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Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic
materials exploit the biomineralization process to form functional organic—inorganic hybrid nanostructures. In this
work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles
into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and
titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD,
FT-IR, UV—vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were
exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate
precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can
yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials
developed in this work have vast potential in the fields of catalysis and electronic materials.

Introduction

Self-assembled amyloid-like peptides' have emerged as a unique
class of materials with potential applications as templates for
nanotube’ and nanowire™* growth, 1-D nanostructure organiza-
tion,” micromechanical system components,6 and interconnects for
nanoelectronics.” Amyloid-like peptides provide suitable conditions
for the template-directed mineralization process with their inherent
ability to self-assemble into fibrillar nanostructures.*® These organic—
inorganic hybrid materials are important in the bottom-up synthesis
of 1-D inorganic nanostructures.

Organic materials and polymers are strongly integrated into
modern technology; nevertheless, inorganic materials preserve
their status as basic elements in engineering. However, there is
increasing awareness that the conventional methods of “heat and
beat” have several limitations in fulfilling the requirements of
future advanced materials, in particular, the construction of
complex architectures from the nanoscale to the macroscale; this
knowledge creates a vital need for novel synthesis methods. There
is no doubt that new approaches using conceptually new solu-
tions, such as biomimetic design and self-assembly, should be
developed and used to expand the frontiers of possibility in this
field. The ability of biomimetic materials to organize inorganic
“bricks” into nanoscale, microscale, and macroscale materials has
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great potential in electronics,'!! catalysis,'' sensors,'* molecular
recognition,"> magnetism,'®~"® optics,'® photonics,® and biomed-
ical applications.”!

In this work, we designed and synthesized an amyloid-like
peptide (ALP) and studied the mineralization of preformed
nanofibers composed of ALP molecules for the fabrication of
1-D silica (SiO,) and titania (TiO,) nanostructures. The self-
assembly of peptides was achieved by a specially designed short
peptide sequence, Ac-KFFAAK-Am (Figure 1), that forms
sheetlike hydrogen-bonded structures. Functional groups on side
chains of lysine residues served as nucleation centers for the
successive deposition of inorganic precursor materials. The
transformation of deposited material to target inorganic material
and the removal of organic templates were achieved by a
calcination process at an appropriate temperature. The simple
preparation process of targeted inorganic materials makes the
ALP-templated process very lucrative not only for laboratory-
scale preparation but also for industrial large-scale applications.

Experimental Section

Peptide Synthesis. Fmoc- and Boc-protected amino acids,
MBHA rink amide resin, and HBTU were purchased from
NovaBiochem and ABCR. The other chemicals were purchased
from Fisher, Merck, Alfa Aesar, and Aldrich and were used as
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Figure 1. Ac-KFFAAK-Am, an amyloid-like peptide (ALP) sequence.

received without any purification. Peptides were constructed on
MBHA rink amide resin. Amino acid coupling reactions were
performed with 2 equiv of Fmoc-protected amino acid, 1.95 equiv
of HBTU, and 3 equiv of DIEA for 2 h. The Fmoc protecting
group removal was performed with a 20% piperidine/DMF
solution for 20 min. Cleavage of the peptides from the resin was
carried out with 95:2.5:2.5 TFA/TIS/H,O for 3 h. Excess TFA
was removed by rotary evaporation. The remaining peptide was
triturated with ice-cold diethyl ether, and the resulting white
precipitate was freeze dried. The peptide was characterized by
quadruple-time-of-flight mass spectrometry (Q-TOF MS) (Figure
S1). The mass spectrum shows the corresponding mass of the
peptide; the purity of the peptide was assessed by RP-HPLC and
was found to be more than 95% (Figure S2).

Liquid Chromatography —Mass Spectrometry (LC-MS).
One milligram of the ALP was added to 1 mL of doubly distilled
H,O and sonicated for 15 min. LC/MS measurements were
performed on an Agilent Technologies 1200/6530 Accurate-Mass
Q-TOF LC/MS. An Agilent Zorbax Extend-C18 column (rapid
resolution HT 2.1 x 50 mm?, 1.8 um) was used with gradients of
water (0.1% formic acid) and acetonitrile (0.1% formic acid).

UV—Vis and Fluorescence. An ALP solution (3.99 x 107*
M) was prepared and added to a 1 cm quartz cuvette. UV
absorbance measurements were performed on a Varian Cary
100 UV—vis spectrophotometer. Fluorescence measurements
were performed on a Varian Cary Eclipse fluorescence spectro-
photometer.

FT-IR. Peptide solutions (1.33 x 10> M) were prepared in
ethanol, methanol, and H,O at pH 5 and 10. Ethanol and
methanol solvents were evaporated in a vacuum oven at 38 °C
and 400 mbar for 12 h and then 20 mbar for 12 h. The samples
prepared in H,O were lyophilized for 2 days. One milligram of the
remaining powder was mixed with 100 mg of KBr to preparing
pellets. A Bruker Tenson 27 FT-IR spectrometer was used for FT-
IR analysis in the range of 400—4000 cm ™.

Circular Dichroism (CD). A 3.99 x 10 M ALP solution
was prepared in different solvents and at different pH values. A
Jasco J-815 CD spectrophotometer was used for CD analysis.

Calcination Process. The ALP nanostructures were miner-
alized by Ti(O-i-Pr), and TEOS separately. Silica samples were
incubated for 1 week at room temperature. Each 100 uL sample
was cast on a steel mesh and dried with a critical-point dryer. The
titania samples were incubated for 1 h. The mineralized samples
were placed in an oven. The oven started to heat up from room
temperature to 350 °C at a heating rate of 7 °C/min. The silica
samples were incubated at 350 °C for 10 min, and the titania
samples were incubated at 450 °C for 10 min.

Scanning Electron Microscopy/Energy-Dispersive X-ray
Analysis (SEM/EDX). An FEI Nova 600i Nanolab scanning
electron microscope with an EDAX energy-dispersive spectrom-
eter was used. Samples calcined on silicon wafers were used for
analysis.

Environmental Scanning Electron Microscopy (E-SEM).
E-SEM experiments were performed with an FEI Quanta 200
FEG. Small amounts of samples (ca. 5 uL) were cast on clean
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silicon wafer. The samples were dried with a critical-point dryer
prior to analysis.

Cryo-SEM. An FEI Quanta 200 FEG with a Peltier stage was
used for cryo-SEM imaging. An ALP sample in water at pH 10
(ca. 30 uL) was taken as a liquid onto the stage and held for
freezing at —20 °C.

Transmission Electron Microscopy (TEM). TEM was
performed with an FEI Tecnai G2 F30. Diluted samples were
placed on a Lacey mesh ultrathin carbon-coated copper grid. A
2% (w/v) uranyl acetate solution was used to stain organic
nanostructures. A diluted sample solution (10 uL) was dropped
on a grid for 1 min. The excess amount was removed by pipetting.
Then, the 2% uranyl acetate solution was placed on a sheet of
parafilm. The grid was placed on the drop upside down for 5 min.
After being stained, the grids were dried in the fume hood at room
temperature overnight. Inorganic samples were formed on steel
meshes by calcination. After calcination, those meshes were put
into 1 mL of ethanol and vigorously sonicated for 5 min to
disperse inorganic samples in the ethanol. Then 2 uL of the
dispersion in ethanol was taken on the TEM grid.

X-ray Diffraction Spectroscopy (XRD). The ALP gel (50
mg) formed in 5 mL of ethanol (1.33 x 10~2 M). Ti(O-i-Pr), was
added as a titania precursor, and the sample was calcined in an
alumina crucible at 450 °C. The XRD measurement was per-
formed on the obtained sample by with a Panalytical X-Pert MPD
Pro multipurpose X-ray diffractometer. The measurement was
performed between 10 and 90° with a step size of 0.0066°.

Thermal Gravimetric Analysis (TGA). A TA Instruments
TGA Q500 was used with a heating rate of 20 °C per min. Peptide
powder (5 mg) was used for TGA analysis.

Polarized Light Microscopy. An Axio Imager Alm optical
microscope was used with two light polarizers. A drop of a 1.33 x
1072 M peptide sample was sealed between two sliders and
characterized with a polarized light microscope.

Oscillatory Rheology. Rheology measurements were per-
formed with an Anton Paar Physica RM301 rheometer operating
with a 25 mm parallel plate configuration at 25 °C. Each sample of
100 élL total volume with a final peptide concentration of 1.33 x
107~ M was carefully loaded onto the center of the lower plate and
left untouched for 15 min before measuring. After equilibration,
the upper plate was lowered to a gap distance of 0.5 mm. Storage
modulus (G') and loss modulus (G”) values were scanned in a
time-dependent manner for 75 min with a constant shear strain of
0.5% at al0 rad/s angular frequency.

Critical-Point Dryer. Samples were dried at the critical point
(1072 psi, 31 °C) with the Tousimis Autosamdri-815 B series C
critical-point dryer.

Results and Discussion

The ALP structure was inspired by amyloid proteins composed
of extended sheetlike peptide secondary structures. The ALP
molecule was designed to form an extended hydrogen-bonded
supramolecular nanostructure. An enhanced stability of the
resulting supramolecular nanostructure was achieved by the
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Figure 2. (a) Photograph of the ALP gel (1.33 x 1072 M in ethanol). (b) SEM image of the ALP gel coated with 3 nm Au/Pd; the scale bar is
10 um. (c, d) TEM images of peptide nanofibers. Scale bars are (c) 0.2 um and (d) 50 nm.

incorporation of amino acid residues that provide a directional
and relatively strong intermolecular interaction, namely, hydro-
gen bonding.?*> A diphenylalanine motif was employed to pro-
mote f-sheet formation™ through 77—z stacking.?* The amine
groups on the side chain of lysine residues were used at both ends
to functionalize the periphery of the nanostructures. Amines were
exploited to seed metal ions around the nanofibers. Also, owing to
their basic properties, they are able to catalyze the nucleation of
the silica precursor around the organic nanostructures.

The solubility of the ALP molecule was tested in various
solvents. A solubility test was performed by adding different
amounts of peptide to solvents, and the concentration of 1 mg of
peptide in 100 uL of solvent turned out to be the minimum
gelation concentration (1.33 x 10> M) for water (at pH 10) and
ethanol because at this concentration the peptide could comple-
tely gel the medium with no residual solvent residing at the top of
the gel. The ALP molecule readily dissolved in methanol and in
water. The initial pH of the aqueous solution was 5. A 1 M NaOH
solution (10 #L) was added to the aqueous solution to raise the pH
for the neutralization of charges on amine groups to promote self-
assembly. Self-supporting gel formation was observed at pH 10.
In addition, the ALP molecule in ethanol also formed a gel after
sonication at room temperature (Figure 2a). The solubility of the
ALP molecule was also tested in hexane, dichloromethane,
acetone, toluene, benzene, tetrahydrofuran, and acetonitrile. The

peptide remained as a white precipitate in these solvents even after
sonication for 30 min and heating up to 50 °C.

Gel formation was investigated by oscillatory rheology mea-
surements (Figure S3). The storage modulus (G') and the loss
modulus (G') were recorded as a function of time. The values of
the storage modulus remained significantly higher than the loss
modulus during the measurement, thus supporting a visual
evaluation of the mixture as a gel. Self-supporting gel formation
was observed for both gels in ethanol (Figure S3a) and in H,O at
pH 10 (Figure S3b). The gel strength increases with time because
of changes in G’ and G' with time related to gel aging and solvent
evaporation.

The ALP gels in ethanol were composed of a 3-D network of
nanostructures as observed by SEM (Figures 2b and S4a—d).
According to TEM images, the diameters of the ALP nanofibers
were about 15 nm and the length was in the micrometer range
(Figures 2c,d and S4e.f). The ALP gel in water at pH 10 also
contained nanofibers with diameters similar to the ones in ethanol
(Figure S4a,b). The gels were also observed by cryo-SEM, and the
gels were composed of a 3-D network of nanofibers, confirming
the structures observed by the critical-point-dried gels (Figure
SSc—e). The gels were also characterized under a polarized
microscope. Figure 3 shows optical micrographs of the gels located
between two crossed visible-light polarizers. A characteristic
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Figure 3. Birefringence effect of self-assembled ALP nanostruc-
tures (a) in ethanol and (b) in H,O at pH 10.

Schlieren texture® of the lyotropic liquid-crystal phase was ob-
served in the ALP gels.”*%’

We investigated UV absorption properties of the ALP in
ethanol, methanol, and H,O at pH 5 and 10. We observed
absorption at around 260 nm (Figure S6a,b) in all solvents, which
is the characteristic absorption band of phenylalanine residues.”® >
The self-assembly process triggered by the pH change from 5
to 10 causes a decrease in molar absorptivity; this observation
is not surprising because the gelation process results in the
formation of nanofibers, which can increase the incident beam
scattering. The orientation of phenyl rings is not less important
because the fiber-formation process inevitably forces phenyla-
lanine residues to end up inside the fiber body, consequently
decreasing the amount of incident radiation being absorbed by
the phenylalanine residues.

The fluorescence emission properties of the ALP molecules
were also investigated. The fluorescence emission of the peptide in
ethanol, methanol, and H,O at pH 5 and 10 observed upon the
excitation of adjacent phenylalanine residues at 260 nm is presen-
ted in Figure S7. Two emisson bands can be observed: one with a
maximum at 283 nm (monomer)*' and an additional red-shifted
emission band centered at 304 nm. Observed double fluorescence
is indicative of excited dimer (excimer) formation due to 7—x
interactions.” ** The peak at 304 nm was assigned to the
excimer. To understand whether excimer formation stems from
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Figure 4. FT-IR spectra of the ALP samples (a) in H,O at pH 10,
(b) in H,O at pH 5, (¢) in ethanol, and (d) in methanol.

intermolecular or intramolecular interactions, some UV—vis and
fluorescence measurements were performed with the addition of
guanidinium chloride, trifluoroethanol, and hexafluoroisopropa-
nol, respectively (Figures S8, S9, and S10). These molecules were
used to completely prevent hydrogen bonding among the peptide
molecules, thus excluding the possibility of intermolecular ex-
cimer formation. Fluorescence measurements of solutions con-
taining the aforementioned additives have shown that excimer
formation is mainly intramolecular. Excimer formation probably
takes place because of the proximity of two phenylalanine
residues. Some difference between the fluorescence spectra of
dissolved peptide at pH 5 and the self-assembled peptide at pH 10
was observed; the former had an attenuated emission peak at 304
nm. The decrease in peak intensity was attributed to the decrease
in the extent of excimer formation. Conformational constraints
dictated by supramolecular organization probably have an effect
on the degree of excimer formation.

FT-IR measurements were performed with dried samples of
the ALP solutions in ethanol, methanol, and water at pH 5 and 10
(Figure 4). An amide-A (associated with the —NH stretching
frequency) band was observable at around 3296 cm ™! in methanol
and in H,O at pH 5, where the ALP was completely dissolved,
which is attributed to the —NH group of the peptides involved in
hydrogen bonding.***® The amide-A band was at around 3325
em” ! in ethanol and in H,O at pH 10, where the ALP molecules
formed a gel because of self-assembly. Also, amide-I (indicating
the existence of C=0 stretching vibrations*”*) generates two
peaks ataround 1687 and 1633 cm ™. The splitting of the peak can
be due to the interactions between repeating peptide units.*® The
amide-I peak of the ALP in ethanol and in H,O at pH 10 was
found at around 1706—1645 cm ™.

Circular dichroism (CD) measurements were performed to
study the effect of peptide secondary structures on nanostructure
formation in varying concentrations and solvents (Figures 5a,b
and S11). The ALP molecules formed a gel in ethanol and in H,O
at pH 10 and were soluble in H,O at pH 5 and methanol. The CD
signals around 235 and 220 nm indicate S-sheet structure in H,O
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Figure 5. CD spectra of the ALP (a) in H,O at pH 10 and 5 and
(b) in methanol and ethanol.

at both pH 10 and 5 (Figures 5a and S11). The typical S-sheet
structure reveals signals at 195 and 216 nm.*** The red-shifted
signals indicate that the predominant secondary structure forming
the nanostructures is a twisted S-sheet.*! The CD spectrum of the
ALP sample in ethanol reveals a higher intensity than in methanol
because of the higher degree of aggregation composed of the twisted
f-sheet secondary structure (Figure 5b). The CD (Figure 5) and
FT-IR (Figure 4) spectra of the ALP samples are indicative of
p-twist and S-turn structures of the self-assembled ALP molecules.

The self-assembled ALP nanostructures were exploited for the
template-directed synthesis of titania and silica nanostructures.
Titanium® isopropoxide [Ti(O-i-Pr),] (5 mol equiv) was used as a
titanium precursor along with the self-assembled ALP nano-
structures in ethanol. The sample was incubated for 1 h at room
temperature, and 100 uL of the sample was cast on a steel mesh
and dried with a critical-point dryer. Ti(O-i-Pr)4-coated and dried
ALP nanostructures were calcined to remove the organic portion
and to produce the anatase form of titania. We performed TGA
under N, and O, atmospheres to determine the optimum tem-
perature for the calcination process (Figure S12). The evapora-
tion of the organic content begins above 300 °C. Thus, all of the
samples were calcined above 300 °C. Titania samples were
calcined at 450 °C to form the anatase phase of titania. After
calcination, the formation of the titania hollow nanotubes was
observed by TEM (Figures 6 and S17) and SEM (Figure S16).
Titanium and oxygen peaks were observed upon SEM/EDX
measurement of the calcined samples on a silicon wafer (Figure
S13). The silicon peak was high because of the utilization of the
silicon wafer. The absence of carbon and nitrogen peaks indicated
that the calcination process was mostly completed (Figure S13).
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Figure 6. TEM images of the calcined titania nanotubes.
Titania nanotubes were also found to be in the anatase phase*>*
by XRD measurements (Figure S15). The Ti(O-i-Pr), precursor
was also processed without the ALP to observe the effect of
template-directed synthesis, and no defined structures were ob-
served without the template (Figure S20).

Silica mineralization was performed by using tetracthyl ortho-
silicate (TEOS) as a precursor. TEOS (2 mol equiv) was used
along with the ALP nanostructures in ethanol. The TEOS-
containing ALP gel was aged for 1 week. Later, the samples were
dried with a critical-point dryer and placed in an oven for
calcination. The sample was calcined at 350 °C for 10 min. The
silica nanostructures after calcination were observed by TEM
(Figures 7 and S19) and SEM (Figure S18). The EDX spectra of
the calcined silica nanostructures did not reveal carbon and
nitrogen signals (Figure S14). In general, silica nucleation from
TEOS occurs in the presence of catalysts.*** The amine groups
of the ALP molecule acted as a base and started the nucleation of
silica on the nanostructures. Therefore, no other catalyst was
needed for silica formation. The TEOS precursor was also
processed without the ALP to observe the effect of template-
directed synthesis, and no defined structures were observed
without the template (Figure S21).

During the formation of the inorganic nanostructures, the
nucleation process is an important mechanism in shape and size
control. We observed that inorganic materials grow on the
organic template with the help of the chemically active groups.
When the concentration of the template is high enough, the
individual organic nanostructures were found to interact and
bundle. Therefore, inorganic material grows on the uncontrolled
organic aggregate as observed by SEM and TEM (Figures 6, S16,
and S18) because of the Ostwald ripening mechanism, which
occurs spontaneously because larger particles are more energeti-
cally favored than smaller ones.**"* During the calcination
process, inorganic nanostructures were found to fuse because of
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Figure 7. TEM images of the silica nanotubes after calcination.

the high temperature used. The fusion process was observed by
SEM (Figures S16 and S18) and TEM (Figures S17 and S19) after
the calcination of both silica and titania nanostructures. The
uncontrolled growth and fusion of nanostructures could
decrease the surface area of the material during calcina-
tion.**** To overcome the fusing of the nanostructures, 3-D
networks were protected by critical-point drying. The nanos-
tructures were isolated from each other before calcination. By
this process, the space between nanofibers was preserved. A
higher yield of individual nanostructures was obtained by
decreasing the time of calcination and preserving the space
between nanofibers.
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Conclusions

Herein, we demonstrated a new bottom-up approach to the
formation of silica and titania nanostructures by mimicking the
biomineralization process with synthetic-peptide-based nano-
structures. The self-assembly process was used to form the
template, and the mineralization process revealed the controlled
formation of inorganic nanostructures. We fabricated silica and
titania nanostructures by using a template-directed bottom-up
synthesis method. These high-aspect-ratio inorganic nanostruc-
tures have vast potential in catalysis and electronic materials.
Dye-sensitized solar cells are an interesting field in which the
titania nanostructures may enhance the efficiency of the energy
conversion by increasing the surface area.’ Silica nanotubes with
high surface areas are especially interesting for use in cata-
lysis.>>*3 Mimicking the natural biomineralization process by
means of this kind of simple and controllable self-assembling
molecules can be an interesting way to produce bulk amounts of
inorganic nanostructures for various industrial and technological
applications.
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