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Maximal correlation has several desirable properties as a measure of dependence,
including the fact that it vanishes if and only if the variables are independent. Except
for a few special cases, it is hard to evaluate maximal correlation explicitly. We
focus on two-dimensional contingency tables and discuss a procedure for estimating
maximal correlation, which we use for constructing a test of independence. We
compare the maximal correlation test with other tests of independence by Monte
Carlo simulations. When the underlying continuous variables are dependent but
uncorrelated, we point out some cases for which the new test is more powerful.

Keywords Exact tests; Maximal correlation; Tests of independence.

Mathematics Subject Classification 62H20; 62H17.

1. Introduction

In virtually any field of statistics, there is a need for measuring the dependence
between random variables. There are several measures of dependence in the
statistical literature, which can be classified into three groups: dependence measures
based on correlation, dependence measures based on distribution functions,
and dependence measures for cross classifications. All these measures are often
considered as an intermediate step for obtaining tests of independence. For a
comprehensive survey on most important dependence measures, see Liebetrau
(2005).

A basic tool for measuring dependence between two random variables X and Y
is the product moment correlation coefficient ��X� Y�, which has some well-known
drawbacks. For example, zero correlation does not imply independence. Gebelein
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2226 Yenigün et al.

(1941) introduced the maximal correlation defined by

S�X� Y� = sup
f�g

��f�X�� g�Y��� (1)

where the supremum is taken over all Borel-measurable functions of X and Y with
finite and positive variance. Maximal correlation has several desirable properties as
a dependence measure, including the fact that it vanishes if and only if the variables
are independent.

Although maximal correlation is an attractive dependence measure, it is hard
to evaluate it explicitly, except for a few special cases. Rényi (1959) gave the
conditions such that the maximal correlation can be attained. Bell (1962) considered
two normalizations of Shannon’s mutual information as a measure of dependence
and compared them with maximal correlation. Csáki and Fischer (1963) further
studied the mathematical properties of maximal correlation and computed it
for a number of examples. Abrahams and Thomas (1980) considered maximal
correlation as a measure of dependence in stochastic processes. Breiman and
Friedman (1985) provided an alternating conditional expectations algorithm for
estimating the functions f0 and g0 which maximize the correlation between two
random variables, thus their procedure provides a method for estimation maximal
correlation from observations. A multivariate analog of maximal correlation was
considered by Koyak (1987). For random variables that take only a finite number
of values, Sethuraman (1990) gave a procedure to estimate the maximal correlation
from the sample, and gave the asymptotic distribution of this estimate under the
null hypothesis of independence. Gautam and Kimeldorf (1999) considered the
calculation of maximal correlation in the case of 2× k contingency tables. Dembo
et al. (2001) and Novak (2004) studied the maximal correlation between partial sums
of independent and identically distributed random variables.

In this study, we discuss a new addition to the rare cases such that maximal
correlation can be computed. We first discuss how maximal correlation is computed
for two categorical variables that are cross classified. We then use this to construct
an independence test for two-way contingency tables. Analysis of contingency tables
has been a very active research field in statistics for a long time, due to its enormous
applicability. A principal interest in many studies regarding contingency tables is to
test if the variables are independent. Although many good tests are available, no
single test is known to be optimal for all independence problems. Our purpose is to
point out cases such that maximal correlation independence test is preferable.

This article will proceed as follows. In Sec. 2, we present some preliminary
notation and basic tools on the analysis of contingency tables which will be used
throughout this study. In Sec. 3, we present the maximal correlation. In Sec. 4, we
discuss the computation of maximal correlation for the case of contingency tables,
and in Sec. 5 we introduce the maximal correlation independence test. Section 6
contains empirical power comparisons, followed by the conclusions in Sec. 7.

2. Preliminaries

In this section, we present some basic notation and some of the well-known tools
in contingency table analysis that we use in the remaining of the article, namely,
loglinear models and exact tests. Consider two categorical response variables X and
Y having I and J levels, respectively. When we classify subjects on both variables,
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Maximal Correlation Test of Independence 2227

the responses �X� Y� of a randomly selected subject have a probability distribution
which can be displayed in a rectangular table having I rows for categories of X
and J columns for categories of Y . Let �ij denote the probability that �X� Y� falls
in the cell in row i and column j. The probability distribution ��ij� is the joint
distribution of X and Y . When the cells contain frequency counts of outcomes,
denoted by �nij�, the table is called a contingency table. In this study, we consider the
multinomial sampling model, where the sample size is fixed and the probability mass
function (pmf) of the contingency table is a multinomial distribution characterized
by the sample size n and the cell probabilities ��ij�. The null hypothesis of statistical
independence is

H0 � �ij = �i·�·j� (2)

for i = 1� 	 	 	 � I , j = 1� 	 	 	 � J and the subscript “·” denotes the sum over the index it
replaces.

Earlier applications in the analysis of contingency tables are on testing
independence, by the well-known Pearson chi-square test of independence and its
modifications, as well as the likelihood ratio test. By the 1960s and 1970s, the
attention of researchers shifted from testing to modeling and loglinear models gained
significant attention. With the loglinear approach, the cell counts in a contingency
table are modeled in terms of the associations between the variables. The saturated
loglinear model for I × J contingency tables is given by

logmij = 
 + �Xi + �Yj + �XYij � (3)

where mij = n�ij is the expected frequency in cell �i� j�, and the parameters satisfy∑
i �

X
i = ∑

j �
Y
j = ∑

i �
XY
ij = ∑

j �
XY
ij = 0, for i = 1� 	 	 	 � I , j = 1� 	 	 	 � J . Note that the

logarithm of the expected frequency in cell �i� j� is an additive function of an ith
row effect �Xi , a jth column effect �Yj , and an interaction effect �XYij . A special
case of the saturated model is the loglinear model of independence, in which all the
interaction effects �XYij equal zero. For multinomial sampling, the cell probabilities
of the multinomial distribution corresponding to the saturated loglinear model (3)
is given by

�ij =
exp�
 + �Xi + �Yj + �XYij �∑

i

∑
j exp�
 + �Xi + �Yj + �XYij �

	 (4)

Given a contingency table, the loglinear model parameters can be estimated by
using maximum likelihood methods. In the loglinear approach, testing independence
corresponds to testing whether the interaction term is needed in the model or not;
see, e.g., Agresti (2002) for more on loglinear models.

When working with contingency tables with a small number of observations
or sparse data, exact inferential methods provide an alternative to large sample
methods. Under the null hypothesis of independence, the pmf of the contingency
table �nij� includes nuisance parameters ��i·� and ��·j�, thus it has a limited use.
These parameters can be eliminated by conditioning on sufficient statistics for them,
�ni·� and �n·j�. The pmf of �nij� conditional on the sufficient statistics is given by

�
∏

i ni·!��
∏

j n·j!�
n!∏i

∏
j nij!

	 (5)
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2228 Yenigün et al.

Exact tests require finding all possible contingency tables that have the same row
and column sums as the observed contingency table. These tables are then ordered
according to some measure of dependence. The p-value of the observed contingency
table is simply the sum of probabilities of observing the tables which are more
extreme than the observed table, i.e., the ones that are farther from independence in
terms of the dependence measure used. The related table probabilities are calculated
from (5).

A well-known example of exact tests is the Fisher exact test for 2× 2
contingency tables (Fisher, 1934), where exact enumeration by hand is possible.
The availability of computational power makes exact tests possible for higher
dimensional tables, however, in most cases complete enumeration is still impossible
with current computational power. In such cases, one can simulate contingency
tables with given marginals and approximate the p-value of the independence test.
For two-dimensional tables, the algorithm given by Patefield (1981) is widely used.
For higher dimensional tables, one can use the algorithm given by Diaconis and
Strumfels (1998). Exact tests are available in most statistical software packages such
as SPSS, SAS, and R. StatXact is a statistical package that specializes in exact tests.
For a survey of exact tests, see Agresti (1992).

3. Maximal Correlation

Consider two random variables, X and Y , defined on a given probability space.
According to Rényi (1959), a measure of dependence ��X� Y� of these variables
should satisfy the following postulates.

(A) ��X� Y� is defined for any X, Y neither of which is constant with probability 1.
(B) ��X� Y� = ��Y�X�.
(C) 0 ≤ ��X� Y� ≤ 1.
(D) ��X� Y� = 0 if and only if X and Y are independent.
(E) ��X� Y� = 1 if either X = g�Y� or Y = f�X�, where g�·� and f�·� are Borel-

measurable functions.
(F) If the Borel-measurable functions g�·� and f�·� map the real axis in a one-to-one

way to itself, then ��f�X�� g�Y�� = ��X� Y�.
(G) If the joint distribution of X and Y is normal, then ��X� Y� = ���X� Y��, where

��X� Y� is the product moment correlation coefficient of X and Y .

After listing these seven postulates, Rényi (1959) considered five measures
of dependence, and notes that only the maximal correlation satisfies all seven
postulates. Note that product moment correlation satisfies B, C, and G only.

The maximal correlation (1) between X and Y cannot be evaluated explicitly
except for special cases, since there does not always exist functions f0�x� and g0�x�
such that S�X� Y� = ��f0�X�� g0�Y��. If this equality holds for some f0 and g0, we say
that the maximal correlation of X and Y can be attained. Let �2

X denote the Hilbert
space of all random variables of the form f�X� for which E�f�X�� = 0 and Var�f�X��
is finite. Similarly, let �2

Y denote the Hilbert space of all random variables of the
form g�Y� for which E�g�Y�� = 0 and Var�g�Y�� is finite. For any f = f�X� ∈ �2

X ,
consider the transformation

Af = EE�f�X� � Y� �X�	 (6)
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Maximal Correlation Test of Independence 2229

Rényi (1959) showed that if the transformation A defined in (6) is completely
continuous, then the maximal correlation between X and Y is attained for f0�X�
and g0�Y�, where f0 is an eigenfunction belonging to the greatest eigenvalue S2 =
S2�X� Y� of A and g0�Y� = S−1E�f0�X� � Y�. Rényi (1959) also noted that if the
dependence between X and Y is regular and the mean square contingency is finite,
then the transformation A is completely continuous. Here, regular dependence of the
variables means that the joint distribution of the variables is absolutely continuous
with respect to the direct product of their distributions.

3.1. An Example: Lissajous Curve Case

Here, we introduce a new example such that maximal correlation can be computed.
In this example we consider two dependent but uncorrelated random variables, and
show that the maximal correlation between them equals one. We will revisit this
example in Sec. 6.

Let the random variable W have uniform distribution over the interval 0� 2��.
Let X = sin aW and Y = sin bW where a and b are integers and a �= b. The variables
X and Y are clearly dependent, and one can show that they are uncorrelated. The
plot of the relationship between the variables is a special case of the well-known
Lissajous curve, as illustrated in Fig. 1, therefore we will refer to this example as the
Lissajous curve case.

In order to compute the maximal correlation between X and Y , we use the
Chebyshev polynomials of the first kind, which are defined by Tn�x� = cos�n arccos x�,
where x ∈ −1� 1�, and n is the degree of the polynomials. Replacing x by cos �,
where � ∈ �, we have Tn�cos �� = cos�n��. Here, cos�n�� is a polynomial of degree
n in cos���.

Proposition 3.1. The maximal correlation between X and Y is 1.

Proof. Let Z = cos�2abW�. Then there exists a Chebyshev polynomial Ta such that

Z = cos�2abW� = Ta�cos�2bW�� = Ta�1− 2 sin2�bW�� = Ta�1− 2Y 2�	

Figure 1. Two illustrations for the Lissajous curve. In Case 1, a = 1 and b = 2; in Case 2,
a = 5, b = 6.
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2230 Yenigün et al.

Similarly, there exists a Chebyshev polynomial Tb such that

Z = cos�2abW� = Tb�cos�2aW�� = Tb�1− 2 sin2�aW�� = Tb�1− 2X2�	

Thus, Z is a function of both X and Y . The correlation of Z with itself is 1, thus,
the maximal correlation between X and Y is 1.

4. Maximal Correlation in Case of Contingency Tables

In this section, we introduce the computation of maximal correlation for two-
dimensional contingency tables, which is another addition to the rare cases such
that maximal correlation can be computed. Consider two categorical response
variables, X and Y , taking values �1� 	 	 	 � �I and �1� 	 	 	 � �J respectively. Without
loss of generality, suppose I ≤ J . Consider the cross-classification as described
in Sec. 2. Assume that the matrix ��ij� is positive, in other words there are no
structural zeroes in the contingency table. Let IX = �1�1�X�� 	 	 	 � 1�I �X��

′ and IY =
�1�1�Y�� 	 	 	 � 1�J �Y��

′, where 1 denotes the indicator function. Since X and Y can take
only a finite number of outcomes, the functions f and g in their most general forms
can be written as

f�X� = a′IX� (7)

g�Y� = b′IY � (8)

where a = �a1� 	 	 	 � aI�
′, b = �b1� 	 	 	 � bJ �

′, and ai and bj are arbitrary real numbers
for i = 1� 	 	 	 � I and j = 1� 	 	 	 � J . Our task is to find f0 and g0 such that the maximal
correlation between X and Y is attained, which is equivalent to finding proper
vectors a and b. We begin with writing the transformation (6) explicitly.

Let ri = ��i1� 	 	 	 � �iJ �
′ for i = 1� 	 	 	 � I , which is the transpose of the ith row of

��ij�. Similarly, let cj = ��1j� 	 	 	 � �Ij�
′ for j = 1� 	 	 	 � J , which is the jth column of

��ij�. Then we have

Uj �= E�f�X� � Y = �j� =
1
�·j

c′ja�

for j = 1� 	 	 	 � J . Let U = �U1� 	 	 	 � UJ �
′. Then

Vi �= E E�f�X� � Y� �X = �i� =
1
�i·

r′iU�

for i = 1� 	 	 	 � I . Let V = �V1� 	 	 	 � VI�
′. Note that V is the right-hand side of Eq. (6).

Proposition 4.1. The vector V can be factored such that V = �a, where � is an I × I
matrix with the general term

�kl =
J∑

r=1

�kr�lr

�k·�·r
� (9)

where k� l = 1� 	 	 	 � I .
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Maximal Correlation Test of Independence 2231

Proof.

V =



1
�1·
r′1U
			

1
�I·
r′IU


 =




1
�1·
��11U1 + �12U2 + · · · + �1JUJ �

			
1
�I·
��I1U1 + �I2U2 + · · · + �IJUJ�




=




1
�1·

(
�11
�·1
c′1a + �12

�·2
c′2a + · · · + �1J

�·J
c′Ja

)
			

1
�I·

(
�I1
�·1
c′1a + �I2

�·2
c′2a + · · · + �IJ

�·J
c′Ja

)




=




(
�11

�1·�·1
��11� �21� 	 	 	 � �I1�+ �12

�1·�·2
��12� �22� 	 	 	 � �I2�

+ · · · + �1J
�1·�·J

��1J � �2J � 	 	 	 � �IJ �
)
a

			(
�I1

�I·�·1
��11� �21� 	 	 	 � �I1�+ �I2

�I·�·2
��12� �22� 	 	 	 � �I2�

+ · · · + �IJ
�I·�·J

��1J � �2J � 	 	 	 � �IJ �
)
a




=




(∑J
r=1

�1r �1r
�1·�·r

�
∑J

r=1
�1r �2r
�1·�·r

� 	 	 	 �
∑J

r=1
�1r �Ir
�1·�·r

)
a

			(∑J
r=1

�Ir�1r
�I·�·r

�
∑J

r=1
�Ir�2r
�I·�·r

� 	 	 	 �
∑J

r=1
�Ir�Ir
�I·�·r

)
a


 = �a	

Therefore, in the case of contingency tables, the transformation A in (6) is
represented by the matrix �. This transformation is completely continuous since the
dependence between the response variables is always regular and the mean square
contingency is finite for the case of contingency tables. Therefore, the maximal
correlation between X and Y can be computed.

According to Rényi (1959), the largest eigenvalue of transformation (6) is
the square of the maximal correlation between X and Y . However, his approach
makes the assumption that E�f�X�� = 0 and Var�f�X�� is finite. We impose these
assumptions on our calculation as follows.

It is easy to check that � is a positive stochastic matrix. Then by the Perron–
Frobenius theorem (see, e.g., Aldrovandi, 2001, p. 47), � has a single unit eigenvalue
which is larger than the absolute value of any other eigenvalue. Let �1 = 1 > ��2� ≥
· · · ≥ ��I � ≥ 0 denote the eigenvalues of � sorted in a decreasing fashion, and let
e1� e2� 	 	 	 � eI denote the corresponding column eigenvectors. It is easy to see that
e1 = 1I , where 1I denotes the I-dimensional column vector, all of whose components
are one. Then if we set a = e1 we have

Ef�X�� = E�a′IX� = E�e′1IX� = ��1·� 	 	 	 � �I·�e1 = 1�

therefore the assumption Ef�X�� = 0 is violated. Also note that, in this case,
Var�f�X�� = 0. When we set a = ei for i = 2� 	 	 	 � I , we have E�f�X�� = 0 and 0 <

Var�f�X�� < �. So we discard the largest eigenvalue of � and conclude that the
maximal correlation S between X and Y is the square root of the second largest
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2232 Yenigün et al.

eigenvector of �. Formally, we have

S�X� Y� = √
�2	 (10)

Now let us compute f0 and g0 such that the maximal correlation is attained, i.e., let
us find the vectors a and b. We have

f0�X� = e′2IX� (11)

which means that we must set a = e2 in (7). Moreover, we have g0�Y� =
S−1E�f0�X� � Y�. Let d = �d1� 	 	 	 � dJ �

′ where

dj = E�f0�X� � Y = �j� = �c′je2�/�·j�

for j = 1� 	 	 	 � J . Then we have

g0�Y� = S−1d′IY � (12)

where S−1 = 1/
√
�2. So we must set b = S−1d in (8). We have shown the following.

Proposition 4.2. Let the categorical variables X and Y take values �1� 	 	 	 � �I and
�1� 	 	 	 � �J , respectively, with I ≤ J . Consider the cross-classification defined above,
where the cell probabilities of the joint distribution is given in the positive matrix ��ij�.
Then the population maximal correlation between X and Y is the square root of the
second largest eigenvalue of the matrix � defined in (9). The maximal correlation is
attained when f0 and g0 are as defined in (11) and (12), respectively.

In practice, we want to estimate the maximal correlation from an observed
contingency table. Let �nij� denote an observed contingency table, as described
above. Let �̂ denote the estimator of � obtained by replacing �ij’s in (9) by their
maximum likelihood estimators �̂ij = nij/n. Then �̂ is an I × I matrix with general
term

�̂kl =
J∑

r=1

nkrnlr

nk·n·r
� (13)

where k� l = 1� 	 	 	 � I . The matrix �̂ is well defined when the observed contingency
table does not have zero row or column sums. If a row or column sum equals zero
for an observed contingency table, we use the convention of replacing the zeros in
the denominator of (13) by � = 10−8, without changing the table dimensions for the
analysis. The sample maximal correlation Sn between X and Y is the square root of
the second largest eigenvalue of �̂. Formally, we have

Sn�X� Y� =
√
�̂2� (14)

where �̂2 is the second largest eigenvalue of �̂. The functions f0 and g0 can be
computed analogous to the above approach. We give the following remarks before
we proceed to the maximal correlation test of independence.
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Maximal Correlation Test of Independence 2233

Remark 4.1. The eigenvalues of the matrix � are invariant with respect to the row
and column permutations of the matrix ��ij�, so is the maximal correlation. Same
holds for an observed matrix �̂ and the sample maximal correlation. This makes
maximal correlation suitable for analyzing data on nominal scale.

Remark 4.2. Since one can observe empty cells in a contingency table, the
stochastic matrix �̂ is not always positive. Therefore, in some special cases, �̂ may
have more than one unit eigenvalues. One such case is the case for which the cell
nij is the only nonzero cell in ith row and jth column. In such cases, the sample
maximal correlation is defined as the square root of the largest non unity eigenvalue
of �̂.

Remark 4.3. Maximal correlation is the first canonical correlation between IX
and IY .

Remark 4.4. For 2× 2 contingency tables, we have the following relation between
the classical Pearson chi-square statistic, X2, and the sample maximal correlation:

X2 = nS2
n	

5. Maximal Correlation Test of Independence

We now develop an independence test for two-way contingency tables, based on
maximal correlation. Sethuraman (1990) considered the maximal correlation of
variables that take only a finite number of values. This work does not provide
an explicit evaluation of maximal correlation from an observed sample, however,
it gives the limiting distribution of sample maximal correlation under the null
hypothesis of independence. We adapt these distributional results to contingency
tables as follows.

Consider categorical variables X and Y having I and J levels, respectively.
Consider the cross-classification of X and Y which leads to a contingency table �nij�.
We would like to test the independence hypothesis (2). Without loss of generality,
assume that I ≤ J . Let n denote the sample size and let Sn denote the sample
maximal correlation between X and Y . Assume X and Y are independent. Then by
Sethuraman (1990), the limiting distribution of nS2

n as n → � is the distribution
of �1, where �1 is the maximum eigenvalue of W which has a Wishart distribution
W�II−1� J − 1�. Here, Ia denotes the identity matrix of size a.

Thus for large samples, a size � maximal correlation test of independence can
be constructed as follows.

1. Compute the sample maximal correlation Sn using (14), obtain the test statistic
nS2

n.
2. Reject H0 if nS2

n > C���, where C��� is the 100�1− ��% point of the limiting
distribution of the test statistic nS2

n.

The critical points C��� can be obtained from Table 51 of Pearson and Hartley
(1972, p. 352) (set � = I − 1 and p = J − 1 or vice versa), which gives the percentage
points of the extreme eigenvalues of a Wishart matrix. When the dimensions or the
significance level of interest cannot be found on this table, one can simulate the null
distribution of nS2

n and obtain the critical values. For several choices of I and J ,
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2234 Yenigün et al.

we generated Wishart matrices with scale parameter II−1 and degrees of freedom
J − 1 by using the rwishart function available in the statistical package R. The
empirical 90%, 95%, and 99% percentile points of the maximum eigenvalues of the
100,000 generated Wishart matrices are given in Table 1. Here, we may note that
for 2× 2 contingency tables maximal correlation test of independence is identical to
the classical Pearson chi-square test of independence.

When working with contingency tables with a small number of observations or
sparse data, it may not be appropriate to use the above independence test. This is
also the case for other commonly used independence tests that are based on large
sample results, such as chi-square test or likelihood ratio test. In such situations,
exact inferential methods provide an alternative to the large sample methods. As
mentioned in Sec. 2, exact tests require an ordering criterion. Employing maximal
correlation as the ordering criterion, a size � exact maximal correlation test of
independence can be constructed as follows:

1. Observe a contingency table with frequencies �nij� and calculate the row and
column sums ni· and n·j .

2. Find all possible contingency tables �aij� such that ai· = ni· and a·j = n·j .
Compute the probabilities of obtaining such tables by plugging aij for nij in (5).

3. Order all tables with respect to the maximal correlation between the row and the
column variables.

4. The p-value of the exact test is the sum of probabilities of obtaining contingency
tables which yield equal or greater maximal correlation compared to the observed
table. Reject the null hypothesis of independence if p-value is less than �.

Exact test algorithms require enumerating all possible tables that have the same
marginal sums as the observed contingency table. We have written codes in the
statistical package R to enumerate the required tables for small contingency tables.
When there is a large number of row or column categories, enumerating all these
tables may be a numerically challenging task. To illustrate, in order to carry out an
exact test for a 4× 4 table with 100 observations, one has to deal with roughly 7
billion contingency tables. To overcome this difficulty, several algorithms have been
proposed to simulate contingency tables that have the same row and column sums
as a given contingency table. One example is the Patefield’s (1981) algorithm, which
can be implemented by using the r2dtable function in the statistical package R.

Table 1
Critical values of nS2

n for I × J contingency tables

I J � = 0	1 � = 0	05 � = 0	01

3 3 6.998 8.599 12.057
4 4 11.229 13.137 17.179
5 5 15.441 17.584 21.976
6 6 19.634 21.953 26.706
8 8 27.872 30.359 35.636
10 10 36.122 38.875 44.710
12 12 44.233 47.215 53.330
14 14 52.506 55.686 62.133
16 16 60.583 63.892 70.359
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Maximal Correlation Test of Independence 2235

When we would like to construct an exact maximal correlation test of
independence, but the complete enumeration is infeasible, we approximate the
p-value of the exact test by using the Patefield’s (1981) algorithm. Then a size �
independence test can be constructed as follows:

1. Observe a contingency table with frequencies �nij� and calculate the row and
column sums ni· and n·j .

2. Using Patefield’s (1981) algorithm, generate a reasonable amount of contingency
tables �aij� such that ai· = ni· and a·j = n·j . Compute the probabilities of
obtaining such tables by plugging aij for nij in (5).

3. Order all tables with respect to the maximal correlation between the row and the
column variables.

4. An approximation to the p-value of the exact test is the ratio of the sum
of probabilities of obtaining contingency tables which yield equal or greater
maximal correlation compared to the observed table, to the sum of probabilities
of obtaining all the contingency tables that have been generated. Reject the null
hypothesis of independence if the approximate p-value is less than �.

5.1. A Numerical Illustration

Table 2 is taken from Snee (1974), which presents the hair color and eye color of
264 males. We would like to test the independence hypothesis (2) using the maximal
correltaion test. Using (13) we have

�̂ =



0	394022 0	313580 0	187000 0	105397
0	257698 0	437607 0	168808 0	135889
0	330235 0	362757 0	184119 0	122867
0	260590 0	415905 0	175035 0	143970


 	

The eigenvalues and the corresponding eigenvectors of �̂ are

e1 = 1� v1 = �0	5� 0	5� 0	5� 0	5�′�

e2 = 0	14399� v2 = �0	7168�−0	5261� 0	1644�−0	4268�′�

e3 = 0	01295� v3 = �−0	1434�−0	3335� 0	3697� 0	8552�′�

e4 = 0	00276� v4 = �0	2297�−0	0088�−0	7877� 0	5714�′	

Table 2
Hair color and eye color for 264 males

Eye color

Hair color Brown Blue Hazel Green

Black 32 11 10 3
Brown 38 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

46
 1

2 
N

ov
em

be
r 

20
17

 



2236 Yenigün et al.

Then by (14), the sample maximal correlation is Sn =
√
0	14399 = 0	3794, and the

test statistic is nS2
n = 38	015. From Table 1 the critical values for this 4× 4 case are

11.229, 13.137, and 17.179 for significance levels 0.1, 0.05, and 0.01, respectively. The
null hypothesis of independence is rejected at all three significance levels.

6. Empirical Results

In this section, we present some empirical results to illustrate the performance of
maximal correlation test of independence and compare it with two most commonly
used independence tests for contingency tables, namely Pearson chi-square test and
likelihood ratio test. We first report a numerical study which compares the empirical
significance level of maximal correlation test of independence with the nominal
significance level. In this study we simulated contingency tables using a loglinear
independence model with �X1 = 0	2, �X2 = −0	4, �X3 = 0	2, �Y1 = 0	1, �Y2 = −0	3, �Y3 =
0	1, and I = J = 3, and carried out three independence tests: maximal correlation
test of independence (labeled M), Pearson chi-squared (P), and likelihood ratio
(L) tests of independence. Table 3 presents the rejection proportions for all three
tests at nominal significance levels 10%, 5%, and 1%, based on 10,000 simulations.
For all significance levels considered, the empirical significance level of maximal
correlation independence test and the two other tests are consistent with the
nominal significance levels, as the nominal levels are within the corresponding 95%
confidence intervals.

Next, we report a numerical study which compares the power performance of
maximal correlation test of independence with Pearson chi-square and likelihood
ratio tests of independence. Under a given dependence structure, we determine
the empirical power of each independence test by simulating a large number
of contingency tables and computing the proportion of times the independence
hypothesis is rejected at a given significance level �. We report the results by
empirical power curves, which are obtained by smoothing the scatter plots of sample
sizes versus empirical powers. The smoothing is obtained by the loess function in
the statistical package R. For each graph we report the sample sizes considered, for
example, n = 20:35:5 means sample sizes 20, 25, 30, and 35 are considered. Unless
otherwise indicated, large sample results are used for the independence tests. We
consider five examples with different dependence structures. In the first example, we

Table 3
Empirical significance of Pearson chi-square �P�, likelihood ratio �L�, and maximal

correlation �M� tests of independence, under loglinear independence model

� = 0	1 � = 0	05 � = 0	01

n P L M P L M P L M

50 0.105 0.133 0.098 0.047 0.071 0.047 0.006 0.013 0.007
60 0.095 0.119 0.093 0.045 0.063 0.044 0.008 0.014 0.008
70 0.099 0.119 0.097 0.048 0.062 0.046 0.008 0.013 0.008
80 0.097 0.116 0.099 0.047 0.060 0.046 0.009 0.014 0.008
90 0.101 0.114 0.100 0.048 0.057 0.049 0.009 0.013 0.008
100 0.095 0.107 0.093 0.048 0.056 0.046 0.008 0.011 0.009
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Maximal Correlation Test of Independence 2237

generate contingency tables by using a loglinear model. In the remaining examples
we assume that the categorical variables have an underlying continuous distribution.

Example 6.1. The first example is based on a saturated loglinear model for 3× 3
contingency tables, where we control the dependence by the interaction term �XYij .
For the case with loglinear parameters �Xi = �Yi = 0 for i = 1� 2� 3, �XY11 = 0	4, �XY12 =
−0	2, �XY13 = −0	2, �XY21 = 0	8, �XY22 = −0	4, �XY23 = −0	4, �XY31 = −1	2, �XY32 = 0	6, and
�XY33 = 0	6, contingency tables are generated using (4). Empirical power comparisons
at significance level � = 0	05 are summarized in Fig. 2. The results are based on
1,000 exact tests for sample sizes n = 20:35:5, and 10,000 tests based on large sample
results for sample sizes n = 40:90:5. The simulation results show that all three tests
are comparable in terms of power. Likelihood ratio test is slightly more powerful.
We carried out similar simulation studies for several other loglinear parameter
settings and observed similar results.

Example 6.2. In this example, we consider the continuous variables X and Y which
are centered at points uniformly distributed along the unit circle, with N�0� �2� noise
in both coordinates. Let W ∼ U0� 2��, e1 ∼ N�0� �2� and e2 ∼ N�0� �2�. Let X =
cos�W�+ e1 and Y = sin�W�+ e2. Here, the random variables of interest are X and
Y . A scatter plot of observed X and Y forms a circular cloud of points. For several
cases, we generated X and Y , collapsed them into contingency tables, and carried
out tests of independence based on the contingency tables. We report the empirical
power comparison for the following case.

Let � = 0	4, consider 6× 6 tables. Independence tests are carried out based on
these contingency tables. The empirical power plots of three tests at significance
level 0.05 are presented in Fig. 3. The results are based on 10,000 tests for sample
sizes n = 70:220:10. The empirical study shows that the likelihood ratio test is more

Figure 2. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.1. Significance level � = 0	05.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

46
 1

2 
N

ov
em

be
r 

20
17

 



2238 Yenigün et al.

Figure 3. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.2. Significance level � = 0	05.

powerful for sample sizes 70–150. For larger samples, the maximal correlation test
is as powerful as the likelihood ratio test.

Example 6.3. In this example we revisit the Lissajous curve case discussed in
Sec. 3.1. Let the random variable W have uniform distribution over the interval
0� 2��. Let X = sin aW and Y = sin bW where a and b are integers and a �= b. The
random variables of interest are X and Y , which are clearly dependent. Recall from
Sec. 3.1 that X and Y are uncorrelated and their maximal correlation is one. For
several cases we generated X and Y by transforming from the generated W and
adding noise N�0� �2�� on both coordinates. We then collapsed the observations into
contingency tables and carried out tests of independence based on the contingency
tables.

We will present two Lissajous curve cases here. In the first case, we let a = 1,
b = 2, and � = 0	03, which yields a relationship between X and Y on a Lissajous
curve (see Fig. 1, Case 1) with some noise added. We collapse the generated X

and Y on 5× 5 contingency tables and carry out independence tests based on the
contingency tables. In this case, exact tests are used where the p-value of the tests
are approximated based on 500 simulated tables. For significance level � = 0	05, the
empirical power plots of three tests are presented in Fig. 4. The results are based on
10,000 tests for sample sizes n = 50:110:5. We observe that maximal correlation test
is more powerful in this example.

In the second Lissajous curve case, we set a = 5, b = 6 (see Fig. 1, Case 2),
� = 0	03, and we consider 16× 16 contingency tables. The empirical power plots
of three tests at significance level � = 0	05 are presented in Fig. 5. The results are
based on 10,000 tests for sample sizes n = 200:300:10. The maximal correlation test
is more powerful in this example, and the difference is larger compared to the first
case.
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Maximal Correlation Test of Independence 2239

Figure 4. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.3, Case 1. Significance level � = 0	05.

Motivated by Example 6.3, we investigated other cases for which the underlying
continuous distributions are uncorrelated but dependent, and we present two of
them here.

Example 6.4. Let U ∼ N�0� 1� and V = �U �. One can show that the dependent
variables U and V are uncorrelated. In this example we consider the variables U and
V with some noise added. As in the previous examples, we collapse the observations

Figure 5. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.3, Case 2. Significance level � = 0	05.
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2240 Yenigün et al.

Figure 6. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.4. Significance level � = 0	05.

into contingency tables and perform independence tests based on the contingency
tables. We performed empirical power comparisons for several cases and we report
the following case.

Let U ∼ N�0� 1�, e1 ∼ N�0� �2� and e2 ∼ N�0� �2�, where � = 0	8. Let X = U +
e1 and Y = �U � + e2. The variables X and Y are generated, and then they are
collapsed into 6× 6 contingency tables. The empirical power plots of all three tests
at significance level 0.05 is presented in Fig. 6. The results are based on 10,000

Figure 7. Empirical power of Pearson chi-square �P�, likelihood ratio �L�, and maximal
correlation �M� tests of independence for Example 6.5. Significance level � = 0	05.
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Maximal Correlation Test of Independence 2241

tests for sample sizes n = 50:400:25. Empirical study shows that, likelihood ratio
test is more powerful for sample sizes up to 180. For larger sample sizes, maximal
correlation test is more powerful.

Example 6.5. In this example, we consider another case for which the underlying
continuous variables are dependent but not correlated. Let U ∼ U�−1� 1� and V =
U 2. One can show that the dependent variables U and V are uncorrelated. Consider
the variables U and V with some noise added. We collapse the observations into
contingency tables and perform independence tests based on the contingency tables.
We performed empirical power comparisons for several cases and we report the
following case.

Let U ∼ U�−1� 1�, e1 ∼ N�0� �2� and e2 ∼ N�0� �2�, where �2 = 0	3. Let X =
U + e1 and Y = U 2 + e2. The variables X and Y are generated, and then they are
collapsed into 4× 4 contingency tables. Figure 7 presents the empirical power plots
of all three tests at significance level 0.05. The results are based on 10,000 tests for
sample sizes n = 100:40:25. Similar to Example 6.4, empirical study shows that the
likelihood ratio test is more powerful for sample sizes up to 250. For larger sample
sizes, maximal correlation test is slightly more powerful.

7. Conclusions

Being a dependence measure with several desirable properties, maximal correlation
has been studied by many authors in the statistical literature. In this article, we
discussed how maximal correlation can be computed for two-way contingency
tables, and we constructed an independence test based on maximal correlation.
Given a two-way contingency table, the maximal correlation between the row
and column variables has a compact form. Moreover, under independence, the
asymptotic distribution of the maximal correlation test statistic has been tabulated
since it is related with the distribution of extreme eigenvalues of a Wishart matrix.

We carried out a simulation study to see the empirical power performance of the
maximal correlation test and compare it with Pearson chi-squared and likelihood
ratio tests of independence. The simulation study consists of several cases with
different dependence structures between the row and column variables. When we
considered contingency tables generated from loglinear models, we observed that
maximal correlation test is comparable to the other two tests. A major advantage
of maximal correlation is that, unlike correlation, it vanishes if and only if the
variables are independent. When we generated contingency tables such that the
underlying continuous variables are uncorrelated but dependent, our simulation
results pointed out some cases for which the maximal correlation test appears to
be more powerful. A natural extension of this work is the application to higher
dimensional contingency tables, and we will consider this as a future project.
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