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a b s t r a c t

In this study, we consider the stochastic capacitated lot sizing problem with controllable processing
times where processing times can be reduced in return for extra compression cost. We assume that the
compression cost function is a convex function as it may reflect increasing marginal costs of larger
reductions and may be more appropriate when the resource life, energy consumption or carbon
emission are taken into consideration. We consider this problem under static uncertainty strategy and α
service level constraints. We first introduce a nonlinear mixed integer programming formulation of the
problem, and use the recent advances in second order cone programming to strengthen it and then solve
by a commercial solver. Our computational experiments show that taking the processing times as
constant may lead to more costly production plans, and the value of controllable processing times
becomes more evident for a stochastic environment with a limited capacity. Moreover, we observe that
controllable processing times increase the solution flexibility and provide a better solution in most of the
problem instances, although the largest improvements are obtained when setup costs are high and the
system has medium sized capacities.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the lot sizing problemwith controllable
processing times where demand follows a stochastic process and
processing times of jobs can be controlled in return for extra cost
(compression cost). Processing time of a job can be controlled (and
reduced) by changing the machine speed, allocating extra manpower,
subcontracting, overloading, consuming additional money or energy.
Although these options are available in many real life production and
inventory systems, in the traditional studies on the lot sizing problem,
processing times of jobs are assumed as constant.

Since the seminal paper of Wagner and Whitin [40], the lot
sizing problem and its extensions have been studied widely in the
literature (see [13,23] for a detailed review on the variants of the lot
sizing problem). In the classical lot sizing problem, it is assumed
that the demand of each period is known with certainty although
this is not the case for most of the production and inventory
systems and approximating the demand precisely may be very
difficult. In the stochastic lot sizing problem, this assumption is
relaxed but the probability distribution of the demand is assumed
as known.

As reducing processing time of a job is equivalent to increasing
production capacity, subcontracting, overloading or capacity acquisition

can be seen as special cases of the controllable processing times. There
are studies in the literature that consider the lot sizing problem with
subcontracting (or outsourcing) [3,10,18] or capacity acquisition (or
expansion) [1,17,22]. However, in all these studies costs of these
options are assumed as linear or concave. This assumption makes it
possible to extend the classical extreme point or optimal solution pro-
perties for these cases. In our study, we assume that the compression
cost is a convex function of the compression amount.

Controllable processing times are well studied in the context of
scheduling. Earlier studies on this subject assume linear compression
costs as adding nonlinear terms to the objective (total cost) function
may make the problem more difficult [14]. However, as it is stated in
recent studies, reducing processing times gets harder (and more
expensive) as the compression amount increases in many applica-
tions [14,2]. For example, by increasing machine speed, processing
times can be reduced, but this also decreases life of the tool and an
additional tooling cost is incurred. Moreover, increasing the machine
speed may also increase the energy consumption of the facility.
Another example is a transportation system in which trucks may be
overloaded or their speeds could be increased in return for extra cost
due to increasing fuel consumption or limiting the carbon emission.
Thus, considering a convex compression cost function is realistic
since a convex function represents increasing marginal costs and
may limit higher usage of the resource due to environmental issues.

In our study, we consider the following convex compression cost
function for period t: γtðktÞ ¼ κtðktÞa=b where kt40 is the total
compression amount in period t, κtZ0 and aZb40, a; bAZþ .
Note that, for a4b and κt40, γt is strictly convex. This function can
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represent increasing marginal cost of compressing processing times
in larger amounts. Moreover, this function can be related to a
(convex) resource consumption function [25,28]. Suppose that one
additional unit of the resource costs κt and for compressing the
processing time by kt units, additional k

a=b
t units of resource should

be allocated. Thus, in this context, compression cost represents
resource consumption cost and the resource may be a continuous
nonrenewable resource such as energy, fuel or catalyzer. With the
recent advances in convex programming techniques, many com-
mercial solvers (like IBM ILOG CPLEX) can now solve second-order
cone programs (SOCP). In this study, we make use of this technique
and formulate the problem as SOCP so that it can be solved by a
commercial solver.

The contributions of this paper are threefold:

� To the best of our knowledge, this is the first study that considers
the stochastic lot sizing problem with controllable processing
times. Although this option is applicable to many real life systems,
the processing times are assumed as constant in the existing
literature on lot sizing problems.

� The inclusion of a nonlinear compression cost function com-
plicates the problem formulation significantly. Therefore, we
utilize the recent advances in second-order cone programming
to alleviate this difficulty, so that the proposed conic formula-
tions could be solved by a commercial solver in a reasonable
computation time instead of relying on a heuristic approach.

� Since assuming fixed processing times unnecessarily limits the
solution flexibility, we conduct an extensive computational experi-
ments to identify the situations where controlling the processing
times improves the overall production cost substantially.

The rest of the paper is organized as follows. In the next section,
we briefly review the related literature. In Section 3, we formulate
the problem and in Section 4, we strengthen the formulation using
the second-order conic strengthening. In Section 5, we present the
results of our computational experiments. We first compare alter-
native conic formulations presented in Section 5, afterwards we
investigate the impact of controllable processing times on produc-
tion costs. In Section 6, conclusions and future research directions
are discussed.

2. Literature review

Here, we first review the studies on stochastic lot sizing problems.
Silver [30] suggests a heuristic solution procedure for solving the
stochastic lot sizing problem. Laserre et al. [16] consider the
stochastic capacitated lot sizing problem with inventory bounds
and chance constraints on inventory. They show that solving this
problem is equivalent to solving a deterministic lot sizing problem.
Bookbinder and Tan [5] study the stochastic uncapacitated lot sizing
problem with α-service level constraints under three different
strategies (static uncertainty, dynamic uncertainty and static-
dynamic uncertainty). Service level α represents the probability that
inventory will not be negative. In other words, it means that with
probability α, the demand of any period will be satisfied on time.
Under the static uncertainty decision rule, which is the strategy that
will be used in our study, all the decisions (production and inventory
decisions) are taken at the beginning of the planning horizon (frozen
schedule). The authors formulate the problem and show that their
model is equivalent to the deterministic problem by showing the
correspondence between the terms of these two formulations.

Service level constraints are mostly used in place of shortage or
backlogging costs in the stochastic lot sizing problems. Since shor-
tages may lead to loss of customer goodwill or delays on the other
parts of the system, it may be hard to estimate the backlogging or

shortage costs in the real life production and inventory systems.
Rather than considering the backlogging cost as a part of the total
cost function, a specified level of service (in terms of availability of
stock) can be assured by service level constraints and when the
desired service level is high, backlogging costs can be omitted. This
situation makes the usage of service level constraints more popular
in the real life systems [5,19,6]. A detailed investigation of different
service level constraints can be found in Chen and Krass [6].

Vargas [38] studies (the uncapacitated version of) the problem
of Bookbinder and Tan [5] but rather than using service level
constraints he assumes that there is a penalty cost for backlogging,
the cost components are time varying and there is a fixed lead
time. He develops a stochastic dynamic programming algorithm,
which is tractable when the demand follows a normal distribution.
Sox [31] studies the uncapacitated lot sizing problemwith random
demand and non-stationary costs. He assumes that the distribu-
tion of demand is known for each period and considers the static-
uncertainty model, but uses penalty costs instead of service level
constraints. He formulates the problem as an MIP with nonlinear
objective (cost) function and develops an algorithm that resembles
the Wagner–Whitin algorithm.

In the static-dynamic uncertainty strategy of Bookbinder and
Tan [5], the replenishment periods are determined first, and then
replenishment amounts are decided at the beginning of these
periods. They also suggest a heuristic two-stage solution method
for solving this problem. Tarím and Kingsman [32] consider the
same problem and formulate it as MIP. Moreover, Özen et al. [20]
develop a non-polynomial dynamic programming algorithm to
solve the same problem. Recently, Tunç et al. [36] reformulate the
problem as MIP by using alternative decision variables and Rossi
et al. [24] propose an MIP formulation based on the piecewise
linear approximation of the total cost function, for different vari-
ants of this problem.

In the dynamic uncertainty strategy, production decision for
any period is made at the beginning of that period. Dynamic and
static-dynamic strategies are criticized due to the system nervous-
ness they cause; supply chain coordination may be problematic
under these strategies since the production decision for each
period is not known until the beginning of the period [34,35].

There are studies in the literature, in which instead of α service
level, fill rate criterion (β service level) is used. Fill rate can be defined
as the proportion of demand that is filled from available stock on
hand. Thus, this measure also includes information about the back-
ordering size. Tempelmeier [33] proposed a heuristic approach to
solve the multi-item capacitated stochastic lot-sizing problem under
fill rate constraint. Helber et al. [10] consider the multi-item stochastic
capacitated lot sizing problem under a new service level measure,
called as δ-service-level. This service level reflects both the size of the
backorders and waiting time of the customers and can be defined as
the expected percentage of the maximum possible demand-weighted
waiting time that a customer is protected against. The authors assume
that the cost components are time invariant and there is an overtime
choice with linear costs for each period. They develop a nonlinear
model and approximate it by two different linear models.

There are also studies in the literature that consider the lot sizing
problemwith production rate decisions [41] or with quadratic quality
loss functions [12]. However, they consider the problem under an
infinite horizon assumption.

Another topic related to our study is controllable processing
times, which is well studied in the context of scheduling. One of the
earliest studies on scheduling with controllable processing times is
conducted by Vickson [39]. Kayan and Aktürk [14] and Aktürk et al.
[2] consider a CNC machine scheduling problem with controllable
processing times and convex compression costs. Jansen and Mas-
trolilli [11] develop approximation schemes, Gürel et al. [9] use an
anticipative approach to form an initial solution, Türkcan et al. [37]
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use a linear relaxation based algorithm for the scheduling problem
with controllable processing times. Shabtay and Kaspi [25], Shabtay
and Kaspi [26] and Shabtay and Steiner [28] study the scheduling
problemwith convex resource consumption functions. The reader is
referred to Shabtay and Steiner [27] for a detailed review on
scheduling with controllable processing times.

In this study, we will consider the static uncertainty strategy of
Bookbinder and Tan [5]. Formulations given in this paper are
similar to theirs; but there are two major differences. First, our
system is capacitated and note that even the capacitated determi-
nistic lot sizing problem with varying capacities is NP-Hard.
Second, we will assume that the processing times are controllable
and compression cost is a convex function. In the next section, a
formal definition of the problem and formulations will be given.

3. Problem definition and formulations

We consider the stochastic capacitated lot sizing problem with
service level constraints and controllable processing times. We
assume that the demand of each period is independent from each
other and normally distributed with mean μt and standard devia-
tion σt for period t ¼ 1;…; T , where T is the length of the planning
horizon. We denote the demand of period t by dt. We allow
backlogging but assume that all the shortages are satisfied as soon
as a supply is available. We restrict this case by using α service level
constraints, where α corresponds to the probability of no stock out
in a period. We assume that the resource is capacitated and capacity
of period t in terms of time units is indicated by Ct. Processing time
of an item is pt time units, but we can reduce (compress) it in return
for extra cost (compression cost). The processing time of an item
can be reduced by at most ut ðoptÞ time units. We assume that all
the production decisions are made at the beginning of the planning
horizon. The problem is to find a production plan that satisfies the
minimum service level constraints and minimizes the total produc-
tion, compression and inventory costs.

Let xt be the production amount in period t, yt¼1 if there is a
setup in period t and 0 otherwise, and st be the inventory on hand
at the end of period t. We define γt : Rþ-Rþ as the compression
cost function and kt as the total compression amount (reduction in
processing time) in period t. We assume that γt is a convex function.
Let qt, ct, and ht be the setup, unit production and inventory holding
costs for period t, respectively. The problem can be formulated as
the following:

LS�I min ∑
T

t ¼ 1
ðqtytþctxtþhtE½maxfst ;0g�þγtðktÞÞ ð1Þ

s:t: st ¼ ∑
t

i ¼ 1
xi� ∑

t

i ¼ 1
di; t ¼ 1;…; T ; ð2Þ

PrfstZ0gZα; t ¼ 1;…; T ; ð3Þ

ptxt�ktrCtyt ; t ¼ 1;…; T ; ð4Þ

ktrutxt ; t ¼ 1;…; T ; ð5Þ

xt ; ktZ0; t ¼ 1;…; T ; ð6Þ

ytAf0;1g; t ¼ 1;…; T : ð7Þ
In constraints (2), inventory at the end of each period is

expressed. Note that we assume that the initial inventory is zero.
If this is not the case, we can easily add s0 to the right hand side of
constraint (2). The probability expressed in constraint (3) is the
probability that no stock-out occurs in period t and this should be
greater than or equal to α. Constraint (4) is the capacity constraint:
if xt units are produced in period t, ptxt time units are necessary for

production without any compression, but if this is larger than the
capacity Ct, then we need to reduce the processing times by
kt ¼ Ct�ptxt in total. Since processing time of a unit cannot be
reduced more than ut time units and xt units are produced in
period t, total compression amount kt should be less than or equal
to utxt , and this is ensured by (5).

In our problem, since dt is a random variable (with known
distribution), st is also a random variable. Therefore, from constraint
(2), expected inventory at the end of each period can be obtained as
E½st � ¼∑t

i ¼ 1xi�∑t
i ¼ 1E½di�, t ¼ 1;…; T .

Let Gd1t be the cumulative probability distribution of the cumu-
lative demand up to period t, which is denoted by d1t ¼∑t

i ¼ 1di.
Since demand of each period is independent from each other, d1t is
normally distributed with mean μ1t ¼∑t

i ¼ 1μi and standard devia-

tion σ1t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t

i ¼ 1σ
2
i

q
. Therefore, we can rewrite the α service level

constraint (3) as

PrfstZ0g ¼ Pr ∑
t

i ¼ 1
xiZ ∑

t

i ¼ 1
di

( )
¼ Gd1t ∑

t

i ¼ 1
xi

 !
Zα

3 ∑
t

i ¼ 1
xiZG�1

d1t ðαÞ

3 ∑
t

i ¼ 1
xiZZασ1tþμ1t ; ð8Þ

since the inverse cumulative probability of d1t is G�1
d1t ¼ Zασ1tþμ1t

where Zα represents the α-quantile of the standard normal distribu-
tion [5]. Note that inequality (8) is similar to demand satisfaction

constraint of the classical lot sizing problem. Let d̂1 ¼ Zασ11þμ1 and

d̂t ¼ Zαðσ1t�σ1ðt�1ÞÞþμt for t ¼ 2;…; T be the new demand para-
meters and suppose ŝ denotes the new stock variables. Then, (8) can
be expressed as

ŝt�1þxt ¼ d̂tþ ŝt ; t ¼ 1;…; T ð9Þ

ŝ0 ¼ 0 ð10Þ

ŝtZ0; t ¼ 1;…; T : ð11Þ
Finally, as we assume that α is sufficiently large and shortages

are fulfilled as soon as a supply is available, we can approximate the
expected total inventory cost as done in Bookbinder and Tan [5]

∑
T

t ¼ 1
htðE½maxfst ;0g�Þ � ∑

T

t ¼ 1
ht ∑

t

i ¼ 1
xi� ∑

t

i ¼ 1
E½di�

 !

¼ ∑
T

t ¼ 1
htxt�htμ1t ;

where ht ¼∑T
j ¼ thj. Let ct ¼ ctþht , then we can remove the original

inventory variables st from the formulation LS-I and rewrite the
objective function (1) as

∑
T

t ¼ 1
ðqtytþctxtþγtðktÞÞ: ð12Þ

Now consider the capacitated deterministic lot sizing problem.
An interval ½j; l� is called a regeneration interval if the initial
inventory of period j and the final inventory of period l are zero,
and final inventory of any period between j and l is positive. Period
iA ½j; l� is called a fractional period if i is a production period but the
production amount is not at full capacity level. It is known that
when the production and inventory holding cost functions are
concave, the lot sizing problem has an optimal solution that is
composed of consecutive regeneration intervals and in each of
these intervals there exists at most one fractional period. Most of
the dynamic programming algorithms developed for variations of
the lot sizing problem use variations of this property. The reader is
referred to Pochet and Wolsey [21] for more details. As it can be
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observed from the following example, this property does not hold
for our problem as our production cost function is not concave.

Example 3.1. Consider the following problem instance: T¼3,
qt¼100, ct¼0, ht¼1, κt ¼ 0:25, Ct¼20, pt¼1, ut¼0.5 for t ¼ 1;…; T ,
a=b¼ 2 and d̂ ¼ ð10;20;10Þ. Optimal solution to the problem is
xn ¼ ð18;22;0Þ, sn ¼ ð8;10;0Þ and kn ¼ ð0;2;0Þ with total cost 219.
This solution is composed of one regeneration interval ½1;3� and
both the production periods in this interval are fractional if the
capacity is assumed as 20/(1�0.5)¼40. Thus, the regeneration
interval property of the classical lot sizing problem does not hold
for this problem.

Note that the total production and compression cost function for
each period has two breakpoints Ĉ t ¼ Ct=pt and Ct ¼ Ct=ðpt�utÞ.
The first segment ½0; Ĉ t � corresponds to the regular production cost
and the second segment ½Ĉ t ;Ct � corresponds to the cost of produc-
tion with compression. If Ĉ t are time dependent then the problem is
NP-Hard, since the classical lot sizing problem with arbitrary
capacities is a special case of our problem (the case with ut¼0 for
all t). If Ĉ t ¼ C1 and Ct ¼ C2 for t ¼ 1;…; T , and a=b¼ 1, then the
problem is a lot sizing problem with piecewise linear production
costs and it can be solved in polynomial time [15]. When a=b41, as
the compression cost function is convex and there exist setup costs, it
is unlikely to find a polynomial time algorithm for solving the
problem since even the uncapacitated lot sizing problemwith convex
production cost functions and unit setup costs is NP-Hard [8].
Besides, if the compression cost function is piecewise linear and
convex, then the total production cost function is also piecewise
linear and any formulation for the piecewise linear functions (multi-
ple choice, incremental, convex combination (see, e.g., [7]) or the
(pseudo-polynomial time) algorithm of Shaw and Wagelmans [29]
can be used. Moreover, as it is stated above, if the breakpoints of the
total production cost function is time invariant and the number of
breakpoints is fixed, then the problem is polynomially solvable due
to the dynamic programming algorithm of Koca et al. [15].

4. Reformulations

Now we need to examine the compression cost function γtð:Þ.
There is not much done on this class of lot sizing problems with
convex production cost functions, since most of the optimality
properties are not valid for this particular case as demonstrated in
Example 3.1. Still, as it is shown in this section, the problem we
study has some nice structure that we could use to strengthen the
formulation.

Assume that compression cost function for period t is given by
γtðktÞ ¼ κtk

a=b
t where kt40 is the total compression amount in

period t, κtZ0 and aZb40, a; bAZþ (kt ¼maxf0; ptxt�Ctg). In
order to formulate this case, as done in Aktürk et al. [2], we
introduce auxiliary variables rt, add the following inequalities:

ka=bt rrt ; t ¼ 1;…; T ; ð13Þ
and replace γtðktÞ with κtrt in the objective function (12). As b40,
we can rewrite (13) as

kat rrbt ; t ¼ 1;…; T :

Therefore, we could reformulate the problem as follows:

LS�II min ∑
T

t ¼ 1
ðqtytþctxtþκtrtÞ

s:t: ŝt�1þxt ¼ d̂tþ ŝt ; t ¼ 1;…; T ;

ptxt�ktrCtyt ; t ¼ 1;…; T ;

ktrutxt ; t ¼ 1;…; T ;

kat rrbt ; t ¼ 1;…; T ;

ŝ0 ¼ 0;

xt ; kt ; rt ; ŝtZ0; t ¼ 1;…; T ;

ytAf0;1g; t ¼ 1;…; T : ð14Þ
Moreover, as it is done in Aktürk et al. [2], we can strengthen

inequality (14) as

kat rrbt y
a�b
t ; t ¼ 1;…; T : ð15Þ

Note that if there is no production in period t, then yt¼0 and there
will be no need for compression; thus, kt¼0. On the other hand, if
yt¼1, then inequality (15) reduces to (14).

We will refer to the strengthened version of LS-II (the set of
constraints (14) is replaced with the set of constraints (15)) as LS-III.
Now we will show that this strengthening gives the convex hull of
the set

S¼ fðx; k; r; yÞAR3
þ � f0;1g : ka=brr; krux; px�krCyg;

where the subscripts are dropped for the ease of presentation. Set S
can be seen as a single period relaxation that involves only the
production, setup and compression variables associated with a
given period. Our hope is that having a strong formulation for set
S may be useful in solving the overall problem. The computational
results presented in the next section show that this strengthening is
indeed useful.

Let

S0 ¼ fðx; k; r; yÞAR4
þ : karrbya�b; krux; px�krCy; 0ryr1g:

Proposition 4.1. S0 is the convex hull of S, i.e., convðSÞ ¼ S0.

Proof. First, we will show that convðSÞDS0. Consider (ðx1; k1; r1;
y1Þ, ðx2; k2; r2; y2Þ AS. Note that if y1 ¼ y2, then convex combination
of these points is in SDS0. Thus, suppose that y1 ¼ 0 (and
consequently, x1 ¼ k1 ¼ 0) and y2 ¼ 1. Consider the convex combi-
nation of these points:

ðx; k; r; yÞ ¼ ð1�λÞð0;0; r1;0Þþλðx2; k2; r2;1Þ
¼ ðλx2; λk2; ð1�λÞr1þλr2; λÞ

for λA ½0;1�. Note that 0ry¼ λr1, px�k¼ λðpx2�k2ÞrλC ¼ Cy,
and k¼ λk2rλux2 ¼ ux. Finally,

ka ¼ ðλk2Þa ¼ λbka2λ
a�b ¼ ðð1�λÞ0þλka=b2 Þbλa�b

r ðð1�λÞr1þλr2Þbλa�b ¼ rbya�b:

Thus, ðx; k; r; yÞAS0.
Now, we will show that S0DconvðSÞ. Consider ðx; k; r; yÞAS0. Note

that, if yAf0;1g, then ðx; k; r; yÞASDconvðSÞ. Thus, assume that
0oyo1. Then, ðx; k; r; yÞ can be expressed as a convex combination
of ð0;0;0;0ÞAS and ðx=y; k=y; r=y;1Þ with coefficients 1�λ and
λ¼ yAð0;1Þ, respectively. As ðx; k; r; yÞAS0, pðx=yÞ�k=yrC, k=yr
uðx=yÞ, and

karrbya�b ) ka=brrya=b�1 ) k
y

� �a=b

r r
y
:

Consequently, ðx=y; k=y; r=y;1ÞAS and ðx; k; r; yÞAconvðSÞ. □

Now, we will reformulate constraint (15) using conic quadratic
inequalities. As given in BenTal and Nemirovski [4], for a positive
integer l, and ε, π1;…;π2l Z0

ε2
l rπ1;…;π2l ; ð16Þ

can be represented by using Oð2lÞ variables and Oð2lÞ hyperbolic
inequalities of the form

v2rw1w2 ð17Þ
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where v;w1;w2Z0. Moreover, inequality (17) is conic quadratic
representable�����
����� 2v

w1�w2

 !�����
�����rw1þw2: ð18Þ

Using these results, one can show that for given t, aZb40 and
a; bAZþ , inequality (15) can be represented by Oðlog 2ðaÞÞ variables
and conic quadratic constraints of the form (18) [2]. Note that if we
fix yt¼1, then we obtain (14), thus these constraints are also conic
quadratic representable. We will refer to the conic quadratic
formulations of LS-II and LS-III as CLS-II and CLS-III, respectively.

In CLS-II and CLS-III, for each period t, inequalities (14) and (15)
are replaced with their conic quadratic representations. Therefore,
these formulations are quadratically constrained MIP's (MIQCP)
with linear objective functions that can be solved by fast algo-
rithms of commercial MIQCP solvers like IBM ILOG CPLEX. In the
next example, we illustrate the generation of conic quadratic
constraints.

Example 4.1. Our compression cost for period t is given by
γtðktÞ ¼ κtk

a=b
t . We first introduce auxiliary variable rt, add inequal-

ity ka=bt rrt to the formulation and replace γtðktÞ by κtrt in the
objective function. Suppose that a¼5 and b¼2. Then, for period t,
we have inequality k5=2t rrt , which can be rewritten as k5t rr2t . By
strengthening the latter inequality, we obtain k5t rr2t y

3
t and it is

equivalent to

k8t rr2t y
3
t k

3
t : ð19Þ

This inequality can be expressed with the following four inequal-
ities where three new nonnegative auxiliary variables w1t ;w2t ;

w3tZ0 are introduced:

w2
1trrtyt ;

w2
2trytkt ;

w2
3trw2tkt ;

k2t rw1tw3t :

Fig. 1 illustrates the generation of these inequalities.
These constraints can be represented by the following conic

quadratic inequalities:

4w2
1tþðrt�ytÞ2r ðrtþytÞ2;

4w2
2tþðyt�ktÞ2r ðytþktÞ2;

4w2
3tþðw2t�ktÞ2r ðw2tþktÞ2;

4k2t þðw1t�w3tÞ2r ðw1tþw3tÞ2:
Consequently, for a given period t, each inequality (19) is repre-
sented by four conic quadratic inequalities and additional three
nonnegative variables w1t ;w2t ;w3tZ0. These inequalities can be
easily input to a MIQCP solver.

5. Computational experiments

In this section, first we will test the effect of strengthening (14)
by performing a computational experiment for comparing formula-
tions CLS-II and CLS-III. Then, we will investigate the effect of
controllable processing times in terms of cost reduction by compar-
ing optimal costs of the system with and without controllable
processing times. In our computational experiments, we consider
quadratic and cubic compression cost functions γtðktÞ ¼ κtk

2
t and

γtðktÞ ¼ κtk
3
t . We implement all the formulations in IBM ILOG CPLEX

12.5 and perform the experiments on a 2.4 GHz Intel Core i7
Machine with 16 GB memory running Windows 8.

5.1. Comparison of formulations

In the first part of our study, we consider the data sets for T¼50
periods and with time invariant parameters. Therefore, we delete the
subscript t from the parameters. We assume that unit inventory
holding cost (h) is 1, unit production cost (c) is 0, capacity of a period
in terms of time units (C) is 300, production time without any
compression (p) is 1, maximum possible compression amount (u) for
a unit is 30% of the processing time and coefficient of variation
(hereafter CV) is 10%. We determine the rest of the parameters
according to the following values: αAf0:95;0:98g, q=hAf1750;3500;
7000g, κ=hAf0:10;0:30g, C=μpAf3;5g and μt �U½0:9μ;1:1μ� for t ¼
1;…; T . We set time limit as 2000 s.

Most of the commercial solvers, such as IBM ILOG CPLEX, can
solve MIP formulations with a quadratic objective function. There-
fore, we also use formulation LS-Q where we keep the quadratic
compression cost function in the objective. We note that LS-Q is
the same as LS-II except that κtrt is replaced by κtk

2
t in the

objective function, constraints (14) and variables rt, for t¼1,…,T,
are removed. We solve LS-Q by CPLEX MIQP. Note that for the
quadratic compression cost function, conic reformulations CLS-II
and CLS-III are equivalent to LS-II and LS-III, respectively. Thus,
performance differences of LS-Q and CLS-II will show the effect of
having quadratic terms in the objective function and in the
constraints. The effect of proposed conic strengthening can be
observed by comparing CLS-II and CLS-III.

Results of this experiment are given in Tables 1 and 4. In these
tables, the percentage gap between the continuous relaxation at
the root node and the optimal solution (rgap) (root gap, hereafter)
and the number of branch-and-bound nodes explored are
reported. If the solver is terminated due to the time limit, final
gap is given under the column (gap), otherwise solution time is
reported (cpu).

Results of this experiment for quadratic compression cost
function are given in Table 1. This table clearly indicates that
CLS-III outperforms CLS-II both in terms of root gap and solution
time. Note that the root gap of CLS-II is twice as large as of the one
of CLS-III for some instances. Moreover, all the instances are solved
to optimality in less than 800 s by CLS-III (average solution time is
about 200 s) whereas CLS-II stops with positive gap due to time
limit for 10 out of 24 instances. When we examine the results of
LS-Q, an interesting result is obtained: it can solve an instance
within 2 s, whereas for another one it stops with 1% optimality gap
due to time limit. Moreover, LS-Q solves 10 instances in less time
than CLS-III, but its solution time seems not so stable. It solves an
instance which is solved by CLS-III in about 300 s in only 4 s. On
the other hand, another instance that is solved by CLS-III in less
than 40 s is solved by LS-Q in about 2000 s. When we investigate
the instances in detail, we observe that when setup cost increases
and capacities become tighter, solution time of LS-Q increases.
These results may be related to root gaps and sizes of the
formulations. Note that root gap of CLS-II and LS-Q are the same
and root gap of CLS-III is better for all of the instances. In Table 2,Fig. 1. Illustration of generation of conic quadratic inequalities.

E. Koca et al. / Omega 53 (2015) 1–10 5



we report the number of variables and constraints of the formula-
tions for quadratic and cubic compression functions. Note that for
the quadratic case, LS-Q has the smallest number of constraints
and variables and CLS-II and CLS-III have the same number of
variables and constraints. What can be observed form these results
is the following. Although the number of variables and constraints
is increased for conic quadratic reformulation in CLS-II compared
to LS-Q, as gaps on the root nodes are the same for both the
formulations, LS-Q performs better than CLS-II. On the other hand,
root gap of CLS-III is improved at the expense of increasing model
size. Therefore, for relatively easier instances, smaller formulation,
as in LS-Q, may perform better whereas for the harder ones the
formulation with smaller root gaps, as in CLS-III, may be better.

For the cubic compression cost function, we need to add all the
conic inequalities. Hyperbolic inequalities, used in the conic refor-
mulations, can be seen in Table 3. Note that the first inequalities used
are the same for both the formulations and the second inequality
used in CLS-III implies the one used in CLS-II. For the cubic
compression cost function, we also consider another strengthened
formulation, in which rather than using inequalities k3t rrty2t (given
by (15) for a¼3, b¼1), we use inequalities k3t rrtyt , for t ¼ 1;…; T .
This formulation and its conic reformulation will be referred as LS-IV
and CLS-IV, respectively. Inequalities used for CLS-IV are also given in
Table 3. Note that more variables and hyperbolic inequalities are used
for CLS-IV, and the inequalities are different from the inequalities
used in CLS-II and CLS-III.

According to the results for cubic compression cost function,
given in Table 4, conic strengthening again improves the root gap of
CLS-II. However, for this case improvement is not as good as for the
quadratic case: for the quadratic compression cost function average
root gap reduction is about 4% (40%, relatively), but for the cubic
compression cost function it is about 1% (20%, relatively). Although
root gap for CLS-III is the best, the performance of CLS-IV could be
viewed as better since it solves all the instances within the time
limit and its average solution time is about 120 s. The difference
between CLS-II and CLS-III is not clear for this case: 18 out of 24
instances are solved by both the formulations, and 13 of them are
solved in less time by CLS-III. There is one instance that is solved by

CLS-II but not by CLS-III, but three of the instances that cannot be
solved by CLS-II are solved by CLS-III. Moreover, if we investigate
the results in more detail, we can observe that CLS-III mostly
performs better than CLS-II in harder instances (with large setup
costs and tighter capacities). The number of variables and con-
straints for these formulations is also given in Table 2. Note that the
number of variables and constraints of CLS-IV are larger than the
ones for CLS-II and CLS-III, and the latter two formulations have
equal number of variables and constraints. Although the size of CLS-
IV is larger, the root gap of this formulation is not the best. On the
other hand, this formulation performs better in terms of solution
times. This situation may be caused by the different types of conic
inequalities added to this formulation (Table 2).

Overall, we observed that conic strengthening improves root
gaps. This improvement is more definite for the quadratic

Table 1
Effect of strengthening – quadratic compression cost.

Parameters LS-Q CLS-II CLS-III

α q κ C
μp

rgap cpu (gap) Node # rgap cpu (gap) Node # rgap cpu (gap) Node #

0.98 1750 10 3 5.43 96 2,359,855 5.43 (0.11) 23,100,921 3.7 473 5,787,570
5 9.35 36 847,454 9.35 331 5,375,748 6.55 71 978,035

30 3 3.93 4 102,059 3.93 473 6,561,712 3.37 289 2,974,113
5 7.43 11 274,120 7.43 166 1,827,603 6.3 95 1,438,351

3500 10 3 8.27 (0.1) 30,941,006 8.27 (1.57) 13,608,874 3.97 514 4,071,992
5 11.54 46 1,036,294 11.54 194 2,570,270 6.42 10 127,100

30 3 5.49 170 4,091,687 5.49 (0.46) 17,685,610 3.52 434 3,874,277
5 9.7 37 870,979 9.7 216 2,405,941 5.9 30 355,178

7000 10 3 9.04 1885 26,624,840 9.04 (1.61) 16,855,483 3.27 21 246,465
5 12.23 29 663,867 12.23 109 1,146,528 5.82 5 55,868

30 3 8.87 (0.96) 36,503,808 8.87 (2.38) 10,696,593 3.04 635 4,206,533
5 12.82 87 1,742,690 12.82 217 2,522,865 4.86 8 111,879

0.95 1750 10 3 5.59 76 1,914,746 5.59 (0.11) 17,113,480 3.8 573 6,126,573
5 9.34 28 643,479 9.34 291 3,729,740 6.52 67 867,485

30 3 3.91 3 82,141 3.91 700 9,037,474 3.34 187 2,046,082
5 7.45 9 240,922 7.45 130 1,467,783 6.32 81 1,016,680

3500 10 3 8.17 1954 31,230,960 8.17 (0.92) 15,831,461 3.87 287 2,426,309
5 11.82 54 1,175,641 11.82 191 2,418,919 6.66 14 163,615

30 3 5.32 140 3,276,211 5.32 1965 13,261,271 3.36 233 2,195,079
5 9.54 27 630,580 9.54 105 1,584,731 5.71 25 301,468

7000 10 3 9.12 1951 28,910,438 9.12 (1.39) 18,760,285 3.34 31 369,543
5 12.25 34 736,537 12.25 99 1,178,800 5.84 2 27,418

30 3 8.96 (1.02) 39,450,904 8.96 (2.25) 10,807,958 3.04 663 5,630,375
5 12.92 137 2,942,472 12.92 467 4,241,231 4.99 19 231,237

Table 2
Number of variables and constraint of the formulations.

a=b # of LS-Q CLS-II CLS-III CLS-IV

Variables 4T 5T 5T –

2 Linear constraints 3T 3T 3T –

Quadratic constraints – T T –

Variables – 6T 6T 7T
3 Linear constraints – 3T 3T 3T

Quadratic constraints – 2T 2T 3T

-: Not applicable.

Table 3
Hyperbolic inequalities for cubic compression cost function.

CLS-II CLS-III CLS-IV

w2
t rrtkt w2

t rrtkt w2
t rrtyt

k2t rwt k2t rwtyt v2t rkt
wtZ0 wtZ0 k2t rwtvt

wt ; vtZ0
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compression cost function, since CLS-III outperforms CLS-II for this
case. But for the cubic compression cost function, CLS-IV, in which
more conic inequalities are used, outperforms CLS-III, for our
instances. In summary, by utilizing second-order cone program-
ming, we could solve the relatively practical sizes of stochastic
capacitated lot sizing problem with a nonlinear compression cost
function in a reasonable computation time instead of relying on a
heuristic approach.

5.2. Effect of controllable processing times

Controlling the capacity of the system can be a beneficial tool to
hedge against demand uncertainty. For this purpose, in this section,
we report the results of several experiments to show the benefits of
controlling processing times under different uncertainty/cost/capa-
city settings. In order to achieve this, we will compare the optimal
costs for the problem with and without controllable processing
times, which will be called as LS-C and LS, respectively, and report
the cost reduction. In this part, we again assume that all the
parameters are time invariant, and the compression cost function
is quadratic or cubic. We consider instances with T¼20, h¼1, c¼0,
C¼300 and p¼1. The rest of the parameters is generated according
to the ratios given in Table 5. We consider different capacity and
demand scenarios by considering different C=μp and β values. For
example, for β¼ 0:5, and C=μp¼ 5, mean demand of period t is
generated as μt � U½30;90� since μ¼ 60 for this setting. Thus, when
β is smaller, mean demand of each period becomes close to each
other and when it increases it is possible to have fluctuating mean
demand. We also consider different demand variability levels by
considering different coefficient of variation settings. Note that
according to Table 5, there are 972 different parameter settings
for both quadratic and cubic compression cost functions. Moreover,
we generated five replications for each setting, thus we generated
4860 randomly generated problem instances for both the functions.
We summarize the results of this experiment in Tables 6–9. As all
the instances are solved to optimality in less than one second, we
do not report solution times in this section. In order to see the effect
of controllable processing times under different scenarios, we

report the improvements for different combinations of parameters.
In these tables, the value on the first row of each cell represents the
average percentage cost reduction (Δ) for given parameter settings,
and the maximum percentage cost reduction (Δmax) obtained over
all instances with this setting is given in the second row.

5.2.1. Effect of setup costs
We obtain an overall 6.54% average cost improvement for the

quadratic compression cost function. Table 6 gives the percentage
improvements for different service level α, setup cost q, coefficient
of variation CV and capacity values. We first observe that Δ
increases as set up cost increases. While the set up cost increases,
compressing the processing times and reducing the number of
production periods becomes more valuable. Whenwe examine the
difference between the number of production periods for LS and
LS-C, we see that the average reduction in the number of produc-
tion periods is about 0.45, 0.63 and 0.73 for q¼1750, 3500, 7000,
respectively. For these setup cost values, average percentage cost
reduction is 1.48 , 6.15 and 11.99, respectively, and Δmax may be as
high as 30% when setup cost is high.

When we investigate the results in detail, we observe that all the
improvements are not due to reduction in the number of production
periods. In about 688 (out of 4860) instances, though the number of

Table 4
Effect of strengthening – cubic compression cost.

Parameters CLS-II CLS-III CLS-IV

α q κ C
μp

rgap cpu (gap) Node # rgap cpu (gap) Node # rgap cpu (gap) Node #

0.98 1750 10 3 3.91 838 5,078,538 3.56 1341 6,749,843 3.69 33 121,618
5 7.09 225 2,250,718 6.42 329 2,445,704 6.62 111 681,670

30 3 3.86 765 4,589,460 3.66 (0.01) 9,577,594 3.73 31 125,007
5 7.17 550 4,163,002 6.78 575 4,485,975 6.9 195 876,346

3500 10 3 4.13 1305 7,609,046 3.3 815 3,392,463 3.6 159 396,016
5 7.6 285 2,424,222 6.01 157 1,400,172 6.49 50 222,179

30 3 3.65 785 4,396,585 3.17 416 3,148,587 3.34 18 56,223
5 6.67 84 463,807 5.72 78 486,854 6.01 28 137,715

7000 10 3 4.43 (0.73) 6,272,523 2.67 525 2,301,886 3.3 137 378,028
5 8.15 126 968,464 4.61 52 354,709 5.66 29 93,946

30 3 3.62 (0.19) 7,861,026 2.6 770 4,104,475 2.97 23 69,675
5 6.43 67 571,358 4.37 26 178,464 4.99 28 138,135

0.95 1750 10 3 4.01 1105 6,042,570 3.66 884 5,961,144 3.79 46 140,596
5 7.49 650 4,722,629 6.83 484 4,625,674 7.03 192 897,207

30 3 3.96 (0.26) 7,772,856 3.76 (0.55) 16,234,025 3.83 43 191,853
5 7.21 573 4,411,070 6.82 523 3,540,305 6.94 173 878,045

3500 10 3 4.03 1425 6,803,350 3.21 331 1,813,792 3.5 43 109,090
5 7.66 181 1,403,050 6.06 253 1,429,436 6.54 59 281,301

30 3 3.52 476 2,942,293 3.04 282 1,702,281 3.21 36 102,870
5 6.83 70 546,947 5.9 121 774,107 6.18 44 179,112

7000 10 3 4.92 2000 7,669,462 3.11 (0.14) 8,461,099 3.75 1231 2,744,415
5 8.37 254 1,837,744 4.82 110 873,418 5.87 96 373,115

30 3 3.86 (0.84) 6,647,400 2.82 918 4,570,382 3.19 183 569,582
5 6.42 54 382,068 4.38 31 160,493 5 20 87,244

Table 5
Experimental design factors and their settings.

Factor Explanation # of levels Factor settings

1 2 3

α Service level 2 0.95 0.99
q Setup cost 3 1750 3500 7000
κ Compression cost coefficient 3 0.01 0.5 1
C=ðμpÞ Avg. capacity tightness 3 5 10 20
u Max. possible compression (%) 3 10 30 50
β μt �U½ð1�βÞμ; ð1þβÞμ� 2 0.1 0.5 –

CV Coeff. of variation (%) 3 10 30 50
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production periods is the same for LS and LS-C, cost reduction is
obtained by compressing the processing times and reducing the total
inventory holding cost. However, since setup cost is the dominant
one among the other cost terms, the average improvement for these
instances is about 0.16% (maximum is 1.77%).

5.2.2. Effect of capacity and demand parameters
Parameters α, CV and C=μp affect the difference between

capacity and modified demand d̂. Since we assume that the

capacity C and the unit processing time p are constant, C=μp
increases only when the mean demand μ decreases. Thus, capacity
compared to the modified demand increases with C=μp. When the
service level α increases, Zα and consequently, the modified
demand parameter d̂ increases. Similarly, when CV increases σ
increases and again, d̂ increases. Thus, for larger α or CV values it is
possible to have tighter capacities relative to the demand. Note
that when capacities are large enough to satisfy the demand,
which is possible when α and CV are smaller and C=μp is larger,
compressing the processing times may not be a preferred option.
For example, controllable processing times have no advantage if
the system is uncapacitated. On the other hand, when capacities
are tight which is possible for larger α and CV values and smaller
C=μp, even though the processing times are compressed, it may
not be possible to obtain a better solution or the improvement
may be small relative to the total cost. Note that in this case, more
compression should be done in order to reduce the number of
production periods and as compression cost is convex, compres-
sion may not be beneficial anymore. Therefore, controllable
processing times are more beneficial when capacities are medium
sized relative to the modified demand.

Results given in Table 6 confirm the observations explained
above. For example, for C=μp¼ 5 or 10, Δ is maximum when
CV¼10 and if C=μp is increased to 20, Δ is larger for CV¼30.

α and the coefficient of variation have the same effect on the
modified demand, but according to Table 6, Δ is more affected by
the changes in the coefficient of variation. Note that the changes in
CV affect the modified demand in larger amounts and this is the
reason of larger changes of Δ with respect to CV.

When we investigate the results in more detail, we observe that as
the capacity increases, the total cost of LS decreases, in general.
Therefore, even though the cost reduction due to controllable proces-
sing times is the same for different capacity settings, as Δ indicates the
percentage cost improvement, Δ may be higher for larger capacity
settings. An example of this situation is observed for CV¼10 and
C=μp¼ 5 or 10.

To sum up, according to Table 6, we can conclude that
controllable processing times are more beneficial when setup
costs are high and the difference between the capacities and the
modified demand is medium sized.

Table 6
Service level vs. setup cost vs. capacity vs. CV (quadratic).

C=μp α Setup cost

1750 3500 7000

CV CV CV

10 30 50 Avg. 10 30 50 Avg. 10 30 50 Avg.

5 0.99 2.41 1.6 2.15 2.05 6.44 4.07 4.86 5.12 10.89 7.34 8.18 8.8
6.63 7.18 7.41 15.64 17.43 17.38 24.18 28.75 28.62

0.95 2.96 1.52 1.5 1.99 6.99 4.02 3.74 4.92 11.39 8.09 6.6 8.69
6.95 6.61 6.99 15.95 15.62 16.91 24.43 24.16 28.29

Avg. 2.69 1.56 1.83 2.03 6.72 4.05 4.3 5.02 11.14 7.72 7.39 8.75

10 0.99 2.62 1.08 0.62 1.44 8.78 3.77 2.34 4.96 15.62 8.64 4.54 9.6
5.69 5.87 4.79 13.47 13.43 12.29 20.62 20.5 19.53

0.95 3.22 1.73 0.89 1.95 9.83 6.69 3.23 6.58 17.2 14.08 7.26 12.85
5.83 6.3 5.59 13.62 13.9 13.13 20.75 20.9 20.25

Avg. 2.92 1.41 0.76 1.7 9.31 5.23 2.79 5.78 16.41 11.36 5.9 11.22

20 0.99 0.42 1.02 0.26 0.57 4.5 11.36 3.95 6.6 8.41 23.47 12 14.63
3.94 4.96 3.65 17.53 18.18 16.7 29.58 29.95 28.7

0.95 0.59 1.47 0.64 0.9 4.76 12.74 8.68 8.73 8.59 24.06 19.45 17.37
4.14 3.84 4.63 17.77 17.65 17.79 29.78 29.77 29.62

Avg. 0.51 1.25 0.45 0.74 4.63 12.05 6.32 7.67 8.5 23.77 15.73 16

Avg. 2.04 1.4 1.01 1.48 6.88 7.11 4.47 6.15 12.02 14.28 9.67 11.99

Table 7
Setup cost vs. κ (quadratic).

q κ Avg.

0.01 0.5 1

1750 2.92 0.9 0.62 1.48
7.41 5.81 5.78

3500 9.73 4.96 3.77 6.15
18.18 17.52 17.3

7000 16.27 10.8 8.89 11.99
29.95 29.65 29.54

Avg. 9.64 5.55 4.43 6.54

Table 8
Capacity vs. mean demand variability vs. max. possible compression (quadratic).

C
μp

β

10 50

u u

10 30 50 Avg. 10 30 50 Avg.

5 3.66 6.08 7.18 5.64 3.08 5.15 6.43 4.89
12.98 24.43 28.62 13.1 23.75 28.75

10 5.47 8.07 8.07 7.2 3.35 6.16 6.26 5.26
20.75 20.75 20.75 20.9 20.9 20.9

20 6.39 8.7 8.7 7.93 5.91 9.54 9.54 8.33
29.77 29.77 29.77 29.95 29.95 29.95

Avg. 5.17 7.62 7.98 6.92 4.11 6.95 7.41 6.16
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5.2.3. Other parameters
Table 7 shows the percentage improvements for setup cost and

compression cost coefficient κ. When κ increases, as it is expected,
the compression cost increases and consequently, the cost reduc-
tion that can be obtained by compressing the processing times
decreases. But note that when setup cost increases, it is more
beneficial to compress the processing times, even with larger κ,
and it is possible to have a reduction of 29%.

In Table 8, the percentage improvements for different capacity
levels, maximum possible compression amounts (u) and mean
demand scenarios are given. As expected, if u increases, the cost
difference between LS and LS-C, and consequently, Δ may increase.
If capacities are large enough, larger u values may not change the
optimal production plan. Note that Δ and Δmax are the same for
different u values when capacities are large enough. Moreover,
average cost and number of production periods differences are the
same for these settings. On the other hand, when capacity is tighter,
increasing the maximum possible compression amount increases
the improvement.

According to Table 8, the effect of β on Δ is relatively small.
More improvement is observed when capacities are looser and
mean demand fluctuates more or capacities are tighter and mean
demand is stable. When we examine the results in detail, we
obtain that when capacity is large enough and mean demand is
stable, without reducing processing times an optimal production
plan can be observed. Moreover, we note that in none of the test
instances with C=μp¼ 20, CV¼10 and β¼ 0:1, a cost reduction is
observed. But this setting is an extreme case as capacity is large
enough and with only one production period all the necessary
demand is produced.

5.2.4. Cubic compression cost function
In Table 9, results for the cubic compression cost function are

given. In this table, we report the percentage improvements for
different service level α, setup cost q, coefficient of variation CV and
capacity values. The average improvement is 3.03%. When the
compression cost function is changed from quadratic to cubic, Δ
decreases since compression becomes more expensive (when
ktZ1). Although the average improvement decreases, behavior of

Δ is very similar to one of the quadratic cases. Note that for some
settings Δmax may be as high as the one for quadratic compression
cost function, but also for some parameter combinations it may be
zero. As similar results are obtained for this case, we do not report
the impact of other problem parameters in detail.

As a result of our computational experiments, we can say that
taking processing times as constant increases system costs and
even with small compressions it is possible to have less costly
production plans. Although the controllable processing times
provide cost improvements in most of the randomly generated
problem instances, we observe largest improvements when setup
costs are high, compression costs are low and capacities are
medium sized compared to the modified demands.

6. Conclusions

In this study, we consider the stochastic capacitated lot sizing
problem with controllable processing times where compression
cost function is a convex function of the compression amount. To
the best of our knowledge, this problem is not studied before. We
formulate this problem using SOCP, strengthen the formulation
and solve the proposed formulations using a commercial solver.

As a result of our computational experiments, we observe that
conic strengthening performs quite well, and it improves gaps in
the root node. Consequently, we can solve realistic size problems
in a reasonable computation time using an exact approach. More-
over, these formulations maybe further improved by adding new
valid inequalities in a future research.

Although controllable processing times may be applicable to
many real life production and inventory systems, processing times
are assumed as constant in the classical lot sizing problems. In the
second part of our computational experiments, we show that this
assumption causes higher system costs. We observe that control-
lable processing times are more valuable when the system has
medium sized capacities and larger setup costs. By relaxing the
fixed processing time assumption and by utilizing the recent
advances in second-order cone programming, we could decrease
the overall production costs significantly. Although we explore
these results for the static uncertainty strategy under α service

Table 9
Service level vs. setup cost vs. capacity vs. CV (cubic).

C=μp α Setup cost

1750 3500 7000

CV CV CV

10 30 50 Avg. 10 30 50 Avg. 10 30 50 Avg.

5 0.99 0.85 0.56 1.02 0.81 2.53 1.45 2.33 2.1 4.9 3.16 3.79 3.95
4.85 3.92 3.98 8.94 8.12 7.32 12.82 12.35 10.55

0.95 1.59 0.31 0.37 0.76 3.66 1.27 0.77 1.9 6.46 2.76 1.7 3.64
5.08 4.7 3.65 9.14 8.82 7.06 12.97 12.74 11.62

Avg. 1.22 0.44 0.7 0.79 3.1 1.36 1.55 2 5.68 2.96 2.75 3.8

10 0.99 1.26 0.16 0.01 0.48 4.31 0.88 0.03 1.74 9.5 2.63 0.28 4.14
5.68 4.77 0.1 13.46 12.63 0.99 20.61 19.98 12.13

0.95 1.64 0.58 0.1 0.77 6.72 3.16 0.44 3.44 12.69 6.13 1.98 6.93
5.83 6.07 2.93 13.62 13.74 11.19 20.75 20.79 18.99

Avg. 1.45 0.37 0.06 0.63 5.52 2.02 0.24 2.59 11.1 4.38 1.13 5.54

20 0.99 0.17 0.34 0 0.17 2.27 4.33 0.62 2.41 5.67 10.24 3.32 6.41
3.64 4.73 0 17.32 18.02 10.95 29.45 29.85 25.02

0.95 0.22 0.78 0.16 0.39 3.47 7.28 2.92 4.56 6.54 16.37 6.77 9.89
4.06 3.81 3.67 17.71 17.63 17.11 29.75 29.75 29.19

Avg. 0.2 0.56 0.08 0.28 2.87 5.81 1.77 3.48 6.11 13.31 5.05 8.16

Avg. 0.96 0.46 0.28 0.56 3.83 3.06 1.19 2.69 7.63 6.88 2.97 5.83
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level constraints, these results are also applicable to the determi-
nistic lot sizing problem. As a future research direction, it is pos-
sible to consider the same problem under different settings like
considering different uncertainty strategies, joint chance con-
straints or using multistage stochastic programming approach to
deal with different scenarios.
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