attribute 18: Percentage of jobs with long due-dates (n%_LongDDate)

n% LongDDate ¼ 100
jSj

n
, where S ¼ fi j di � �d, i 2 Ig, �d ¼

P
i2I di
n

: ðA17Þ

Attribute 19: Maximum coefficient of variation of processing times of machines
(MaxCvProcTimeMach)

MaxCvProcTimeMach ¼ max
m2M
fcvmg, ðA18Þ

where

cvm ¼
�pm
�m

, �pm ¼

P
i2I

P
j2Om

pij

jOmj
, �m ¼

ffiP
i2I

P
j2Om
ð pij � �pmÞ

2

jOmj � 1

s
: ðA19Þ

Attribute 20: Average coefficient of variation of the job processing times
(AvgCvJobProcTimes)

AvgCvJobProcTimes ¼

P
i2I cvi
n

, ðA20Þ

where

cvi ¼
�pi
�i
, �pi ¼

P
j pij

jOij
, �m ¼

ffiP
jð pij � �piÞ

2

jOij � 1

s
: ðA21Þ

International Journal of Production Research 6937

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

Attribute 21: Average variance of the job processing times (AvgVarJobProcTimes)

AvgVarJobProcTimes ¼

P
i2Ið�iÞ

2

n
, where �i is calculated as in Attribute 20: ðA22Þ

Attribute 22: Maximum coefficient of variation of the job processing times
(MaxCvJobProcTimes)

MaxCvJobProcTimes ¼ max
i2I
fcvig: ðA23Þ

Attribute 23: Difference between the maximum and average coefficient of variation of the
job processing times ("Max�AvgCv)

This attribute is simply the difference between Attribute 22 and Attribute 20.

Attribute 24: Number of jobs already tardy (n_Tardy)

n Tardy ¼ jSj, where S ¼ i
X
j2Ĵ

pij 4 di � t, i 2 It

������
8<
:

9=
;: ðA24Þ

Attribute 25: Average remaining processing time of already tardy jobs
(AvgRemainProcTime_Tardy)

AvgRemainProcTime Tardy ¼

P
i2S

P
j2Ĵ pij

jSj
: ðA25Þ

Attribute 26: Last period’s average tardiness value (MeanTardiness)

The value of this attribute at time t is set to the mean tardiness (our performance measure) of the last
scheduling period, which ended at time t. We define this attribute because the realised system
performance at the last scheduling period may carry some information about the most appropriate
dispatching rule for the next scheduling period.

6938 G. Metan et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

37
 1

3
N

ov
em

be
r

20
17

