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Abstract
The MST1 serine–threonine kinase, a component of the RASSF1-LATS tumor suppressor network, is involved

in cell proliferation and apoptosis and has been implicated in cancer. However, the physiologic role of MST1 in
prostate cancer (PCa) is not well understood. Here, we investigated the possibility of a biochemical and
functional link between androgen receptor (AR) and MST1 signaling. We showed that MST1 forms a protein
complex with AR and antagonizes AR transcriptional activity as shown by coimmunoprecipitation (co-IP),
promoter reporter analysis, and molecular genetic methods. In vitro kinase and site-specific mutagenesis
approaches indicate that MST1 is a potent AR kinase; however, the kinase activity of MST1 and its proapoptotic
functions were shown not to be involved in inhibition of AR. MST1 was also found in AR–chromatin complexes,
and enforced expression of MST1 reduced the binding of AR to a well-characterized, androgen-responsive region
within the prostate-specific antigen promoter. MST1 suppressed PCa cell growth in vitro and tumor growth in
mice. Because MST1 is also involved in regulating the AKT1 pathway, this kinase may be an important
new link between androgenic and growth factor signaling and a novel therapeutic target in PCa. Cancer Res;
71(12); 4303–13. �2011 AACR.

Introduction

The serine–threonine kinase MST1 or STK4 (mammalian
sterile STE20-like kinase 1), a homolog of Hippo (Hpo/hpo) in
Drosophila, was originally identified as a proapoptotic protein
(1). MST1 is related to 3 paralogs (MST2, MST3, and MST4)
with a conserved structure consisting of N-terminal catalytic
(MST1-N) and C-terminal regulatory (MST1-C) domains and
other functional sites, including caspase cleavage sites and
nuclear export signals (2, 3). MST1 or MST2 can be activated
by autophosphorylation of a unique threonine residue (Thr-
183 in MST1 and Thr-180 in MST2) in the activation loop or by

caspase-3 cleavage in response to a wide range of cell death
stimuli (4).

In addition to their proapoptotic function, MST1 and its
closest paralog MST2 have been shown to play an important
role in mammalian development (5, 6), cell-cycle progression
and tumorigenesis (7–10). For example, hpo deficiency in the
developing Drosophila eye results in massive overgrowth due
to an accelerated rate of proliferation and failure of develop-
mental apoptosis (11–13). Likewise, MST1 or MST2 deficiency
in mice is embryonically lethal (5). Loss or reduction of MST1
and MST2 expression has also been correlated with poor
cancer prognosis (14). Recent genetic studies have indicated
that liver-specific deletion of MST1 and MST2 in mice resulted
in liver enlargement, cancer, and resistance to TNF-a induced
apoptosis (7, 9, 10). Previous studies suggest that cross talk
between androgen receptor (AR) and MST1 signaling may
have important biological consequences in prostate cancer
(PCa; refs. 15, 16). Therefore, we wanted to investigate whether
MST1 functionally intersects with AR signaling and regulates
the growth of PCa cells.

Here, we show that MST1 is a novel negative regulator of AR
signaling. Our data suggest that MST1 attenuates AR activity
via a mechanism that involves protein complex formation
between AR and MST1 in a manner that is independent of its
kinase activity. Furthermore, we provide evidence that
enforced MST1 expression suppressed PCa cell growth, sen-
sitized androgen-independent C4-2 cells to phosphatidylino-
sitol 3-kinase (PI3K) inhibition, and attenuated tumor growth
in vivo. These findings suggest that loss of MST1 signaling may
promote hyperactivation of AR and may be associated with
the emergence of the castration-resistant phenotype.
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Materials and Methods

Plasmid constructions, antibodies, and reagents
The construction of HA- or Myc-tagged MST1-wt and

Myc-MST1-N and Myc-MST1-C forms was described pre-
viously (15). For the construction of Doxycycline(Dox)-indu-
cible HA-MST1 plasmid, PCR-amplified HA-tagged MST1-wt
cDNA was inserted into BamH1 andMluI enzyme sites in the
pRetro-X-Pur vector (Clontech Laboratories, Inc.), desig-
nated as pRXTP-HA-MST1. The construction of glutathione
S-transferase (GST)-AR DBD/HR (AR DNA binding domain
and hinge region) was described previously (17). MST1 and
AR point mutations were generated by using the Quick-
Change site-directed mutagenesis kit (Stratagene). The
orientation and fidelity of all constructs were confirmed
by DNA sequencing. Note that names of antibodies and
reagents and their sources are provided in the Supplemen-
tary Information section.

Cell transfections, reporter assays, and
immunocytochemistry

LNCaP and C4-2 were cultured in RPMI 1640 medium and
HEK 293T, and COS-7 cells were cultured in DMEM at 37�C
in 5% CO2 incubator. Media were supplemented with 10%
FBS and 1% penicillin/streptomycin. RNAi (siRNA) transfec-
tions with Dharma FECT 2 and plasmids transfections with
Lipofectamine 2000 were carried out according to the man-
ufacturer's instructions (Invitrogen). Luciferase reporter
gene activities were measured by using the Luciferase Assay
System from Promega and a BMG Labtech microplate
reader. Immunocytochemistry (IHC) was done as described
previously (15). Relative luciferase units were normalized to
total protein and the result presented as luciferase (Luc)
activity. Cells were imaged at 63� with a Plan-Apochromat
oil immersion lens on an Axioplan 2 Apotome epifluores-
cence microscope (Zeiss). IHC was done by using reagents
from DAKO and images were acquired at 20� with Nikon
Imaging System.

Establishment of TetON-inducible cells
Retroviruses carrying Tet-repressor or HA-MST1 expression

constructs were produced in HEK 293T cells expressing viral
packaging proteins and then viral particles were concentrated
by using PEG-it solution. LNCaP parental cells or its castra-
tion-resistant subline, C4-2, were first infected with retrovirus
encoding pRetroX-TetON advanced plasmid, followed by
selection with Geneticin (G418, 500 mg/mL) to generate the
TetON cells. The LNCaP/ or C4-2/TetON cells were then
infected with retrovirus encoding pRXTP-HA-MST1 vector,
followed by Puromycin selection (3 mg/mL) to generate TetON
inducible MST1 expressing cells. The inducible system allows
fine control of MST1 expression. All protocols and procedures
were done according to the manufacturer's instructions (Clon-
tech Laboratories, Inc.).

Protein analyses
Cell lysis was conducted in buffer consisting of 20 mmol/L

HEPES, pH 7.4, 150 mmol/L NaCl, 0.5% NP-40, 1 mmol/L

EDTA, protease inhibitors, and phosphatase inhibitor. For
immunoprecipitation, cleared lysates were incubated with
antibody overnight at 4�C. Antibody–antigen complexes were
collected on protein A- or G-sepharose and washed 3 times
with cell lysis buffer. Immunoprecipitates were resolved by
SDS-PAGE. PBST (0.1% Tween-20) containing 5% (w/v) skim
milk powder or PBST containing 5% immunoglobulin G (IgG)-
free bovine serum albumin (Sigma) was used in membrane
blocking and antibody dilutions. Signals were visualized by
chemiluminescence. GST-AR DBD/HR and its mutant forms
were expressed in bacteria with IPTG (Isopropyl b-D-1-thio-
galactopyranosid) induction and protein purification was
done with GST-sepharose by using a standard protocol.
Cytoplasmic and nuclear fractions were prepared as described
(18).

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation (ChIP) was done as

described previously (19). Briefly, LNCaP or C4-2/HA-MST1
cells grown in serum-starved conditions were treated with
R1881 (1 nmol/L) or EtOH (vehicle) overnight. Dox(�/þ) used
to induce MST1 expression in C4-2/HA-MST1 cells. DNA
enriched with anti-MST1, anti-AR, or anti–Pol II antibody
were quantified by semiquantitative PCR by using primer sets
surrounding the AREIII region within the androgen-respon-
sive element enhancer (ARE) core (AREc) or AREI of the
prostate-specific antigen (PSA) promoter (18).

Kinase, cell death, and cell proliferation assays
For in vitro kinase assay, the recombinant, preactivated

MST1 protein kinase was incubated with purified GST-AR
DBD/HR fusion protein and 10 mCi 32P-g-ATP or 100 mmol/l
unlabeled-ATP. The reaction mixture was resolved on SDS-
PAGE and autoradiographed. Cell Death ELISA and BrdU
incorporation assays were conducted to assess cell death
and cell proliferation, respectively, according to the man-
ufacturer's instructions (Roche Molecular Diagnostics).

Animal studies
C4-2/Vector or C4-2/HA-MST1 cells mixed withMatrigel (1-

to-1 ratio) were inoculated s.c. in athymic nude mice (CD-1
nu/nu; Charles River Laboratories). A total of 1� 106 cells/100
mL were used per injection per site (right and left flanks). Mice
were treated with Dox (0.5 mg/mL) in drinking water to
induce MST1 expression for 12 weeks. Institutional Animal
Care and Use Committee policies and guidelines were strictly
applied. Tumor volumes were assessed by caliper according to
procedures described previously (20). Mice were sacrificed
and evaluated for tumor growth anatomically and tumor
tissues extracted from mice were fixed in 10% formaldehyde
for the construction of histologic sections or "snap" frozen at
�80�C. The expression of MST1 was verified in histologic
sections by IHC by using anti-HA antibody.

Statistics
Data are represented as mean � SEM. Student t test (2-

tailed) was used between the data pairs in which it is appro-
priate. A P value 0.05 or less was considered significant.
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Results

MST1 binds and attenuates AR activity
To determine whether the MST1 kinase biochemically and

functionally intersects with AR signaling, we employed cellular
and biochemical approaches by using prostate and non-PCa
cell lines that express either native, stable or transient AR.
Coimmunoprecipitation (Co-IP) and Western blot experi-
ments showed that MST1 interacts with endogenous AR in
LNCaP cells (Fig. 1A, top panel) and ectopically expressed
human AR in HEK 293 cells (Fig. 1A, bottom panel). Similarly,
endogenous MST1 could also be found in the AR protein
complex from PC3-hAR cells that were engineered to express
near-physiologic levels of stable His-tagged human AR (18), as
shown by Ni-NTA precipitation andWestern blot experiments
(Supplementary Fig. S1A and B).
To test whether the binding of MST1 has an impact on AR

activity, we conducted AR-dependent promoter reporter
assays (18, 21) by using knockdown and induction approaches.
MST1 knockdown by a gene-specific siRNA (15) resulted in the
upregulation of basal and androgen-stimulated AR-responsive
PSA promoter reporter activation, by at least 2-fold in com-
parison with siRNA control (Fig. 1B, top panel). Enforced
MST1 expression attenuated endogenous AR activity in
LNCaP cells, as shown by the PSA promoter reporter (p61-
Luc) assay (Fig. 1B, bottom panel). Enforced MST1 expression
also attenuated AR-dependent GRE4-driven simple promoter
reporter (pGRE4-TATA-Luc) activation in LNCaP (Fig. 1C, top
panel) and p61-Luc promoter reporter activation in COS-7
(Fig. 1C, bottom panel) cells, in which AR expression was also
enforced. Collectively, these observations indicate that MST1

is a binding partner and a physiologic negative regulator of AR
signaling.

The full-length MST1 is a dominant AR suppressor
Tomap the AR binding domain on MST1, the full-length AR

was coexpressed with vector, MST1-wt or MST1-N (residues
1–330) or MST1-C (residues 331–487) truncation mutants in
COS-7 cells, followed by co-IP and Western blot analysis. The
results showed that the full-length MST1 (MST1-wt) and
MST1-N strongly interacted, whereas MST1-C displayed weak
interaction with exogenous AR (Fig. 2A). The inhibition of AR
activity by MST1-wt, MST1-N, or MST1-C coincided with the
binding data, as revealed by the PSA promoter reporter assay
(Fig. 2B).

To determine which MST1 form (MST1-wt or the cleaved
MST1-N) functions as a dominant AR inhibitor, we gener-
ated caspase-resistant single [D326N ¼ D/N, Asp (D) !Asn
(N) or D349E ¼ D/E, Asp!Glu (E)] and double (D326N/
D349E ¼ DD/NE) MST1 mutants and assessed their effects
on PSA protein levels or luciferase reporter activity mediated
by AR. The results show (Fig. 2C and D) that the expression
of each MST1 mutant is capable of inhibiting endogenous
PSA protein levels and PSA promoter reporter activation
induced by androgen, similar to the levels seen with MST1-
wt. Neither the expression of MST1-wt nor these MST1
mutants affected AR protein levels, unless the cells were
stimulated by androgen (Fig. 2C, AR blot). A similar level of
AR-dependent PSA promoter reporter inactivation by MST1
was also obtained, even in the presence of increasing doses
of a specific caspase inhibitor, Ac-DEVD-CHO (D-CHO;
Supplementary Fig. S2A).

Figure 1. MST1 forms a protein
complex with AR and antagonizes
AR activity. A, co-IP of ectopically
expressed human MST1 and
endogenous AR in LNCaP (top) or
exogenously expressed human
AR in HEK 293 (bottom) cells. Co-
IP and Western blots (WB) were
done with corresponding
antibodies. B, AR-responsive PSA
promoter reporter (p61-Luc)
activity in LNCaP under condition
in whichMST1was knocked down
(top) or enforced (bottom). An
unpaired t test was conducted to
analyze for differences between
treatments. *, P � 0.02. C, AR-
responsive GRE4-Luc in LNCaP
(top) and p61-Luc activity in COS-
7 cells (bottom). Serum-starved
cells were treated with (þ) or
without 1 nmol/L R1881,
androgen analog, *, P � 0.02. All
assays were conducted at 36
hour. Relative luciferase units
presented as luciferase (Luc)
activity after normalization with
total protein. Data are
representative of multiple
experiments.
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We then examined protein complexes between AR and the
caspase-deficient MST1-DD/NE mutant. AR was coexpressed
with vector, MST1-wt, or MST1-DD/NE mutant constructs in
HEK 293 cells. As shown by co-IP/Western blot experiments,
the MST1-DD/NEmutant maintained interaction with AR and
the levels of interaction between AR and MST1-DD/NE were
similar or even greater than that observed with MST1-wt
(Supplementary Fig. S2B). These observations indicate that
the caspase-deficient MST1 is a potent AR inhibitor.

MST1 attenuates AR activity in a Ser650
phosphorylation-independent manner

MST1 is a stress-induced kinase (2), and other stress-
induced kinases such as c-Jun-N-Terminal Protein Kinase 1
(JNK1) or p38 mitogen-activated protein (MAP) kinase have
been proposed to physically interact with and antagonize AR
transcriptional activity by phosphorylating AR at Ser650 (17).
To determine whether purified MST1 can also physically
interact with and phosphorylate AR at this site, we conducted
the GST-pulldown and an in vitro kinase assay by using
recombinant, preactivated MST1, and purified GST-AR-
DBD/HR as a substrate. The results of these experiments
revealed that preactivated, recombinant MST1 physically
interacted with (Fig. 3A) and specifically phosphorylated
the purified GST-AR-DBD/HR fragment in vitro (Fig. 3B, left
panel). Both binding and phosphorylation events occurred in a
dose-dependent manner (Supplementary Fig. S3A and B,
respectively). Using a site-specific phospho-AR antibody, we
were able to identify the Ser650 residue as a target of the MST1
kinase activity, as revealed by nonradioactive in vitro kinase
assay and Western blot experiments (Fig. 3B, right panel).

To determine whether Ser650 phosphorylation has a role in
the attenuation of AR activity by MST1, we generated phos-
phorylation-inactivating (Ser!Ala) or phosphomimetic
(Ser!Glu) mutations and assessed their impact on MST1-
mediated inhibition of AR activity. The data in Figure 3C show
that enforced-MST1 expression is capable of inhibiting AR
transcriptional activity regardless of the presence of phosphor-
ylation-inactivating Ser650A or phosphomimetic Ser650D AR
mutations. Similarly, other site-specific phosphorylation-inac-
tivating mutations did not significantly affect AR inhibition by
MST1 induction (Supplementary Fig. S3C). In addition, phos-
phorylation-inactivating or phosphomimetic mutations did
not alter ligand-dependent nuclear localization of AR in
COS-7 cells expressing exogenous AR (Fig. 3D). Furthermore,
co-IP/Western blot analyses showed that neither type of
mutation affected complex formation between the two pro-
teins (Supplementary Fig. S3D). In addition, with the exception
of the Ser308Amutation, these known phospho-site mutations
do not significantly alter androgen-induced AR transcriptional
activity in COS-7 cells (Supplementary Fig. S4A). These findings
indicate that the phosphorylation of Ser650 by MST1 is not
involved in the mediation of AR inhibition by MST1.

MST1 kinase activity is not required for the inhibition
of AR activity

To determine whether MST1 kinase activity has an effect on
the inhibition of AR transcriptional activity, we generated
kinase-deficient MST1 mutants (MST1-K59R in the ATP bind-
ing pocket andMST1-T183A in the activation loop). Consistent
with published data (3), neither of these MST1 mutants was
able to induce apoptosis in COS-7 or in LNCaP cells, compared
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Figure 2. Caspase cleavage-
deficient MST1 is a potent AR
inhibitor. A, AR binding domains
on MST1. AR with vector (V),
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was transiently coexpressed in
COS-7 cells. Co-IP and WB were
done with antibodies to
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conditions. D, PSA promoter
reporter activity with caspase-
resistant MST1 constructs under
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multiple experiments.
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with MST1-wt (Fig. 4A). However, both mutants were capable
of inhibiting AR-driven PSA promoter activation, similar to the
levels observed with MST1-wt in LNCaP (Fig. 4B) and in its
castration-resistant C4-2 subline (Supplementary Fig. S4B).We
then examined the protein complexes between AR and these
kinase-inactivated MST1 mutants. Mock, MST1-wt, MST1-
K59R, or MST1-T183A constructs were coexpressed with AR
in COS-7 cells and co-IP experiments were done by using total
cell lysates. Western blot analysis with anti-AR antibody
revealed that the kinase-inactivating mutation had no affect
on the formation of the AR and MST1 complex (Fig. 4C). We
also conducted the promoter reporter assay with MST2 and
showed that transient expression of this close structural rela-
tive to MST1 also antagonized the AR transactivation function
in LNCaP cells independently of its kinase activity (Fig. 4D).
These results suggest that both kinases perform a similar
inhibitory role with respect to the AR, and that neither the
kinase activity nor the proapoptotic function ofMST1 orMST2
is involved in the inhibition of AR activity.

MST1 suppresses AR activity by intersecting with AKT1
signaling and antagonizing formation of AR–chromatin
complexes
An implication from the above findings is that additional

mechanisms may be involved in MST1-mediated AR inhibi-

tion. MST1 was reported to inhibit AKT signaling (15), which is
known to functionally intersect with (16, 22) and promote AR-
driven PSA promoter activation (23). To test whether MST1
induction could suppress AR activation mediated by AKT1
signaling, we conducted promoter reporter assays and showed
that enforced MST1 expression antagonized AKT1 mediated
androgen-dependent and -independent AR activation (Fig. 5A,
left panel). Co-IP experiments further revealed that MST1, AR,
and AKT1 form a tri-partite complex in vivo (Fig. 5A, right
panel), indicating that MST1 also intersects with AKT signal-
ing to attenuate AR activity.

Given that MST1 forms protein complexes with AR, we
showed by using co-IP experiments that endogenous AR and
MST1 form a complex preferentially in cell nuclei (Fig. 5B).
These observations led us to investigate whether MST1 loca-
lizes within AR-transcriptional complexes. ChIP experiments
showed that endogenous MST1 interacts with the PSA pro-
moter region, which also binds AR in both serum- and
androgen-free conditions and can be regulated by androgen
in LNCaP cells (Fig. 5C). This segment of the PSA promoter,
referred to as the ARE core, consists of multiple AREs and
plays a prominent role in AR-driven PSA promoter regulation
(18, 21). Additional data suggest that MST1 also binds ARE-I
and the TATA region in the PSA promoter, which can also be
regulated by androgen (Fig. 5D). Taken together, these
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findings suggest that MST1 reduces AR–chromatin complex
formation to attenuate androgenic signals.

MST1 suppresses PCa cell growth in vitro and tumor
growth in vivo

To address the impact of MST1 on cell growth, we
established stable MST1 expressing LNCaP/HA-MST1 or
C4-2/HA-MST1 cells by using a retroviral inducible system.
LNCaP/HA-MST1 or C4-2/HA-MST1 cells were exposed to
increasing doses of Dox. Dose-dependent induction of MST1
expression reduced the growth of LNCaP; however, castration-
resistant LNCaP subline, C4-2, displayed resistance to the
growth suppressive effects of enforced MST1 (Fig. 6A and
B). The observed growth reduction originated from MST1
induction because the administration of the highest dose of
Dox (4 mg/mL), which reduced the growth of LNCaP/HA-
MST1 the most, had no effect on the growth of LNCaP/Vector
cells (Supplementary Fig. S5A). In addition, enforced MST1
expression in C4-2/HA-MST1 cells dramatically reduced the
number and size of C4-2 colonies grown in soft agar (Fig. 6C)
and sensitized C4-2 cells to growth suppression induced by
PI3K inhibitor LY294002 (Fig. 6D). C4-2 cells are relatively
resistant to PI3K inhibitors (24) and less sensitive to the effects
of MST1 compared with parental LNCaP cells (Fig. 6A). As
expected, induction of MST1 prevented the growth of LNCaP

cells regardless of the presence of PI3K inhibitor (Supplemen-
tary Fig. S5B).

To assess the distribution of MST1, we analyzed levels of
exogenous MST1 protein in cytoplasmic and nuclear fractions
obtained from C4-2/HA-MST1 cells. The result revealed that
although the majority of exogenous HA-MST1-wt localized in
the cytoplasm, significant levels of exogenous HA-MST1-wt
protein were also found in the nucleus (Fig. 7A, left panel).
Immunofluorescence experiments confirmed these results
(Supplementary Fig. S5C). Stable MST1 expression was cap-
able of inhibiting AR-driven PSA promoter activation in C4-2/
HA-MST1 cells (Fig. 7A, right panel). ChIP experiments by
using lysates from C4-2/HA-MST1 cells further showed that
loading of MST1 onto the ARE core region of the PSA
promoter diminished the formation of AR–chromatin com-
plexes (Fig. 7B).

To determine the physiologic relevance of our in vitro
findings, we carried out xenograft experiments. C4-2/HA-
MST1 or C4-2/Vector cells were inoculated s.c. into immu-
nodeficient male mice and the animals were then treated with
Dox in the drinking water. Immunohistochemical analyses of
the resultant tumors verified the expression of HA-MST1 in
histologic sections from C4-2/HA-MST1 or C4-2/Vector tumor
xenografts (Fig. 7C, micrograph). Consistent with observations
in vitro, enforced MST1 expression suppressed the growth by
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35-fold and the tumorigenic rates by 4-fold of C4-2/HA-MST1
cells compared with C4-2/Vector counterparts (Fig. 7C, graph
and tumor mass image).

Discussion

In this study, we show that the serine–threonine kinase
MST1 is a physiologic negative regulator of AR signaling. We
provide evidence that MST1 forms protein complexes in vitro
and in vivowith AR and antagonizes AR activity inmultiple cell
backgrounds. Although both the full-length MST1 and the
cleaved MST1-N forms bound and inhibited AR activity,
caspase-resistant MST1 was the most potent AR inhibitor.
We found that the kinase activity of MST1 was not required
for the attenuation of AR activity. Similarly, the proapoptotic
function of MST1 is not involved in AR inhibition because
kinase deficient MST1, which failed to induce cell death, was
capable of interacting with AR and inhibiting AR transcrip-
tional activity. Furthermore, promoter reporter and ChIP
experiments revealed that enforced MST1 antagonized AKT-
mediated AR activation and reduced binding of AR to its
cognate DNA binding site. On the basis of these observations,

we propose thatMST1 antagonizes AR-dependent gene expres-
sion by forming inhibitory protein and/or transcriptional com-
plexes with AR, thereby suppressing prostate tumor growth.

Posttranslational modifications, such as phosphorylation
(17), palmitoylation (25), ubiquitination (26), acetylation
(27), or SUMOylation (28) play important roles in the reg-
ulation of AR activity. Several phosphorylation sites at serine
residues and a tyrosine residue have been identified in AR
(29, 30). These modifications negatively or positively regu-
late AR activity in a context-dependent manner (24), and
their functional significance in PCa is beginning to emerge
(31). For example, the phosphorylation of AR at Tyr-534 by c-
Src was shown to enhance AR activation and AR-dependent
gene expression, which was shown to be correlated with
hormone-refractory PCa (30). On the other hand, phosphor-
ylation of AR at Ser650 by JNK1 or p38 MAP kinase was
shown to inhibit AR activity (17). Here, we showed that
MST1 is an AR kinase and phosphorylates AR at Ser650
(Fig. 3C). However, phosphorylation of Ser650 by MST1 had
no effect on the observed inhibition of AR-transcriptional
activity. Nevertheless, the role of phospho-Ser650 on
mechanisms of AR action deserves further investigation,
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given that phosphorylation-inactivating Ser650A or phos-
phomimetic Ser650DARmutations are able to alter the cellular
distribution of AR in comparison to that observed with AR-wt
under androgen-free conditions (Fig. 3D). Our data do not rule
out the possibility that the existence of other potential MST1
phosphorylation sites might play a role in the inhibition of AR
activity by MST1. In addition, the induction of MST1 was
shown to activate JNK1 (32), which is known to inhibit AR
(17). We did not observe JNK1 activation in response to MST1
induction in LNCaP, unless cells were treated with phorbol
ester (Supplementary Fig. S2C). This indicates that MST1
attenuates AR signaling by a distinct mechanism apart from
JNK or p38 MAP kinase activation.

In addition to posttranslational modifications, transcrip-
tional coregulators (i.e., corepressors or coactivators) play
an essential role in the modulation of AR activity, and their
altered expression has been shown in prostate tumor pro-
gression (33). For example, the recruitment of nuclear
corepressor (N-CoR) (34) or silencing mediator for thyroid
and retinoid receptors (35) into the AR transcriptional
complex was shown to antagonize AR activity by a mechan-
ism involving protein–protein interaction. Similarly, displa-

cement of coactivators such as p300 from the holo-AR
transcriptional complex, or recruitment to the complex of
histone deacetylase, which modifies chromatin structure to
a transcriptionally inactive form (36), have also been shown
to attenuate AR activity (35). Given that MST1 attenuates AR
activity by forming protein complexes, the localization of
MST1 into the holo-AR transcriptional complex could also
attenuate the AR. Our data in Figures 5C, D and 7B support
this conclusion; however, comprehensive studies are needed
to elucidate precisely how MST1 alters AR–chromatin
complexes.

MST1 and its downstream effectors, such as WW45 or
LATS1/2, have been implicated in cancer, including PCa
(37). For example, the liver specific knockout of MST1/2
expression in mice has been associated with hepatocellular
carcinoma, which has been linked to the activation of YAP (7,
9, 10), and YAP is normally attenuated by the MST–LATS
signaling network (10). The loss or reduced expression of
LATS2 was reported in PCa and this was shown to be
associated with hyperactivation of AR and upregulation of
AR-dependent gene expression (38), with protein products
known to promote PCa cell survival and inhibit apoptosis. In
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addition, mice lacking WW45 expression displayed hyperpla-
sia in several organ sites (39). Here, we found that the
induction of MST1 expression is sufficient to antagonize
AR-driven gene expression and suppress PCa cell growth.
Moreover, we found that the growth suppressive effects of
MST1 significantly declined in castration-resistant C4-2 cells
in comparison with the effects of MST1 in castration-sensitive
LNCaP parental cells, though both cell models expressed
similar levels of MST1 protein. MST1 was identified as a
negative regulatory component of PI3K-AKT signaling, and
reduced MST1 expression was shown to correlate with PCa
progression to the hormone-refractory metastatic state, which
coincides with AKT activation (15). Our data are consistent
with this observation and indicate that the induction of MST1
expression sensitized C4-2 cells to growth suppression
induced by PI3K inhibition. Our findings raise the possibility
that deregulated-MST function may be associated with the
emergence of the castration-resistant disease phenotype. The
use of MST1/2 knockout mouse models will address the
hypothesis of whether one or both of these kinases have a
direct role in prostate carcinogenesis and emergence of
castration-resistance.
PCa is the most commonly diagnosed cancer among men

and the second leading cause of cancer death in Western
countires (40, 41). Evidence indicates that cooperative AR

and PI3K/AKT-mTOR pathway signaling is critical to human
prostate tumor development and progression to the meta-
static phenotype (42–44). On the basis of published studies
(15, 16) and our present findings, we propose a model
(Fig. 7D) in which MST1/2 attenuates AR-dependent gene
expression by interacting with the AR, which may lead to the
alterations of the AR protein and/or transcriptional com-
plexes, as well as by targeting upstream of the AR signal. An
important implication from these observations is that dereg-
ulation of MST1 may account for the upregulation of AR and
AKT signaling regulating cell survival. Therefore, disruption
of the AR-AKT oncogenic network by MST1/2 alone and/or
in combination with chemotherapeutic agents that target
AR and PI3K/AKT-mTOR may have important therapeutic
implications.
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