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Abstract—In this study, an optimal channel switching strategy
is proposed for average capacity maximization in the presence
of average and peak power constraints. Necessary and sufficient
conditions are derived to determine when the proposed optimal
channel switching strategy can or cannot outperform the optimal
single channel strategy, which performs no channel switching.
Also, it is obtained that the optimal channel switching strategy can
be realized by channel switching between, at most, two different
channels. In addition, a low-complexity optimization problem is
derived to obtain the optimal channel switching strategy. Further-
more, based on some necessary conditions that need to be satisfied
by the optimal channel switching solution, an alternative approach
is proposed for calculating the optimal channel switching strategy.
Numerical examples are provided to exemplify the derived theo-
retical results and to provide intuitive explanations.

Index Terms—Channel switching, capacity, time sharing.

I. INTRODUCTION

IN recent studies in the literature, benefits of time shar-
ing (“randomization”) have been investigated for various

detection and estimation problems [2]–[14]. For instance, in
the context of noise enhanced detection and estimation, addi-
tive “noise” that is realized by time sharing among a certain
number of signal levels can be injected into the input of a
suboptimal detector or estimator for performance improvement
[2]–[6]. Also, error performance of average power constrained
communication systems that operate in non-Gaussian channels
can be improved by stochastic signaling, which involves time
sharing among multiple signal values for each information
symbol [9], [10]. It is shown that an optimal stochastic signal
can be represented by a randomization (time sharing) among
no more than three different signal values under second and
fourth moment constraints [9]. In a different context, jammer
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systems can achieve improved jamming performance via time
sharing among multiple power levels [7], [12], [15]. In [7],
it is shown that a weak jammer should employ on-off time
sharing to maximize the average probability of error for a
receiver that operates in the presence of noise with a symmetric
unimodal density. The optimum power allocation policy for an
average power constrained jammer operating over an arbitrary
additive noise channel is studied in [15], where the aim is
to minimize the detection probability of an instantaneously
and fully adaptive receiver that employs the Neyman-Pearson
criterion. It is proved that the optimum jamming performance is
achieved via time sharing between at most two different power
levels, and a necessary and sufficient condition is derived for
the improvability of the jamming performance via time sharing
of the power compared to a fixed power jamming scheme.

Error performance of some communications systems that
operate over additive time-invariant noise channels can also
be enhanced via time sharing among multiple detectors, which
is called detector randomization [4], [11], [16]–[18]. In this
approach, the receiver employs each detector with a certain
time sharing factor (or, probability), and the transmitter ad-
justs its transmission in coordination with the receiver. In
[4], time sharing between two antipodal signal pairs and the
corresponding maximum a-posteriori probability (MAP) de-
tectors is studied for an average power constrained binary
communication system. Significant performance improvements
can be observed as a result of detector randomization in the
presence of symmetric Gaussian mixture noise over a range
of average power constraint values [4]. In [11], the results in
[4] and [10] are extended to an average power constrained
M -ary communication system that can employ both detector
randomization and stochastic signaling over an additive noise
channel with a known distribution. It is obtained that the joint
optimization of the transmitted signals and the detectors at
the receiver leads to time sharing between at most two MAP
detectors corresponding to two deterministic signal constel-
lations. In [13], the benefits of time sharing among multiple
detectors are investigated for the downlink of a multiuser
communication system and the optimal time sharing strategy is
characterized.

In the presence of multiple channels between a transmit-
ter and a receiver, it may be beneficial to perform channel
switching; that is, to transmit over one channel for a certain
fraction of time, and then switch to another channel for the
next transmission period [7], [19]–[22]. In [7], the channel
switching problem is investigated in the presence of an average
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power constraint for the optimal detection of binary antipodal
signals over a number of channels that are subject to additive
unimodal noise. It is proved that the optimal strategy is either
to communicate over one channel exclusively, or to switch
between two channels with a certain time sharing factor. In
[21], the channel switching problem is studied for M -ary
communications over additive noise channels (with arbitrary
probability distributions) in the presence of time sharing among
multiple signal constellations over each channel. It is shown
that the optimal strategy that minimizes the average probability
of error under an average power constraint corresponds to
one of the following approaches: deterministic signaling (i.e.,
use of one signal constellation) over a single channel; time
sharing between two different signal constellations over a single
channel; or switching (time sharing) between two channels with
deterministic signaling over each channel [21]. With a different
perspective, the concept of channel switching is studied for
cognitive radio systems in the context of opportunistic spectrum
access, where a number of secondary users aim to access
the available frequency bands in the spectrum [23]–[26]. In
[26], the optimal bandwidth allocation is studied for secondary
users in the presence of multiple available primary user bands
and under channel switching constraints, and it is shown that
secondary users switching among discrete channels can achieve
higher capacity than those that switch among consecutive
channels.

In a different but related problem, the capacity of the sum
channel is presented in [27, p. 525]. The sum channel is defined
as a channel whose input and output alphabets are the unions of
those of the original channels; that is, there exist multiple avail-
able channels between the transmitter and the receiver but only
one channel is used at a given time for each possible symbol
in the input alphabet. For example, a sum channel can consist
of two binary memoryless channels, and the first two elements
of the alphabet, say {0,1}, are transmitted over the first channel
whereas the last two elements of the alphabet, say {2,3}, are
transmitted over the second channel. For discrete memoryless
channels with capacities C1, C2, . . . , CK , the capacity of the
sum channel can be obtained as log2(

∑K
i=1 2

Ci) [27]. The
main difference of the sum channel from the channel switching
scenario considered in this study (and those in [7], [21]) is
that the alphabet is divided among different channels and each
channel is used to transmit a certain subset of the alphabet in
the sum channel.

In the literature, optimal resource allocation is commonly
employed to enhance the capacity of communication systems.
In [28], the optimal dynamic resource allocation for fading
broadcast channels is studied for code division, time division,
and frequency division in the presence of perfect channel side
information at the transmitter and the receivers, and ergodic ca-
pacity regions are obtained. In [29], an adaptive resource alloca-
tion procedure is presented for multiuser orthogonal frequency
division multiplexing (MU-OFDM) systems with the consider-
ation of proportional fairness constraints among users. Optimal
and suboptimal algorithms are implemented based on sum
capacity maximization while satisfying the minimum required
data rate constraint for each user. In [30], optimal joint power
and channel allocation strategies are investigated for cognitive

radio systems. A near optimal algorithm is presented for the
total sum capacity maximization of power-limited secondary
users in a centralized cognitive radio network. In [31], capacity
maximizing antenna selection is studied for a multiple-input
multiple-output (MIMO) system and low-complexity antenna
subset selection algorithms are derived. It is shown that near
optimal capacity of a full-complexity system is achieved by
selecting the number of antennas at the receiver to be at least as
large as the number of antennas at the transmitter. In [32], the
optimal antenna selection in correlated channels is analyzed for
both the transmitter and receiver to reduce the number of radio
frequency chains. The proposed algorithm results in a near
optimal capacity which is achieved without antenna selection.

Although the optimal channel switching problem is studied
thoroughly in terms of average probability of error minimiza-
tion (e.g., [7], [21], [22]) and in the context of opportunistic
spectrum access (e.g., [23]–[26]), no studies in the literature
have considered the channel switching problem for maximiza-
tion of data rates by jointly optimizing time sharing (channel
switching) factors and corresponding power levels (please see
[1] for the conference version of this study). In this paper,
the average Shannon capacity is considered as the main met-
ric since it gives the maximum achievable data rates with
low probability of decoding errors. In addition, the data rate
targets indicated by the Shannon capacity are achievable in
practical communication systems through turbo coding or low
density parity check codes [33]. In this study, we formulate
the optimal channel switching problem for average Shannon
capacity maximization over Gaussian channels in the presence
of average and peak power constraints, and derive necessary
and sufficient conditions for the proposed channel switching
approach to achieve a higher average capacity than the optimal
approach without channel switching. In addition, it is obtained
that the optimal solution to the channel switching problem
results in channel switching between at most two different
channels, and an approach is proposed to obtain the optimal
channel switching strategy with low computational complexity.
Numerical examples are presented to illustrate the theoretical
results. The main contributions of this study can be summarized
as follows:

• For the first time, the optimal channel switching problem
is investigated for average capacity maximization in the
presence of multiple Gaussian channels and under average
and peak power constraints.

• It is shown that the optimal channel switching strategy
switches among at most two different channels, and oper-
ates at the average power limit.

• Necessary and sufficient conditions are derived to specify
when performing channel switching can or cannot provide
improvements over the optimal approach without channel
switching.

• Optimality conditions are obtained for the proposed chan-
nel switching strategy, and an approach with low com-
putational complexity is presented for calculating the
parameters of the optimal strategy.

Some of the practical motivations for studying the channel
switching problem for data rate maximization can be
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Fig. 1. Block diagram of a communication system in which transmitter and
receiver can switch among K channels.

summarized as follows: Firstly, the next-generation wireless
communication systems are required to support all IP services
including high-data-rate multimedia traffic, with bit rate targets
as high as 1 Gbit/s for low mobility and 100 Mbit/s for high
mobility [34]. Such high data rate requirements make the
capacity (usually measured by using Shannon capacity met-
ric [35], [36]) maximization problems (subject to appropriate
operating constraints on power and communication reliability)
more relevant for next-generation wireless communication sys-
tems, rather than focusing on power or bit error minimization
(subject to appropriate operating constraints on rate). Secondly,
wireless telecommunication technology is currently on the cusp
of a major transition from the traditional carefully planned
homogenous macro-cell deployment to highly heterogeneous
small cell network architectures. These heterogeneous next
generation network architectures (alternatively called HetNets)
will consist of multiple tiers of irregularly deployed network
elements with diverse range of backhaul connection character-
istics, signal processing capabilities and electromagnetic radio
emission levels. In such a HetNet scenario, it is expected that
more than one radio link such as femto-cell connection, macro-
cell connection and Wi-Fi connection (with different operating
frequency bands, background noise levels and etc.) will be
present to use at each mobile user. From an engineering point
of view, this paper provides some fundamental design insights
regarding how to time share (randomize) among available radio
links to maximize rates of communication for highly heteroge-
nous wireless environments. Finally, channel switching can be
beneficial for secondary users in a cognitive radio system in
which there can exist multiple available frequency bands in the
spectrum (please see the second paragraph of Section II).

The remainder of the paper is organized as follows: The
problem formulation for optimal channel switching is presented
in Section II. Section III investigates the solution of the optimal
channel switching problem and provides various theoretical re-
sults about the characteristics of the optimal channel switching
strategy. In Section IV, numerical examples are presented for
illustrating the theoretical results, which is followed by the
concluding remarks in Section V.

II. PROBLEM FORMULATION

Consider a communication system in which a transmitter and
a receiver are connected via K different channels as illustrated
in Fig. 1. The channels are modeled as additive Gaussian noise
channels with possibly different noise levels and bandwidths. It

is assumed that noise is independent across different channels.
The transmitter and the receiver can switch (time share) among
these K channels to enhance the capacity of the communication
system. A relay at the transmitter controls the access to the
channels in such a way that only one of the channels can
be used for information transmission at any given time. It is
assumed that the transmitter and the receiver are synchronized
and the receiver knows which channel is being utilized [7]. In
practical scenarios, this assumption can hold in the presence
of a communication protocol that notifies the receiver about
the numbers of symbols and the corresponding channels to
be employed during data communications. This notification
information can be sent in the header of a communications
packet [11], [21].

In some communication systems, multiple channels with
various bandwidth and noise characteristics can be available
between a transmitter and a receiver as in Fig. 1. For instance,
in a cognitive radio system, primary users are the main owners
of the spectrum, and secondary users can utilize the frequency
bands of the primary users when they are available [23]–[25],
[37], [38]. In such a case, the available bands in the spectrum
can be considered as the channels in Fig. 1, and the aim of
a secondary user becomes the maximization of its average
capacity by performing optimal channel switching under power
constraints that are related to hardware constraints and/or bat-
tery life. The motivation for using only one channel at a given
time is that the transmitter and the receiver are assumed to have
a single RF chain each due to complexity/cost considerations.
Then, the transmitter-receiver pair can perform time sharing
among different channels (i.e., channel switching) by employ-
ing only one channel at a given time. In a similar fashion, the
proposed system also has a potential to improve data rates in
emerging open-access K-tier heterogeneous wireless networks
by allowing users to switch between multiple access points and
available frequency bands in the spectrum [39], [40].

Let Bi and Ni/2 represent, respectively, the bandwidth
and the constant power spectral density level of the additive
Gaussian noise corresponding to channel i for i ∈ {1, . . . ,K}.
Then, the capacity of channel i is given by

Ci(P ) = Bi log2

(
1 +

P

NiBi

)
bits/sec (1)

where P denotes the average transmit power [41].
The aim of this study is to obtain the optimal channel

switching strategy that maximizes the average capacity of the
communication system in Fig. 1 under average and peak power
constraints. To formulate such a problem, channel switching
(time sharing) factors, denoted by λ1, . . . , λK , are defined first,
where λi is the fraction of time when channel i is used, with
λi ≥ 0 for i = 1, . . . ,K, and

∑K
i=1 λi = 1.1 Then, the optimal

1Channel switching can be implemented in practice by transmitting the first
λ1Ns symbols over channel 1, the next λ2Ns symbols over channel 2, . . .,
and the final λKNs symbols over channel K, where Ns is the total number
of symbols (over which channel statistics do not change), and λ1, λ2, . . . , λK

are the channel switching factors. In this case, suitable channel coding-decoding
algorithms can be employed for each channel to achieve a data rate close to the
Shannon capacity of that channel.
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channel switching problem for average capacity maximization
is proposed as follows:

max
{λi,Pi}Ki=1

K∑
i=1

λi Ci(Pi)

subject to
K∑
i=1

λiPi ≤ Pav

Pi ∈ [0, Ppk], ∀ i ∈ {1, . . . ,K}
K∑
i=1

λi = 1, λi ≥ 0, ∀ i ∈ {1, . . . ,K} (2)

where Ci(Pi) is as defined in (1) with Pi denoting the average
transmit power allocated to channel i, Ppk represents the peak
power limit, and Pav is the average power limit for the trans-
mitter. In practical systems, the average power limit is related to
the power consumption and/or the battery life of the transmitter
whereas the peak power limit specifies the maximum power
level that can be generated by the transmitter circuitry; i.e., it
is mainly a hardware constraint. Since there exists a single RF
unit at the transmitter, the peak power limit is taken to be the
same for each channel. It is assumed that Pav < Ppk holds.
From (2), it is observed that the design of an optimal channel
switching strategy involves the joint optimization of the channel
switching factors and the corresponding power levels under
average and peak power constraints for the purpose of average
capacity maximization.

III. OPTIMAL CHANNEL SWITCHING

In general, it is challenging to find the optimal channel
switching strategy by directly solving the optimization problem
in (2). For this reason, our aim is to obtain a simpler version of
the problem in (2) and to calculate the optimal channel switch-
ing solution in a low-complexity manner. To that end, an alter-
native optimization problem is obtained first. Let {λ∗

i , P
∗
i }Ki=1

denote the optimal channel switching strategy obtained as the
solution of (2) and define C∗ as the corresponding maximum
average capacity; that is, C∗ =

∑K
i=1 λ

∗
i Ci(P

∗
i ). Then, the

following proposition presents an alternative optimization prob-
lem, the solution of which achieves the same maximum average
capacity as (2) does.

Proposition 1: The solution of the following optimization
problem results in the same maximum value that is achieved
by the problem in (2):

max
{νi,Pi}Ki=1

K∑
i=1

νi Cmax(Pi)

subject to
K∑
i=1

νiPi ≤ Pav

Pi ∈ [0, Ppk], ∀ i ∈ {1, . . . ,K}
K∑
i=1

νi = 1, νi ≥ 0, ∀ i ∈ {1, . . . ,K} (3)

where Cmax(P ) is defined as

Cmax(P ) � max{C1(P ), . . . , CK(P )}. (4)

Proof: The proof consists of two steps. Let {ν�i , P �
i }Ki=1

represent the solution of (3) and define C� as the corresponding
maximum average capacity; that is, C� =

∑K
i=1 ν

�
i Cmax(P

�
i ).

First, it can be observed from (2) and (3) that C� ≥ C∗ due to
the definition in (4), where C∗ is the maximum average capacity
obtained from (2). Next, define function g(i) and set Sm as
follows:2

g(i) � arg max
l∈{1,...,K}

Cl(P
�
i ), ∀ i ∈ {1, . . . ,K} (5)

and

Sm�{i ∈ {1, . . . ,K} | g(i)=m}, ∀m∈{1, . . . ,K} . (6)

Then, the following relations can be obtained for C�:

C� =

K∑
i=1

ν�i Cmax(P
�
i ) =

K∑
i=1

ν�i Cg(i)(P
�
i ) (7)

=

K∑
i=1

∑
k∈Si

ν�k Ci(P
�
k ) (8)

≤
K∑
i=1

(∑
k∈Si

ν�k

)
Ci

(∑
k∈Si

ν�kP
�
k∑

k∈Si
ν�k

)

(9)

=
K∑
i=1

λ̄i Ci(P̄i) (10)

where λ̄i and P̄i are defined as

λ̄i �
∑
k∈Si

ν�k and P̄i �
∑

k∈Si
ν�kP

�
k∑

k∈Si
ν�k

· (11)

for i ∈ {1, . . . ,K}. The equalities in (7) and (8) are obtained
from the definitions in (5) and (6), respectively, and the inequal-
ity in (9) follows from Jensen’s inequality due to the concavity
of the capacity function [41], [42]. It is noted from (11), based
on (5) and (6), that λ̄i’s and P̄i’s satisfy the constraints in (2);
that is,

∑K
i=1 λ̄i P̄i ≤ Pav, P̄i ∈ [0, Ppk], ∀ i ∈ {1, . . . ,K},∑K

i=1 λ̄i = 1, and λ̄i ≥ 0, ∀ i ∈ {1, . . . ,K}. Therefore, the
inequality in (7)–(10), namely, C� ≤

∑K
i=1 λ̄i Ci(P̄i), implies

that the optimal solution of (3) cannot achieve a higher average
capacity than that achieved by (2); that is, C� ≤ C∗. Hence, it is
concluded that C� = C∗ since C� ≥ C∗ must also hold as men-
tioned at the beginning of the proof. �

Based on Proposition 1, the maximum average capacity
C∗ achieved by the optimal channel switching problem in
(2) can also be obtained by solving the optimization problem
in (3). Let {ν�i , P �

i }Ki=1 denote the optimal solution of (3).

2In the case of multiple maximizers in (5), any maximizing index can be
chosen for g(i).
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Proposition 1 states that
∑K

i=1 ν
�
i Cmax(P

�
i ) = C∗. In addi-

tion, the optimal channel switching strategy corresponding to
the channel switching problem in (2) can be obtained, based
on the arguments in the proof of Proposition 1, as follows:
Once {ν�i , P �

i }Ki=1 is calculated from (3), the optimal channel
switching strategy can be obtained as {λ∗

i , P
∗
i }Ki=1, where λ∗

i =∑
k∈Si

ν�k and P ∗
i = (

∑
k∈Si

ν�kP
�
k )/(

∑
k∈Si

ν�k) with Si being
given by (6). It should be emphasized that a low-complexity ap-
proach is developed in the remainder of this section for solving
(3); hence, it is useful to obtain the optimal channel switching
strategy corresponding to the channel switching problem in (2)
based on the solution of (3).

The significance of Proposition 1 also lies in the fact that
the alternative optimization problem in (3), which achieves
the same maximum average capacity as the original channel
switching problem in (2), facilitates detailed theoretical investi-
gations of the optimal channel switching strategy, as discussed
in the remainder of this section.

Towards the purpose of characterizing the optimal channel
switching strategy, the following lemma is presented first,
which states that the optimal solutions of (2) and (3) operate
at the average power limit.

Lemma 1: Let {λ∗
i , P

∗
i }Ki=1 and {ν�i , P �

i }Ki=1 denote the solu-
tions of the optimization problems in (2) and (3), respectively.
Then,

∑K
i=1 λ

∗
iP

∗
i = Pav and

∑K
i=1 ν

�
i P

�
i = Pav hold.

Proof: The proof is provided for the optimization prob-
lem in (3) only since the one for (2) can easily be obtained
based on a similar approach (cf. Proposition 1 in [22]). Suppose
that {νi, Pi}Ki=1 is an optimal solution of the problem in (3)
such that

∑K
i=1 νiPi < Pav. Since Pav < Ppk, there exist at

least one Pi that is strictly smaller than Ppk. Let Pl be one
of them. Then, consider an alternative solution {ν ′i, P ′

i}Ki=1,
with ν ′i = νi, ∀ i ∈ {1, . . . ,K}, P ′

i = Pi, ∀ i ∈ {1, . . . ,K} \
{l}, and P ′

l = min{Ppk, Pl + (Pav −
∑K

i=1 νiPi)/νl}. Note
that the alternative solution, {ν ′i, P ′

i}Ki=1, achieves a larger
average capacity than {νi, Pi}Ki=1 due to the following relation:

K∑
i=1

ν ′iCmax(P
′
i) =

K∑
i=1
i�=l

ν ′iCmax(P
′
i) + ν ′lCmax(P

′
l ) (12)

>

K∑
i=1
i�=l

νiCmax(Pi) + νl Cmax(Pl) (13)

=

K∑
i=1

νiCmax(Pi) (14)

where the inequality follows from the facts that Cmax(P ) is a
monotone increasing function of P (please see (1) and (4)),3

and that P ′
l > Pl. Therefore, {νi, Pi}Ki=1 cannot be an optimal

solution of (3), which leads to a contradiction. Hence, any feasi-
ble point of the problem in (3) which utilizes an average power
strictly smaller than Pav cannot be optimal; that is, the optimal
solution must operate at the average power limit. �

3Note that the maximum of a set of monotone increasing functions is also
monotone increasing.

A. Optimal Channel Switching versus Optimal Single
Channel Strategy

Next, possible improvements that can be achieved via the
optimal channel switching strategy over the optimal single
channel strategy are investigated. The optimal single chan-
nel strategy corresponds to the case of no channel switching
and the use of the best channel all the time at the average
power limit. For that strategy, the achieved maximum capac-
ity can be expressed as Cmax(Pav), where Cmax is as de-
fined in (4), and the best channel is the one with the index
argmaxl∈{1,...,K} Cl(Pav).4 It is noted that when a single
channel is used (i.e., no channel switching), it is optimal to
utilize all the available power, Pav since Cmax(P ) is a mono-
tone increasing and continuous function of P , as can be verified
from (1) and (4). In the following proposition, a necessary
and sufficient condition is presented for the optimal channel
switching strategy to have the same performance as the optimal
single channel strategy.

Proposition 2: Suppose that Cmax(P ) in (4) is first-order
continuously differentiable in an interval around Pav. Then,
the optimal channel switching and the optimal single channel
strategies achieve the same maximum average capacity if and
only if

(P − Pav)
Bi∗ log2 e

Ni∗Bi∗ + Pav
≥ Cmax(P )− Cmax(Pav) (15)

for all P ∈ [0, Ppk], where i∗ = argmaxi∈{1,...,K} Ci(Pav).
Proof: The proof consists of the sufficiency and the

necessity parts. The sufficiency of the condition in (15) can be
proved by employing a similar approach to that in the proof of
Proposition 3 in [15]. Under the condition in the proposition,
the aim is to prove that the optimal channel switching and the
optimal single channel strategies achieve the same maximum
average capacity; that is,

∑K
i=1 ν

�
i Cmax(P

�
i ) = Cmax(Pav),

where {ν�i , P �
i }Ki=1 denotes the solution of (3), which achieves

the same average capacity as the optimal channel switching
strategy corresponding to (2) based on Proposition 1. Due to
the assumption in the proposition, the first-order derivative of
Cmax(P ) in (4) exists in an interval around Pav and its value at
Pav is calculated from (1) as

C ′
max(Pav) =

Bi∗ log2 e

Ni∗Bi∗ + Pav
(16)

where i∗ = argmaxi∈{1,...,K} Ci(Pav). From (16), the con-
dition in (15) can be expressed as Cmax(P ) ≤ Cmax(Pav) +
C ′

max(Pav)(P − Pav) for all P ∈ [0, Ppk]. Then, for any chan-
nel switching strategy denoted as {νi, Pi}Ki=1, the following
inequalities can be obtained:

K∑
i=1

νi Cmax(Pi) ≤ Cmax(Pav)+ C ′
max(Pav)

(
K∑
i=1

νiPi−Pav

)

(17)

≤ Cmax(Pav) (18)

4In the case of multiple best channels, any of them can be chosen to achieve
Cmax(Pav).
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where Pi ∈ [0, Ppk] and νi ≥ 0 for i ∈ {1, . . . ,K},
∑K

i=1 νi =

1, and
∑K

i=1 νiPi ≤ Pav. It is noted that the inequality in
(18) is obtained from the facts that C ′

max(Pav) in (16) is
positive and that

∑K
i=1 νiPi − Pav is non-positive due to the

average power constraint. From (17) and (18), it is concluded
that when the condition in the proposition holds, channel
switching can never result in a higher average capacity than
the optimal single channel strategy, which achieves a capacity
of Cmax(Pav). On the other hand, for ν�i∗ = 1, P �

i∗ = Pav,
and ν�i = P �

i = 0 for all i ∈ {1, . . . ,K} \ {i∗}, where i∗ =

arg maxi∈{1,...,K} Ci(Pav), the
∑K

i=1 νiCmax(Pi) term in (17)
becomes equal to Cmax(Pav). Since this possible solution
satisfies

∑K
i=1 ν

�
i P

�
i = Pav (cf. Lemma 1) and all the con-

straints of the optimization problem in (3), it is concluded that∑K
i=1 ν

�
i Cmax(P

�
i ) = Cmax(Pav) under the condition in the

proposition.
The necessity part of the proof is contrapositive. Therefore,

the aim is to prove that if

(P − Pav)C
′
max(Pav) < Cmax(P )− Cmax(Pav) (19)

for some P ∈ [0, Ppk], then the optimal channel switching strat-
egy outperforms the optimal single channel strategy in terms of
the maximum average capacity. First, assume that there exists
P̃ ∈ [0, Pav] that satisfies the condition in (19) and consider the
straight line that passes through the points (P̃ , Cmax(P̃ )) and
(Pav, Cmax(Pav)). Let ϕ denote the slope of this line. From
(19), the following relation is observed:

ϕ � Cmax(Pav)− Cmax(P̃ )

Pav − P̃
< C ′

max(Pav). (20)

Due to the assumption in the proposition, the first-order deriva-
tive of Cmax(P ) in (4) is continuous in an interval around
Pav. Therefore, Cmax(P ) must correspond to the same channel
over an interval around Pav,5 which implies the concavity of
Cmax(P ) in that interval as the capacity curves are concave.
By definition of the concavity around Pav, there exists a point
P+
av � Pav + ε for an infinitesimally small positive number ε

such that

ϕ <
Cmax(Pav)− Cmax(P

+
av)

Pav − P+
av

< C ′
max(Pav). (21)

Then, choose a λ̃ such that λ̃ P̃ + (1− λ̃)P+
av = Pav and con-

sider the following relations:

λ̃ Cmax(P̃ ) + (1− λ̃)Cmax(P
+
av)

> λ̃Cmax(P̃ )+(1−λ̃)
(
(P+

av−Pav)ϕ+Cmax(Pav)
)

(22)

=
P+
av − Pav

P+
av − P̃

Cmax(P̃ )

+
Pav − P̃

P+
av − P̃

(
(P+

av − Pav)ϕ+ Cmax(Pav)
)

(23)

= Cmax(Pav) (24)

5If there multiple channels with the same bandwidths and noise levels, they
can be regarded as a single channel (i.e., only one of them should be considered)
since there is no advantage of switching between such channels.

where the inequality in (22) is obtained from (21), the equality
in (23) follows from the definition of λ̃, and the final equality
is due to the definition of ϕ in (20). Overall, the inequal-
ity in (22)–(24), namely, λ̃ Cmax(P̃ ) + (1− λ̃)Cmax(P

+
av) >

Cmax(Pav), implies that the channel switching strategy (spec-
ified by channel switching factors λ̃ and (1− λ̃) and power
levels P̃ and P+

av) achieves a higher average capacity than the
optimal single channel strategy.6 Since the optimal channel
switching strategy always achieves an average capacity that is
equal to or larger than the average capacity of any other chan-
nel switching strategy, it is concluded that the optimal chan-
nel switching strategy outperforms the optimal single channel
strategy.

Next, assume that there exists P̄ ∈ (Pav, Ppk] that satisfies
the condition in (19). Similar to the previous part of the proof,
let φ denote the slope of the straight line that passes through
the points (P̄ , Cmax(P̄ )) and (Pav, Cmax(Pav)). Then, the
following expression is obtained from (19):

φ � Cmax(Pav)− Cmax(P̄ )

Pav − P̄
> C ′

max(Pav). (25)

Similarly, due to the concavity around Pav, there exists a point
P−
av � Pav − ε for an infinitesimally small ε > 0 such that

φ >
Cmax(Pav)− Cmax(P

−
av)

Pav − P−
av

> C ′
max(Pav). (26)

By choosing a λ̄ ∈ (0, 1) such that λ̄ P̄ + (1− λ̄)P−
av = Pav

and considering the expressions in (25) and (26), the same
approach employed in the previous part of the proof (see
(22)–(24)) can be applied to show that the optimal chan-
nel switching strategy outperforms the optimal single channel
strategy. Thus, it is concluded that when the condition in
Proposition 2 is not satisfied, the optimal single channel strat-
egy achieves a smaller average capacity than the optimal chan-
nel switching strategy, which implies that the condition in the
proposition is necessary to achieve the same maximum average
capacity for both strategies. �

A more intuitive description of Proposition 2 can be provided
as follows: Based on (16), the condition in (15) is equivalent to
having the tangent line to Cmax(P ) at P = Pav lie completely
above the Cmax(P ) curve [15]. If this condition is satisfied,
then channel switching, which performs convex combination
of different Cmax(P ) values (as can be noted from (3)), cannot
achieve an average capacity above Cmax(Pav), which is already
achieved by the optimal single channel strategy. Otherwise, a
higher average capacity than Cmax(Pav) is obtained via optimal
channel switching.

It is also noted from (15) and (16) that the condition in
Proposition 2 corresponds to the subgradient inequality at Pav.
Therefore, the proposition can also be stated as “the optimal
channel switching and the optimal single channel strategies
achieve the same maximum average capacity if and only if

6Note that the channel switching strategy denoted by channel switching
factors λ̃ and (1− λ̃) and power levels P̃ and P+

av must involve switch-
ing between two different channels since the inequality λ̃ Cmax(P̃ ) + (1−
λ̃)Cmax(P

+
av) > Cmax(Pav) cannot be satisfied for a single channel due to

the concavity of the capacity curves.
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there exists a sub-gradient at Pav.” In addition, it should be
emphasized that although concavity of Cmax(P ) around P =
Pav is a necessary condition for the scenario in Proposition 2 to
hold, it is not a sufficient condition in general.

Based on Proposition 2, it can be determined whether the
channel switching strategy can improve the average capacity
of the system compared to the optimal single channel strategy.
For instance, if Cmax(P ) in (4) is first-order continuously
differentiable in an interval around Pav and the condition in
(15) is satisfied for all P ∈ [0, Ppk] in a given system, then it
is concluded that the optimal single channel strategy has the
same performance as the optimal channel switching strategy;
that is, there is no need for channel switching. In that case,
the maximum average channel capacity is given by Cmax(Pav).
On the other hand, if there exist some P ∈ [0, Ppk] for which
the condition in (15) is not satisfied, then the optimal channel
switching strategy is guaranteed to achieve a higher average
capacity than Cmax(Pav).

Remark 1: As a special case, it can be concluded from
Proposition 2 that if the bandwidths of the channels are the
same, the optimal strategy is to transmit over the least noisy
(best) channel exclusively at the average power limit. To make
this conclusion, first consider Cmax(P ) in (4), which becomes
equal to the capacity of the least noisy channel, say channel b,
when the channels have the same bandwidth (cf. (1)); that is,
Cmax(P ) � max{C1(P ), . . . , CK(P )} = Cb(P ). Then, from
(16), the condition in (15) of Proposition 2 is expressed as (P −
Pav)C

′
b(Pav) ≥ Cb(P )− Cb(Pav), which always holds for all

P ∈ [0, Ppk] due to the concavity of the capacity function,
Cb(P ) (see (1)). Hence, Proposition 2 applies in this scenario;
that is, the optimal single channel strategy (i.e., the use of the
best channel all the time at the average power limit) becomes
the optimal solution.

In Proposition 2, it is assumed that Cmax(P ) in (4) is first-
order continuously differentiable in an interval around Pav. To
cover all possible scenarios and to specify the optimal strategy
in all cases, the following proposition presents a result for the
case of Cmax(P ) that has a discontinuous first-order derivative
at P = Pav, which states that the optimal channel switching
always outperforms the optimal single channel strategy in this
scenario.

Proposition 3: If the first-order derivative of Cmax(P ) in (4)
is discontinuous at P = Pav, then the optimal channel switch-
ing strategy outperforms the optimal single channel strategy.

Proof: The aim is to prove that if the condition in
Proposition 3 is satisfied, then the channel switching strategy
achieves a higher average capacity than the optimal single
channel strategy. To that aim, define P+

av and P−
av as Pav + ε

and Pav − ε, respectively, where ε is an infinitesimally small
positive number. The proof consists of two parts.

First, it is proved that if the first-order derivative,
C ′

max(P ), is discontinuous at P = Pav, which implies
that C ′

max(P
−
av) �= C ′

max(P
+
av), then C ′

max(P
−
av) < C ′

max(P
+
av)

holds. Due to the discontinuous first-order derivative as-
sumption, Cmax(P

−
av) and Cmax(P

+
av) must correspond to

different channels since the first-order derivative would be
continuous otherwise (please see (1)). Therefore, let chan-
nel i and channel j denote the channels corresponding to

the maximum capacities for power levels P−
av and P+

av, re-
spectively; that is, Cmax(P

−
av) = Ci(P

−
av) and Cmax(P

+
av) =

Cj(P
+
av) for i �= j where i = arg maxl∈{1,...,K} Cl(P

−
av) and

j = arg maxl∈{1,...,K} Cl(P
+
av). Also, Ci(Pav) = Cj(Pav) and

Ci(P
−
av) < Cj(P

+
av) since Cmax(·) is a continuous monotone

increasing function. Based on Taylor series expansions of Ci(·)
and Cj(·) around P+

av, Ci(P
+
av) and Cj(P

+
av) can be expressed

as follows:

Ci(P
+
av) =Ci(Pav)+C ′

i(Pav)(P
+
av−Pav) +Ri(P

+
av) (27)

Cj(P
+
av) =Cj(Pav)+C ′

j(Pav)(P
+
av−Pav) +Rj(P

+
av) (28)

where Ri(P
+
av) and Rj(P

+
av) are the second-order remainder

terms for Ci(P
+
av) and Cj(P

+
av), respectively. Based on the re-

mainder theorem, there exist κ ∈ [Pav, P
+
av] and υ ∈ [Pav, P

+
av]

such that

Ri(P
+
av) =

C ′′
i (κ)(P

+
av − Pav)

2

2
(29)

Rj(P
+
av) =

C ′′
j (υ)(P

+
av − Pav)

2

2
(30)

where C ′′
i (·) and C ′′

j (·) are the second-order derivatives
of Ci(·) and Cj(·), respectively [43]. The second-order
derivatives, which can be calculated from (1) as C ′′

i (P ) =
−Bi log2 e/(NiBi + P )2 and C ′′

j (P ) = −Bj log2 e/(NjBj +

P )2, are finite negative numbers for all possible power lev-
els. Since Cj(P

+
av) > Ci(P

+
av) and Ci(Pav) = Cj(Pav) as dis-

cussed previously, the following inequality can be obtained
based on (27)–(30):

C ′
j(Pav)− C ′

i(Pav) +
(C ′′

j (υ)− C ′′
i (κ)) ε

2
> 0 (31)

where ε = P+
av − Pav as defined above. As the second-order

derivatives are finite and the relation in (31) should hold for
any infinitesimally small ε value, it is concluded that C ′

i(Pav) <
C ′

j(Pav). In other words, there is an increase in the first-order
derivative of Cmax(P ) around P = Pav, which implies that
C ′

max(P
−
av) < C ′

max(P
+
av).

In the second part, it is proved that when there is an in-
crease in the first-order derivative of Cmax(P ) around P =
Pav, the optimal channel switching strategy outperforms the
optimal single channel strategy. To that aim, consider a chan-
nel switching strategy (not necessarily an optimal one) that
performs channel switching between channel i and channel
j by employing power levels of P−

av and P+
av, respectively,

with equal channel switching factors; i.e., 0.5 each, where
i, j, P−

av and P+
av are as defined in the previous paragraph. Then,

that channel switching strategy achieves an average capacity of
0.5Ci(P

−
av) + 0.5Cj(P

+
av), which can be expressed via Taylor

series expansion as follows:

0.5
(
Ci(Pav) + C ′

i(Pav)(P
−
av − Pav) +Ri(P

−
av)

)
+ 0.5

(
Cj(Pav) + C ′

j(Pav)(P
+
av − Pav) +Rj(P

+
av)

)
(32)

where Rj(P
+
av) is as in (30) and Ri(P

−
av) =

C ′′
i (ω)(P

−
av − Pav)

2/2 for a ω ∈ [P−
av, Pav]. Since Ci(Pav) =
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Cj(Pav) = Cmax(Pav) as mentioned in the previous paragraph,
(32) becomes equal to

Cmax(Pav) + 0.5 ε
(
C ′

j(Pav)− C ′
i(Pav)

)
+ 0.25 ε2

(
C ′′

i (ω) + C ′′
j (υ)

)
. (33)

Based on the result obtained in the first part of the proof,
namely, C ′

i(Pav) < C ′
j(Pav), (33) implies that there exists an

infinitesimally small ε > 0 such that the channel switching
strategy achieves a larger average capacity than Cmax(Pav),
which is the capacity achieved by the optimal single channel
strategy. Hence, based on the first and the second parts of the
proof, it is concluded that the optimal channel switching strat-
egy always provides a larger average capacity than the optimal
single channel strategy in the case of a discontinuous first-order
derivative of Cmax(P ) at P = Pav. �

As stated in the proof of Proposition 3, the discontinuities
in the first-order derivative of Cmax(P ) are observed when
capacity curves intersect. The capacity curves of two channels,
say channel k and channel l, can intersect [28] if one of them
has a smaller bandwidth and a lower noise level than the other
one; i.e., Bk < Bl and Nk < Nl. In such a case, channel k
has a higher capacity than channel l for small power levels
(i.e., in the power-limited regime) since the capacity expres-
sion in (1) becomes approximately equal to (log2 e)P/Nk and
(log2 e)P/Nl for channel k and channel l, respectively, when P
is close to zero. On the other hand, for high power levels (i.e.,
in the bandwidth-limited regime), channel l achieves a higher
capacity than channel k due to the following reason:

lim
P→∞

Bl log2

(
1 + P

NlBl

)
Bk log2

(
1 + P

NkBk

) =
Bl

Bk
> 1. (34)

Therefore, the capacity curves can intersect in such scenarios.
For example, in cognitive radio systems, there can exist mul-
tiple available frequency bands in the spectrum with various
bandwidths and noise levels. Hence, such scenarios can be
encountered in these systems.

Remark 2: The main reason for the improvements that can
be realized via optimal channel switching is related to the
fact that the optimal single channel approach can achieve
the capacity values specified by Cmax(P ) in (4) only whereas
the upper boundary of the convex hull of Cmax(P ) can also be
achieved via optimal channel switching (cf. (3)). Therefore, the
improvements that can be obtained via optimal channel switch-
ing over the optimal single channel approach are related to the
convexity/concavity properties of Cmax(P ). Even though each
capacity function is concave, their maximum is not necessarily
concave. Therefore, opportunities can appear for average power
values corresponding to convex regions of Cmax(P ) as illus-
trated in Section IV. The proof of Proposition 3 contains the
theoretical explanation about this situation by showing that the
first-order derivative of Cmax(P ) increases at the intersection
point of two capacity curves, which implies that if two capacity
functions intersect at a single point, there always exists a convex
region around that intersection due to the mathematical expres-
sion for the capacity. Hence, improvements may be realized via
channel switching around those intersection points.

B. Solution of Optimal Channel Switching Problem

When the optimal channel switching strategy is guaranteed
to achieve a higher average capacity than the optimal single
channel strategy (which can be deduced from Proposition 2 or
Proposition 3), the optimization problem in (2) or (3) needs to
be solved to calculate the maximum average capacity of the
system, which involves a search over a 2K dimensional space.
However, the following proposition states that the optimal
strategy can be obtained by switching between no more than
two different channels, and the resulting optimal strategy can
be found via a search over a two-dimensional space only.

Proposition 4: The optimal solution of (2) results in chan-
nel switching between at most two different channels, and
the achieved maximum average capacity is calculated as
λ∗Cmax(P

∗
1 ) + (1− λ∗)Cmax(P

∗
2 ), where P ∗

1 and P ∗
2 are the

solutions of the following problem:

max
P1∈(Pav,Ppk]

P2∈[0,Pav]

Pav−P2

P1−P2
Cmax(P1) +

P1−Pav

P1−P2
Cmax(P2) (35)

and λ∗ is given by

λ∗ =
Pav − P ∗

2

P ∗
1 − P ∗

2

. (36)

Proof: As discussed in Proposition 1 and its proof, the op-
timization problems in (2) and (3) achieve the same maximum
average capacity and the optimal channel switching strategy
corresponding to (2) can be obtained from the solution of
(3). Therefore, the optimization problem in (3) is considered,
where the convex combinations of Cmax(Pi)’s and Pi’s are the
two main functions. The set of all possible pairs of Cmax(P )
and P is defined as set U ; that is, U = {(Cmax(P ), P ), ∀P ∈
[0, Ppk]}. The convex hull of U , denoted by V , is guaranteed
to contain the optimal solution of (3) since V consists of all
the convex combinations of the elements of U by definition.
In addition, it can be shown, similarly to [2], that the optimal
solution of (3) should be on the boundary of V since no interior
points can be the maximizer of (3). Then, Carathéodory’s
theorem [44], [45] is invoked, which states that any point on
the boundary of the convex hull V of set U can be represented
by a convex combination of at most D points in set U , where
D is the dimension of space in which U and V reside. Hence,
in this scenario (where U ⊂ V ⊂ R

2), Carathéodory’s theorem
implies that an optimal solution of (3) can be expressed as the
convex combination of (i.e., time sharing between) at most two
different power levels; that is, νi �= 0 for one or two indices in
(3). Therefore, the optimal solution of the channel switching
problem in (2) corresponds to channel switching between at
most two different channels.

Based on the previous result, the problem in (3) can be
expressed as follows:

max
λ,P1,P2

λCmax(P1) + (1− λ)Cmax(P2) (37)

subject toλP1 + (1− λ)P2 = Pav (38)

P1 ∈ [0, Ppk], P2 ∈ [0, Ppk] (39)

λ ∈ [0, 1] (40)
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where the average power constraint is imposed with equality
based on Lemma 1. Then, by substituting the constraints in
(38)–(40) into the objective function and specifying the search
space, the optimization problem in (35) can be obtained. �

Once λ∗, P ∗
1 , and P ∗

2 are calculated as in Proposition 4, the
optimal strategy can be specified as follows:

• Case-1 (Channel Switching): If λ∗ ∈ (0, 1), the optimal
strategy is to switch between channel i and channel j with
channel switching (time sharing) factors λ∗ and 1− λ∗

and power levels P ∗
1 and P ∗

2 , respectively, where i and j
are given by7

i = arg max
l∈{1,...,K}

Cl(P
∗
1 ), (41)

j = arg max
l∈{1,...,K}

Cl(P
∗
2 ). (42)

• Case-2 (Single Channel): If λ∗ = 0, the optimal strategy
is to perform communications over channel m all the time
with a power level of Pav, where m is defined as

m = arg max
l∈{1,...,K}

Cl(Pav). (43)

Note that, in the case of λ∗ ∈ (0, 1), i = j is not possible since
time sharing of different power levels over the same channel
always reduces the capacity due to the convexity of the capacity
function in (1).

A flowchart is provided in Fig. 2 to explain the results
obtained in this section. In particular, the optimal strategy can
be specified as shown in the flowchart based on the proposi-
tions. Depending on the system parameters, either the single
channel strategy or the channel switching strategy can be the
optimal approach. From Proposition 2 and Proposition 3, the
optimal strategy can be classified as single channel (case 2)
or channel switching (case 1) without solving the optimization
problem in (35): If the first-order derivative of Cmax(P ) is
continuous at Pav (i.e., the condition in Proposition 3 does not
hold) and the condition in Proposition 2 is satisfied, then the
optimal single channel strategy is optimal (i.e., there is no need
for channel switching), as shown in Fig. 2. In that case, the
optimal solution of (2) can directly be expressed as λi∗ = 1,
Pi∗ = Pav, and λj = 0 for all j ∈ {1, . . . ,K} \ {i∗}, where
i∗ = arg maxi∈{1,...,K} Ci(Pav) (cf. (43)), and the maximum
capacity becomes Cmax(Pav). If the condition in Proposition 3
holds or the condition in Proposition 2 is not satisfied, the
optimal strategy is to switch between two different channels,
and the optimization problem in Proposition 4 (i.e., (35)) can
be solved in that case, as illustrated in Fig. 2. (As discussed in
the next section, the solution of (35) can also be obtained based
on Proposition 5.)

It is noted that the computational complexity of the optimiza-
tion problem in (35) depends on the number of channels, K,
only through Cmax in (4), and the dimension of the search space
is always two irrespective of the number of channels. Therefore,
Proposition 4 can provide a significant simplification over the

7In the case of multiple maximizers in (41) or (42), any of them can be chosen
for the optimal strategy.

Fig. 2. A flowchart indicating the outline of the proposed optimal channel
switching and optimal single channel approaches.

original formulation in (2), which requires a search over a 2K
dimensional space.

C. Alternative Solution for Optimal Channel Switching

When the optimal strategy involves channel switching, which
can be deduced from Proposition 2 and Proposition 3, one way
to obtain the solution is to solve the optimization problem in
(35). An alternative approach can be developed based on the
following proposition:

Proposition 5: Consider a scenario in which channel switch-
ing between channel k and channel l is optimal. Let P ∗

1 and P ∗
2

denote the optimal transmit powers allocated to channel k and
channel l, respectively. Then, the optimal solution satisfies at
least one of the following conditions:

(i) Nk +
P∗

1

Bk
= Nl +

P∗
2

Bl
, where Bk and Nk/2 (Bl and

Nl/2) are, respectively, the bandwidth and the constant
power spectral density level of the additive Gaussian
noise corresponding to channel k (channel l).

(ii) P ∗
1 = Ppk and P ∗

2 =
Pav−λ∗Ppk

1−λ∗ , where λ∗ = (Pav −
P ∗
2 )/(Ppk − P ∗

2 ).
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(iii) P ∗
2 = Ppk and P ∗

1 =
Pav−(1−λ∗)Ppk

λ∗ , where λ∗ = (Ppk −
Pav)/(Ppk − P ∗

1 ).

Proof: The results in the proposition can be proved
via Karush-Kuhn-Tucker (KKT) conditions [42] based on the
optimal channel switching problem formulated in (2). To that
aim, the Lagrangian [42] for the optimization problem in (2) is
obtained first:

L(λ,P , μ,γ,β, θ,α)=−
K∑
i=1

λiCi(Pi)+μ

(
K∑
i=1

λiPi−Pav

)

−
K∑
i=1

γi Pi+
K∑
i=1

βi (Pi−Ppk)+θ

(
K∑
i=1

λi−1

)
−

K∑
i=1

αi λi

(44)

where λ = [λ1 · · ·λK ] and P = [P1 · · ·PK ] are the optimiza-
tion variables in (2), and μ, γ, β, θ, and α are the KKT
multipliers, with γ = [γ1 · · · γK ], β = [β1 · · ·βK ], and α =
[α1 · · ·αK ]. Then, the optimal solution of the problem in (2),
denoted by {λ∗

i , P
∗
i }Ki=1 (equivalently, by λ∗,P ∗), satisfies the

following KKT conditions:

• Stationarity: ∂L(λ∗,P ∗, μ,γ,β,θ,α)
∂λi

= 0 and
∂L(λ∗,P ∗, μ,γ,β,θ,α)

∂Pi
= 0 for i ∈ {1, . . . ,K}, where

L is as defined in (44).

• Complementary slackness: μ
(∑K

i=1 λ
∗
i P

∗
i − Pav

)
=

0,
∑K

i=1 γi P
∗
i = 0,

∑K
i=1 βi (P

∗
i − Ppk) = 0, and∑K

i=1 αi λ
∗
i = 0.

• Primal and dual feasibility: μ ≥ 0, γi ≥ 0, βi ≥ 0, and
αi ≥ 0 for i ∈ {1, . . . ,K}.

From the stationarity conditions; the following equalities are
obtained based on (44):

Ci(P
∗
i ) =μP ∗

i + θ − αi, ∀ i ∈ {1, . . . ,K}, (45)

C ′
i(P

∗
i ) =μ+

βi − γi
λ∗
i

, ∀ i ∈ {1, . . . ,K}. (46)

Now consider the scenario in the proposition, where channel
switching between channel k and channel l is optimal; that
is, λ∗

k �= 0, λ∗
l �= 0, P ∗

k = P ∗
1 �= 0, P ∗

l = P ∗
2 �= 0, and P ∗

i =
λ∗
i = 0 for i ∈ {1, . . . ,K} \ {k, l}.8 Then, γk = γl = 0 and

αk = αl = 0 can be obtained from the second and fourth
complementary slackness conditions. For the optimal power
levels, three possible scenarios exist:

• First, it is assumed that P ∗
1 < Ppk and P ∗

2 < Ppk hold.
Then, βk = 0 and βl = 0 are satisfied due to the third
complementary slackness condition. Combining this re-
sult with γk = γl = 0, λ∗

k �= 0, and λ∗
l �= 0, the condi-

tion in (46) can be expressed as C ′
k(P

∗
k) = C ′

l(P
∗
l ) = μ,

which leads to condition (i) in the proposition based on
the first-order derivative expression in (16).

8Note that the on-off scheme, in which one power level is equal to zero,
cannot be optimal due to the concavity of the capacity curves and the fact that
Ci(0) = 0, ∀ i ∈ {1, . . . ,K}.

• Second, it is assumed that P ∗
1 = Ppk and P ∗

2 < Ppk.
Due to Lemma 1, the average power constraint must
be satisfied with equality, which leads to P ∗

2 = (Pav −
λ∗Ppk)/(1− λ∗), where λ∗ = (Pav − P ∗

2 )/(Ppk − P ∗
2 ).

Hence, condition (ii) in the proposition is obtained. Note
that in this case βk ≥ 0 and βl = 0, which implies that
C ′

k(P
∗
k) ≥ C ′

l(P
∗
l ) based on (46).

• For the third scenario, the third condition in the proposi-
tion can similarly be obtained under the assumption that
P ∗
1 < Ppk and P ∗

2 = Ppk.

Finally, it is noted that P ∗
1 = P ∗

2 = Ppk is not possible since it
violates the average power constraint as Ppk > Pav. Therefore,
the optimal solution of the channel switching strategy between
two channels satisfies at least one of the three conditions in
Proposition 5. �

Proposition 5 presents necessary conditions that need to be
satisfied by the optimal channel switching strategy. Based on
this proposition, the optimal solution of the problem in (2)
can also be calculated as described in the following. For the
scenario in which one of the power levels is set to Ppk, the
maximum capacity achieved can be calculated from the second
and third conditions in Proposition 5 as follows:

C̃av(i, j)� max
Pj∈[0,Pav]

Pav−Pj

Ppk−Pj
Ci(Ppk)+

Ppk−Pav

Ppk−Pj
Cj(Pj)

(47)

where i, j ∈ {1, . . . ,K} and i �= j. Since one power level is
fixed to Ppk, it is sufficient to consider the best channel only for
that power level in calculating the maximum average capacity.
Hence, a new function, which is a function of a single channel
index only, is defined in that respect as follows:

C̃av(j)� max
Pj∈[0,Pav]

Pav − Pj

Ppk − Pj
Cmax(Ppk)+

Ppk − Pav

Ppk − Pj
Cj(Pj)

(48)

where j∈{1, . . . ,K}\{k∗}withk∗=arg maxi∈{1,...,K}Ci(Ppk)
and Cmax(Ppk) = Ck∗(Ppk). Then, in the case of channel
switching between two channels where one power level is equal
to Ppk, the maximum achieved capacity can be calculated as
follows:

C̃av = max
j∈{1,...,K}

j �=k∗

C̃av(j). (49)

It should be noted that C̃av also includes the maximum capacity
that can be achieved by the optimal single channel strategy
since C̃av(j) in (48) reduces to Cj(Pav) for Pj = Pav (which
is added to the search space for this purpose). For the scenario
in which the optimal power levels are below Ppk, the first con-
dition in Proposition 5, namely, Ni + Pi/Bi = Nj + Pj/Bj ,
can be employed to obtain the following formulation for the
maximum achieved capacity:

C̄av(i, j)� max
Pj∈(P lb

ij
,Pub

ij ]

Pav − Pj

Pi − Pj
Ci(Pi)+

Pi − Pav

Pi − Pj
Cj(Pj)

(50)
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where P lb
ij �max

{
0,
(
Pav

Bj

Bi
+Bj(Ni−Nj)

)}
, P ub

ij �min
{
Pav,(

Ppk
Bj

Bi
+Bj (Ni−Nj)

)}
, and Pi=Bi(Nj−Ni)+BiPj/Bj .

Note that the search space for Pj (namely, P lb
ij and P ub

ij )
is obtained by the joint consideration of Pj ∈ (0, Pav] and
Pi = Bi(Nj −Ni) +BiPj/Bj ∈ (Pav, Ppk]. Then, the max-
imum capacity that can be achieved by switching between two
channels with power levels lower than Ppk can be calculated as
follows:

C̄av = max
i,j∈{1,...,K}

i�=j

C̄av(i, j). (51)

Overall, the solution of the optimal channel switching problem
in (2) achieves the following maximum average capacity:

Cmax
av = max

{
C̃av, C̄av

}
(52)

where C̃av and C̄av are as in (49) and (51), respectively. Also,
the optimal strategy can be obtained as follows: If C̃av =
Cmax(Pav) ≥ C̄av, then the optimal solution corresponds
to the single channel strategy, which is to transmit over
channel m all the time with power level Pav, where m=
arg maxi∈{1,...,K} Ci(Pav). (In fact, based on Proposition 2,
the cases in which the single channel strategy is optimal can
be determined beforehand, and the efforts in solving (48)–(52)
can be avoided.) If C̃av ≥ C̄av and C̃av > Cmax(Pav), the
optimal strategy is to switch over channel k∗ and channel j∗

with power levels Ppk and P ∗
j∗ and channel switching factors

(Pav − P ∗
j∗)/(Ppk − P ∗

j∗) and (Ppk − Pav)/(Ppk − P ∗
j∗),

respectively, where P ∗
j∗ denotes the maximizer of the

problem in (48), k∗ = arg maxi∈{1,...,K} Ci(Ppk), and j∗ =

arg maxj∈{1,...,K}, j �=k∗ C̃av(j), with C̃av(j) being as defined

in (48). Finally, if C̄av > C̃av, then the optimal strategy is to
switch between channel j∗ and channel i∗ with power levels
P ∗
j∗ and P ∗

i∗ = Bi∗(Nj∗ −Ni∗) +Bi∗Pj∗/Bj∗ and channel
switching factors (Pi∗ − Pav)/(Pi∗ − Pj∗) and (Pav −
Pj∗)/(Pi∗ − Pj∗), respectively, where P ∗

j∗ is the maximizer of
the problem in (50) and i∗ and j∗ denote the maximizers of (51).

To compare the approach in the previous paragraph (called
the second approach) to the one provided in Proposition 4
(called the first approach) in terms of the computational com-
plexity in obtaining the optimal switching solution, the opti-
mization problems in (35) and in (48)–(52) are considered.
In the first approach, the problem in (35) requires a two-
dimensional search over [0, Pav]× (Pav, Ppk]. On the other
hand, the main operations in the second approach are related
to the optimization problem in (48), which requires a one-
dimensional search over [0, Pav], and the optimization problem
in (50), which requires a one-dimensional search over a subset
of [0, Pav]. It is observed from (49) and (51) that the problem
in (48) is solved for K − 1 different channel indices and the
one in (50) is solved for K(K − 1) different channel pairs.
Therefore, overall, the second approach involves K2 − 1 one-
dimensional searches. In fact, instead of K, a smaller number
can be considered in many scenarios when some channels
outperform other channels in the sense that they have larger
or equal capacities for all possible power values. From (1), it

Fig. 3. Capacity of each channel versus power, where B1 = 1 MHz, B2 =
5 MHz, B3 = 10 MHz, N1 = 10−12 W/Hz, N2 = 10−11 W/Hz, and N3 =
10−11 W/Hz.

is observed that, for channel i and channel j, if Ni ≤ Nj and
Bi ≥ Bj , then channel i outperforms channel j for all power
values. Therefore, channel j can be excluded from the set of
channels for the optimal channel switching solution. Hence,
based on this observation, it can be stated that the second ap-
proach involves K̃2 − 1 one-dimensional searches, where K̃ is
the number of elements in set C, which is defined as C = {i ∈
{1, . . . ,K} | (Ni < Nj or Bi > Bj)∀ j ∈ {1, . . . ,K} \ {i}}.9

Therefore, the computational complexity comparison between
the first approach and the second approach depends on the
number of channels and their noise levels and bandwidths. In
particular, the second (first) approach become more desirable
for small (large) values of K̃.

IV. NUMERICAL RESULTS

In this section, numerical examples are provided to in-
vestigate the proposed optimal channel switching strategy
and to compare it against the optimal single channel strat-
egy. First, consider a scenario with K = 3 channels and
the following bandwidths and noise levels (cf. (1)): B1 =
1 MHz, B2 = 5 MHz, B3 = 10 MHz, N1 = 10−12 W/Hz,
N2 = 10−11 W/Hz, and N3 = 10−11 W/Hz. Suppose that the
peak power limit in (2) is set to Ppk = 0.1 mW. In Fig. 3,
the capacity of each channel is plotted as a function of power
based on the capacity formula in (1). For the scenario in
Fig. 3, the proposed optimal channel switching strategy and
the optimal single channel strategy are calculated for various
average power limits (Pav), and the achieved maximum av-
erage capacities are plotted in Fig. 4 versus Pav. Also, the
shaded area in the figure indicates the achievable rates (average
capacities) via channel switching that are higher than those
achieved by the optimal single channel strategy. As discussed
in the previous section, the optimal single channel strategy
achieves a capacity of Cmax(Pav), which is Cmax(Pav) =

9For convenience, it is assumed that the identical channels (the same band-
width and noise level) are already eliminated.
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Fig. 4. Average capacity versus average power limit for the optimal channel
switching and the optimal single channel strategies for the scenario in Fig. 3,
where Ppk = 0.1 mW. The shaded area indicates the achievable rates via
channel switching that are higher than those achieved by the optimal single
channel strategy.

TABLE I
OPTIMAL STRATEGY FOR THE SCENARIO IN FIG. 3, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORS λ∗

AND (1− λ∗) AND POWER LEVELS P ∗
1 AND P ∗

2 , RESPECTIVELY

max{C1(Pav), C2(Pav), C3(Pav)} in the considered scenario.
It is observed from Fig. 3 and Fig. 4 that Cmax(Pav) =
C1(Pav) for Pav ∈ (0, 0.048) mW and Cmax(Pav) = C3(Pav)
for Pav ∈ [0.048, 0.1] mW; that is, channel 1 is the best
channel up to Pav = 0.048 mW, and channel 3 is the best
after that power level. From Fig. 4, it is also noted that the
proposed optimal channel switching strategy outperforms the
optimal single channel strategy for Pav ∈ [0.0196, 0.1] mW,
and the two strategies have the same performance for Pav <
0.0196 mW. These regions can also be obtained by checking
the necessary and sufficient condition in Proposition 2 (see
(15)), which is satisfied for all P ∈ [0, 0.1] mW for Pav <
0.0196 mW, and is not satisfied for some P ∈ [0, 0.1] mW
for Pav ∈ [0.0196, 0.1] mW. In addition, in accordance with
Proposition 3, it is observed that the optimal channel switching
strategy outperforms the optimal single channel strategy at
Pav = 0.048 mW, which corresponds to a discontinuity point
for the first-order derivative of Cmax(P ).

To provide a detailed investigation of the optimal chan-
nel switching strategy, Table I presents the optimal channel
switching solutions for various values of the average power
limit, Pav. In the table, the optimal solution is represented
by parameters λ∗, P ∗

1 , P ∗
2 , i, and j, meaning that channel

Fig. 5. Average capacity versus peak power limit for the optimal channel
switching and the optimal single channel strategies for the scenario in Fig. 3,
where Pav = 0.04 mW.

i is used with channel switching factor λ∗ and power P ∗
1 ,

and channel j is used with channel switching factor 1− λ∗

and power P ∗
2 . It is observed from the table that the optimal

solution reduces to the optimal single channel strategy for
Pav = 0.01 mW (in which case channel 1 is used all the time),
and it involves switching between channel 1 and channel 3 for
larger values of Pav. This observation is also consistent with
Fig. 4, which illustrates improvements via channel switching
for Pav > 0.0196 mW. It is also observed from the table that
the optimal channel switching solution for Pav > 0.0196 mW
satisfies condition (ii) in Proposition 5 since P ∗

1 = Ppk =
0.1, P ∗

2 = (Pav − λ∗Ppk)/(1− λ∗) = 0.0196mW, and λ∗ =
(Pav − P ∗

2 )/(Ppk − P ∗
2 ). In addition, as stated in Lemma 1, the

optimal solutions always operate at the average power limits.
For the scenario in Fig. 3, the average capacity versus the

peak power limit curves are presented for the optimal channel
switching and the optimal single channel strategies in Fig. 5,
where the average power limit is set to Pav = 0.04 mW. From
the figure, it is observed that the average capacity for the opti-
mal single channel strategy does not depend on the Ppk value
since this strategy achieves an average capacity of Cmax(Pav)
and Ppk > Pav = 0.04 mW in this scenario. On the other hand,
increased Ppk can improve the average capacity for the optimal
channel switching strategy as observed from the figure. The
intuition behind this increase can be deduced from Fig. 3 and
Table II. In particular, as observed from Table II, when the peak
power limit is larger than 0.048 mW, which is the discontinuity
point for the first-order derivative of Cmax, the optimal channel
switching strategy performs time sharing (switching) between
channel 1 and channel 3, where channel 3 is operated at the
peak power limit, Ppk.

Next, a scenario with K = 4 channels is considered, where
the bandwidths and the noise levels of channels are specified
as B1 = 0.5 MHz, B2 = 2.0 MHz, B3 = 2.5 MHz, B4 =
5.0 MHz, N1 = 10−12 W/Hz, N2 = 1.5× 10−11 W/Hz, N3 =
2.0× 10−11 W/Hz, and N4 = 2.5× 10−11 W/Hz. Also, the
peak power limit is set to Ppk = 0.25 mW. In Fig. 6, the
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TABLE II
OPTIMAL STRATEGY FOR THE SCENARIO IN FIG. 3, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORS λ∗

AND (1− λ∗) AND POWER LEVELS P ∗
1 AND P ∗

2 , RESPECTIVELY

Fig. 6. Capacity of each channel versus power, B1 = 0.5 MHz, B2 =
2.0 MHz, B3 = 2.5 MHz, B4 = 5.0 MHz, N1 = 10−12 W/Hz, N2 = 1.5×
10−11 W/Hz, N3 = 2.0× 10−11 W/Hz, N4 = 2.5× 10−11 W/Hz, and
Ppk = 0.25 mW.

capacity of each channel is plotted versus the transmit power.
In Fig. 7, the average capacity versus Pav curves are presented
for the proposed optimal channel switching strategy and the
optimal single channel strategy. In addition, the shaded area in
the figure indicates the achievable rates via channel switching
that are higher than those achieved by the optimal single
channel strategy. From Fig. 7, it is observed that the opti-
mal channel switching strategy outperforms the optimal single
channel strategy for Pav ∈ (0.031, 0.187) mW. Also, it can be
deduced from Fig. 6 and Fig. 7 that channel 3 is not employed
in any strategy since Cmax(P ) �= C3(P ) for P ∈ [0, 0.25] mW.
In Table III, the optimal strategies are presented for the scenario
in Fig. 6 for various values of Pav. As observed from the table,
the optimal strategy corresponds to the optimal single channel
strategy for small and large values of Pav and it corresponds to
channel switching between channel 1 and channel 4 for medium
range of Pav values. These observations are in accordance
with Fig. 7. In addition, it is important to emphasize that the
channels employed in the optimal channel switching strategy
for a given value of Pav may not correspond to the channel
used in the optimal single channel strategy for the same Pav

Fig. 7. Average capacity versus average power limit for the optimal channel
switching and the optimal single channel approaches for Ppk = 0.25 mW. The
shaded area indicates the achievable rates via channel switching that are higher
than those achieved by the optimal single channel strategy.

TABLE III
OPTIMAL STRATEGY FOR THE SCENARIO IN FIG. 6, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORS λ∗

AND (1− λ∗) AND POWER LEVELS P ∗
1 AND P ∗

2 , RESPECTIVELY

value. For example, as can be observed from Fig. 6 and Fig. 7,
channel 2 is not employed in the optimal channel switching
strategy for Pav ∈ (0.031, 0.187) mW (channel 1 and channel 4
are employed); however, it is the optimal channel for the
optimal single channel strategy for Pav ∈ [0.075, 0.099] mW
as Cmax(Pav) = C2(Pav). This is mainly due to the fact that
the optimal single channel approach achieves the capacity value
specified by Cmax(Pav) whereas the upper boundary of the
convex hull of Cmax(P ) is achieved via the optimal channel
switching approach.

Finally, for the scenario in Fig. 6, Pav is set to Pav =
0.07 mW, and the effects of the peak power limit, Ppk, are
investigated. In Fig. 8, the average capacity is plotted versus
Ppk for the optimal channel switching and optimal single
channel strategies. It is observed that the optimal single channel
strategy achieves a constant capacity of Cmax(Pav) for all Ppk

values, where Ppk ∈ (0.07, 0.25] mW. On the other hand, for
the optimal channel switching strategy, improvements in the
average capacity are observed for when Ppk is larger than
0.075 mW. It is also noted that the behavioral changes in
the average capacity curve for the optimal channel switching
strategy occurs at 0.075 mW and 0.099 mW, which correspond
to the discontinuity points for the first-order derivative of Cmax,
as can be observed from Fig. 6. Similar to Table II, Table IV
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Fig. 8. Average capacity versus peak power limit for the optimal channel
switching and the optimal single channel strategies for the scenario in Fig. 6,
where Pav = 0.07 mW.

TABLE IV
OPTIMAL STRATEGY FOR THE SCENARIO IN FIG. 6, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORS λ∗

AND (1− λ∗) AND POWER LEVELS P ∗
1 AND P ∗

2 , RESPECTIVELY

presents the solutions corresponding to the optimal strategy
for various values of Ppk. From the table, it is observed that
the optimal strategy changes with respect to the peak power
limit. In addition, it can be shown that the solutions of the
optimal channel switching strategy satisfy condition (i) in
Proposition 5 for Ppk ≥ 0.1868mW and condition (ii) for
Ppk ∈ (0.075, 0.1868)mW.

Based on the numerical examples, an intuitive explanation
can be provided about the benefits of channel switching and
why the optimal channel switching strategy involves switching
between no more than two channels. In the absence of channel
switching, the maximum capacity is given by Cmax(Pav),
whereas via channel switching, the upper boundary of the
convex hull of Cmax(Pav) can also be achieved (see, e.g.,
Fig. 4). Since the upper boundary of the convex hull can always
be formed by a convex combination of two different points,
no more than two different channels are needed to achieve the
optimal capacity. Finally, it is important to note that the optimal
solution to the channel switching problem in (3) may not be
unique in general; that is, in some cases, two different channel
switching strategies or a channel switching strategy and a single
channel strategy can be the optimal solutions.

V. CONCLUDING REMARKS

In this study, the optimal channel switching strategy has
been proposed for average capacity maximization in the pres-
ence of average and peak power constraints. Necessary and
sufficient conditions have been derived for specifying whether
the proposed optimal channel switching strategy can or cannot
outperform the optimal single channel strategy. In addition,
the optimal channel switching solution has been shown to be
realized by channel switching between at most two different
channels, and a low-complexity optimization problem has been
formulated to calculate the optimal channel switching solution.
Furthermore, based on the necessary conditions that need to
be satisfied by the optimal channel switching solution, an
alternative approach has been proposed for calculating the
optimal channel switching strategy. Numerical examples have
been investigated and intuitive explanations about the benefits
of channel switching have been provided. Although Gaussian
channels have been considered in this study, the results can
also be applied to block frequency-flat fading channels in the
presence of Gaussian noise when the channel state information
is available at the transmitter and the receiver. In that scenario,
the proposed channel switching strategy can be adopted for
each channel state. As future work, performance improvements
that can be achieved by performing both channel switching
at each channel state and adaptation over varying channel
states can be considered. Another future work involves the
consideration of channel switching costs (delays) in the design
of optimal channel switching strategies.
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