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1. Introduction
Consider the problem of deciding the optimal (i.e.,
resulting in the least total installation cost) number of
devices of unit capacity to be installed on the links of
the simple network in Figure 1(a) to support the com-
munication demands between the nodes. The num-
ber on each edge gives the installation cost of a unit
capacity device on that edge. Each pairwise demand
is cited with its source and destination; i.e., AB is the
demand from A to B, whereas BA is the demand in
the reverse direction. Suppose that all communication
demands except AD, DA, AE, and EA are forecasted
to be one unit of traffic flow. The aforementioned four
pairs are not expected to exchange any traffic, and
hence these demands are zero.
Suppose that we seek a design where link capacities

are sufficient to accommodate the total flow on each
link in both directions and we allow multipath rout-
ing. Then, an optimal capacity installation is given in
Figure 1(b) with a total cost of 13. Now suppose that
the communication demands are realized to be dif-
ferent than expected, namely, AD, AE, BD, and BE
are one unit more than forecasted, whereas AB, BA,
DE, and ED are one unit fewer than forecasted. As
a result, the current capacity of link CD would not

be sufficient to route all traffic requests simultane-
ously. In telecommunications networks, such a defi-
ciency causes a delay whose consequences become
more severe as the deviation from expectations and
the strategic value of the data traffic increase.
In this paper, we discuss the design of networks

that can support changing communication patterns
in the least costly manner. More precisely, we study
the robust network loading problem (NLP) under a
polyhedral uncertainty definition of possible traffic
demands. The traditional NLP assumes that pairwise
demands are known. The purpose is to determine the
least costly allocation of discrete units of capacitated
facilities on the links of the given network. In this
work, we do not assume that demands are known
a priori, but we consider a polyhedral definition of
feasible demands. Our motivation for this study is
to design networks robust to fluctuations in demand
estimates, which are almost sure to happen in real-
life applications. Hence, we want our least-cost design
to remain operational for any feasible realization in a
prescribed polyhedral set.
It is well accepted that data are always subject to

some uncertainty in real-life problems. On some occa-
sions researchers completely ignore uncertainty and
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Figure 1 Example of Network Capacity Loading

use nominal values to represent the expected average
behavior of the system. On the other hand, stochastic
programming (SP) has been widely used to deal with
uncertainty. SP yields decisions that might become
infeasible with some probability, but in some cases,
such a tolerance is not favorable, and robust optimiza-
tion (RO) is more useful because it aims to make the
best decision that remains “operational” for any real-
ization of data within a prescribed uncertainty set. An
overview of some topics in the RO domain is given
by Ben-Tal and Nemirovski (2008).
In RO, one decides on an uncertainty set �, which

defines all likely data realizations for which one is
willing to be prepared, without making any assump-
tion on the stochastic model of the data. Then, a
robust design is the one whose worst performance
over � is the best. There are various ways of defin-
ing the uncertainty set �: a set of finite/infinite num-
ber of scenarios, finite intervals, or a polyhedral or an
ellipsoidal set (see, e.g., Atamtürk 2006; Atamtürk and
Zhang 2007; Ben-Tal and Nemirovski 1998, 1999, 2008;
Ben-Tal et al. 2004; Bertsimas and Sim 2003, 2004;
Mudchanatongsuk et al. 2008; Ordoñez and Zhao
2007; Yaman et al. 2007).
An important uncertain component in network

design problems is the traffic matrix, i.e., the demand
between origin–destination pairs. In practice, it is not
likely for network designers to have a precise esti-
mate of the traffic matrix, and ignoring this uncer-
tainty may lead to a failure to meet service-level agree-
ments. To overcome this obstacle, Duffield et al. (1999)
and Fingerhut et al. (1997) independently proposed
a flexible model (hose model) that specifies aggre-
gate traffic upper bounds for selected endpoints of the
network. Since then, the hose model has gained sig-
nificant popularity because of its ease of specification
(Fingerhut et al. 1997) as well as the resource-sharing
flexibility and multiplexing gains it provides (Duffield
et al. 1999). The hose model is initially used to design
virtual private networks (VPNs). Among these efforts,
Gupta et al. (2001), Italiano et al. (2002), Grandoni
et al. (2008), and Goyal et al. (2008) address the com-
putational complexity of the resulting combinatorial
optimization problems; Goyal et al. (2008) prove that

the VPN design problem with fractional link capaci-
ties and single-path routing of symmetric traffic matri-
ces can be solved in polynomial time. Similarly, Gupta
et al. (2003), Kumar et al. (2001), and Swamy and
Kumar (2002) develop approximation algorithms for
the problem with different hose definitions. In the
same vein, Ben-Ameur and Kerivin (2005) discuss the
polyhedral model, where the feasible demand realiza-
tions are defined by an arbitrary polyhedron. They
develop an iterative algorithm based on enumerating
the vertices of the demand polyhedron so as to deter-
mine robust minimum-cost splittable routing and edge
capacity configurations. Later, Altın et al. (2007) pro-
pose a compact mixed-integer programming model
for VPN design with continuous capacity expansion
under unsplittable routing along with a branch-and-
price-and-cut algorithm. Their model considers all
traffic matrices simultaneously. On the other hand, the
growth in the size and application types in IP net-
works has inspired several works in this domain as
well (Belotti and Pınar 2008, Altın et al. 2010).
The number of different facility types available for

installation, the use of different cost functions with
flow costs, and technical restrictions on the routing
of demands give rise to variants of the determin-
istic NLP (Atamtürk and Rajan 2002; Avella et al.
2007; Berger et al. 2000; Bienstock and Günlük 1996;
Bienstock et al. 1998; Günlük 1999; Brockmüller et al.
2004; Magnanti and Mirchandani 1993; Magnanti
et al. 1993, 1995; Mirchandani 2000; Rardin and
Wolsey 1993; van Hoesel et al. 2002). The capacity
expansion problem (CEP), where the decision is to
determine a capacity expansion plan for a given net-
work, is also closely related with NLP (Atamtürk and
Günlük 2007, Atamtürk and Rajan 2002, Berger et al.
2000, Bienstock and Günlük 1996, Günlük 1999).
Because NLP is strongly NP-hard, there have been

various efforts for solving it as efficiently as possi-
ble through the use of alternative formulations and
heuristics, and by a thorough polyhedral analysis
(Magnanti and Mirchandani 1993, Magnanti et al.
1993, van Hoesel et al. 2002, Atamtürk and Günlük
2007). The most common approach in the literature
to handle NLP efficiently is to define some strong
valid inequalities to strengthen the linear program-
ming relaxations. Projection of the feasible set onto
the space of discrete design variables has also been a
common point of interest (Atamtürk and Rajan 2002;
Avella et al. 2007; Bienstock et al. 1998; Bienstock
and Günlük 1996; Magnanti and Mirchandani 1993;
Magnanti et al. 1993, 1995; Mirchandani 2000; Rardin
and Wolsey 1993).
Because the demand between each origin–destina-

tion pair can be considered as a single commodity,
NLP is of a multicommodity flow nature. Although
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the problem for single-commodity flow with two facil-
ity types is very well studied, and the polyhedra
of feasible flows is fully characterized (Mirchandani
2000), the multicommodity flow version remains hard,
and metric inequalities are used to define the projec-
tion of the corresponding polyhedron on the space of
discrete design variables (Onaga and Kakusho 1971).
Against this background, the main contribution

of this paper to the existing body of literature on
single-stage robust NLP is to relax the assumption
of known traffic demands prior to designing the
network. Whereas NLP with known (deterministic)
demands is well studied, the literature on robust NLP
is rather limited. For the single-stage robust NLP
under polyhedral uncertainty, we are not aware of any
other attempt with the exception of an earlier reference
by Karaşan et al. (2005), where uncertainty was incor-
porated into the design of fiber optic networks with
an emphasis on modeling rather than on a detailed
polyhedral analysis and branch and cut. On the other
hand, Atamtürk and Zhang (2007) study the two-stage
robust NLP, where the capacity is reserved on network
links before observing the demands and the routing
decision is made afterwards in the second stage. Fur-
thermore, Mudchanatongsuk et al. (2008) study an
approximation to the robust CEP with recourse, where
the routing of demands (recourse variables) is limited
to a linear function of demand uncertainty.
Our formulation for NLP with polyhedral uncer-

tainty is interesting because we avoid using met-
ric inequalities because of a decomposition property
obtained from a projection on the design components.
A similar projection is used in Mirchandani (2000) for
deterministic single- and multicommodity NLP, where
all extreme rays of the related projection cone for
the single-commodity case were characterized. How-
ever, only necessary conditions were obtained for
the deterministic multicommodity variant. The lat-
ter problem is difficult because the coupling bundle
constraints prevent the decomposition of the prob-
lem into single-commodity subproblems. However,
we bypass that difficulty by observing that we can
decompose the projection problem into many smaller
single-commodity problems for which the results of
Mirchandani (2000) remain valid. This observation
considerably simplifies the formulations, but the prob-
lem still remains difficult and requires intensive efforts
for developing an efficient solution algorithm. Conse-
quently, it opens the way to a thorough polyhedral
analysis based on which we develop a branch-and-cut
algorithm along with a simple but effective heuristic,
and we use it to solve several well-known network
design instances.
Studies on the polyhedral properties of determinis-

tic NLP are mostly limited to the case of at most three
facility types where the capacity of a facility is an

integer multiple of the capacity of the smaller facility.
Atamtürk (2002) gives valid inequalities for the deter-
ministic problem with general capacity modularities
and an arbitrary number of facilities. More recently,
Raack et al. (2010) derive a general definition of flow-
cutset inequalities as mixed-integer rounding inequal-
ities for deterministic NLP with directed, bidirected,
and undirected networks. They also consider arbi-
trary capacity structures for multiple facilities, where
they study the facial structure of the cutset polyhe-
dra and its relation to the deterministic NLP. The sec-
ond main contribution of this paper is that we present
valid inequalities for robust NLP with an arbitrary
number of facilities and arbitrary capacity structures.
The rest of this paper is organized as follows. In §2

we describe our problem and give a compact mixed-
integer programming formulation and its projection
onto the space of design variables. We move on to the
hose model in §2.2 and carry out a thorough polyhe-
dral analysis for NLP under hose uncertainty in §3.
Then we continue with separation algorithms for var-
ious valid inequalities and heuristics, all incorporated
into a branch-and-cut algorithm in §4. We give a sum-
mary of our computational results in §5 and conclude
in §6 with some directions for future work.

2. Problem Definition
The deterministic NLP is defined as follows. Let G =
�V �E� be an undirected graph where V is the set of
nodes and E is the set of edges. Let Q denote the
set of commodities, i.e., the set of origin–destination
pairs with traffic demand. The origin of commodity
q ∈ Q is s�q� and its destination is t�q�. A set of facility
alternatives with different capacities and costs can be
used to carry flow through the network. The problem
is to determine the number of facilities installed on
the edges such that all demand can be routed and
the installation cost is minimized. Then NLP can be
modelled as

min
∑

�h�k�∈E

∑
l∈L

pl
hky

l
hk (1)

s.t.
∑

k� �h�k�∈E

�f
q

hk − f
q

kh� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 h = s�q��

−1 h = t�q��

0 otherwise,

∀h ∈ V � q ∈ Q� (2)∑
q∈Q

�f
q

hk + f
q

kh�dq ≤∑
l∈L

Clyl
hk ∀ �h�k� ∈ E� (3)

yl
hk ≥ 0 and integer ∀ �h�k� ∈ E� l ∈ L� (4)

f
q

hk� f
q

kh ≥ 0 ∀ �h�k� ∈ E� q ∈ Q� (5)

where dq is the forecasted demand for commodity q ∈
Q, L is the set of facility alternatives, pl

hk is the cost
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of installing one facility of type l ∈ L on edge �h�k� ∈
E, and Cl is the transmission capacity of type l ∈ L
facility. Variables of the model are yl

hk for the number
of type l ∈ L facilities loaded on the edge �h�k� ∈ E and
f

q

hk for the fraction of dq routed on the edge �h�k� ∈ E
in the direction from h to k. Constraints (2) are the
usual flow conservation constraints for each demand
pair at each node. Finally, the constraints (3) are the
edge capacity constraints, which ensure that the total
capacity installed on each edge is enough to support
the total flow on it in both directions.

2.1. Robust Network Loading Problem with
Polyhedral Demands

Demand forecasts may not be precise and the real-
ized demand is very likely to be different from what
is expected. Our aim is to design a network that is
viable for any demand realization in the polyhedral
set D = �d ∈��Q�� Ad ≤ ��d ≥ 0�, where A ∈�m×�Q� and
� ∈�m. We assume that D is bounded and nonempty.
This leads to the following polyhedral NLP model
�NLPPOL�:

min
∑

�h�k�∈E

∑
l∈L

pl
hky

l
hk

s.t. �2�� �4�� �5��

max
d∈D

∑
q∈Q

�f
q

hk + f
q

kh�dq ≤∑
l∈L

Clyl
hk ∀ �h�k� ∈ E	 (6)

Unlike the deterministic case, NLPPOL is a semi-
infinite optimization model as a result of the infinite
number of inequalities we need to consider over the
demand polyhedron for each edge �h�k� ∈ E. How-
ever, following the method commonly used in robust
optimization (see, e.g., Altın et al. 2007, Ben-Tal and
Nemirovski 1999, Bertsimas and Sim 2003), we can
give a compact linear mixed-integer programming
(MIP) formulation for NLPPOL. In NLPPOL, for a given
flow vector f and an edge �h�k� ∈ E, the worst-case
capacity requirement can be found by solving

max
∑
q∈Q

�f
q

hk + f
q

kh�dq (7)

s.t.
∑
q∈Q

aq
zdq ≤ �z ∀z = 1� 	 	 	 �m� (8)

dq ≥ 0 ∀ q ∈ Q	 (9)

Notice that (7)–(9) is a linear programming model and
its dual is

min
m∑

z=1

�z

hk
z (10)

s.t.
m∑

z=1

aq
z


hk
z ≥ f

q

hk + f
q

kh ∀ q ∈ Q� (11)


hk
z ≥ 0 ∀z = 1� 	 	 	 �m� (12)

where 
hk
z is the dual variable corresponding to (8).

Since (7)–(9) is feasible and bounded, we can use a
duality transformation similar to the one of Soyster
(1973). Hence for each edge �h�k� ∈ E, we can replace
(6) with

∑
l∈L

Clyl
hk ≥min

{ m∑
z=1

�z

hk
z � �11� and �12�

}
	

Then, we can omit the min since we try to minimize
the sum of the design variables yl

hk with nonnegative
weights. Hence, assuming that demand is subject to
polyhedral uncertainty, NLPPOL can be reformulated
as the following linear MIP model �NLPGD�:

min
∑

�h�k�∈E

∑
l∈L

pl
hky

l
hk (13)

s.t. �2�� �4�� �5��
m∑

z=1

�z

hk
z ≤∑

l∈L

Clyl
hk ∀ �h�k� ∈ E� (14)

f
q

hk + f
q

kh ≤
m∑

z=1

aq
z


hk
z ∀ q ∈ Q� �h�k� ∈ E� (15)


hk
z ≥ 0 ∀z = 1� 	 	 	 �m� �h�k� ∈ E	 (16)

As there is no flow cost in our model, we can obtain
a formulation of our problem in the space of 
 ∈�m�E�

and design variables y ∈ ��L��E�. Mirchandani (2000)
characterized all extreme rays of the projection cone
related to the single-commodity NLP. However, only
necessary conditions for the multicommodity vari-
ant are given. In this case, the resulting projection
inequalities are the well-known metric inequalities.
Although we do not provide the complete machin-

ery of the projection process, we note here a particular
decomposition property for NLPGD. Observe that after
the duality transformation we have used above, there
are no constraint bundling flow variables associated
with different commodities in NLPGD. Hence, the exis-
tence of a multicommodity flow f can be certified by
checking the existence of �Q� single-commodity flows;
i.e., the projection cone for the multicommodity prob-
lem can be decomposed into �Q� cones with one cone
for each commodity q ∈ Q. Based on this observation
and using the extreme rays mentioned in Mirchan-
dani (2000) for the single-commodity problem, we
obtain the following mathematical model �NLPPRO� in
the space of 
 and y variables:

min
∑
e∈E

∑
l∈L

pl
ey

l
e

s.t. �4�� �14�� �16��
m∑

z=1

aq
z


e
z ≥ 0 ∀ e ∈ E� ∀ q ∈ Q� (17)
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∑
e∈��S�

m∑
z=1

aq
z


e
z ≥ 1

∀ q ∈ Q� S ⊂ V � s�q� ∈ S� t�q� ∈ V \S� (18)

where (17) and (18) are the related projection inequal-
ities. We denote an edge �h�k� as e when there is no
need to specify its endpoints. For S ⊂ V , ��S� denotes
the set of edges with only one endpoint in S.
To conclude this section, we remark that model

NLPGD has an interesting property. Consider the case
where D = �d ∈��Q�� Id = ��d ≥ 0� and I is an identity
matrix of size �Q�. Note that this corresponds to the
deterministic case where dq = �q for each q ∈ Q. For
this particular definition of D, constraints (14)–(16) in
the model NLPGD become

∑
q∈Q

dq

hk
q ≤∑

l∈L

Clyl
hk ∀ �h�k� ∈ E�

f
q

hk + f
q

kh ≤ 
hk
q ∀ q ∈ Q� �h�k� ∈ E	

Here, the variable dq

hk
q can be interpreted as the

capacity on edge �h�k� ∈ E allocated to commodity
q ∈ Q. Rardin and Wolsey (1993) use similar vari-
ables to express the flow requirements using cut
constraints and obtain an extended formulation for
the uncapacitated fixed-charge network flow problem.
Then they project out these variables and obtain the
so-called “dicut collection inequalities.” Labbé and
Yaman (2004) do a similar analysis on the flow for-
mulations for the uncapacitated hub location problem
and show that the family of dicut collection inequal-
ities contains the metric inequalities. Notice that for
a general demand polyhedron D, in our model, the
variables 
hk

z are not additional variables that are used
to get an extended formulation; rather, they come
out of the duality transformation that is used to con-
vert the semi-infinite optimization model NLPPOL to a
mixed-integer programming model NLPGD. Still, the
same duality transformation results in a system where
flow variables related to different commodities are not
bundled together any more and permits the use of cut
inequalities to model the flow requirements as we did
in NLPPRO.

2.2. The Hose Demand Uncertainty Case
Duffield et al. (1999) proposed the hose model to carry
out flexible resource management in VPN. Indepen-
dently, Fingerhut et al. (1997) discuss the same flexible
specification of nonsimultaneous traffic requirements
for a more effective design of broadband networks.
Since then, the hose model has become popular in
the telecommunications community. Rather than the
point-to-point demand estimations, it uses the traf-
fic bandwidth of some special nodes called VPN ter-
minals to characterize the feasible demand matrix

realizations. The difficulty of the VPN design prob-
lem (with continuous link capacities) depends on the
bandwidth definition (symmetric, asymmetric, and sum-
symmetric) and the technical constraints on the routing
scheme (single-path, multipath, tree, and terminal tree
routing). An intriguing question is the complexity of
the symmetric case with single-path routing. Hurkens
et al. (2007) prove that it can be solved in polynomial
time if the backbone network of the VPN is a circuit.
However, NLP with symmetric demands remains a
challenging problem as our test results in §5 show.
In the rest of this paper, we consider the following
symmetric hose model of demand uncertainty:

Dhose =
{

d ∈��Q��
∑

q∈Q� s�q�=i or t�q�=i

dq ≤ bi ∀ i ∈ W�

dq ≥ 0 ∀ q ∈ Q

}
� (19)

where W ⊆ V is the set of VPN terminals; i.e., W =
�i ∈ V � ∃q ∈ Q with s�q� = i or t�q� = i� and bi is the
bandwidth capacity of the terminal node i ∈ W . In the
classical symmetric model; demand is undirected; i.e.,
the demand from s to t is equal to the demand from
t to s. However, in (19), we allow directed demand as
long as the cumulative bounds are respected.
The importance of the hose model can be demon-

strated by returning to the simple example in Fig-
ure 1, where we consider a single-facility type with
unit capacity. Recall that the optimal capacity alloca-
tion would be as shown in Figure 1(b) with a total cost
of 13 when the demands are assumed to be known.
Now consider the corresponding hose model where
the bandwidth of nodes from A to E are 4, 8, 8, 6, and
6 units, respectively. Then, the optimal design for the
hose polyhedron is as shown in Figure 2(a) with a total
cost of 15. Notice that even though the total design
cost has increased slightly, the polyhedral design is
more robust to fluctuations in demand. Recall the sce-
nario we discussed in §1 where some of the pairwise
demands have deviated by one unit from their expec-
tations. Although the deterministic design fails in that
case, the robust one in Figure 2(a) remains operational.
Next, consider the demand uncertainty definition

that we call the BS model, developed by Bertsimas and

A

(a) Minimum cost design
for the hose model

(b) Minimum cost design
for the BS model

A

E ED D

C C4

6

8

10

8

12 14

10

B B

Figure 2 Minimum Cost Robust Designs
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Sim (2003), where each demand dq takes a value in the
range �d̄q − d̂q� d̄q + d̂q such that at most � commodi-
ties would attain their maximum values. For the exam-
ple above, we let the mean demand estimations d̄q and
deviations d̂q be one unit so that both the expected and
realized demand matrices belong to the demand poly-
hedron. Then, even for the not-so-conservative case
with � = 2, the optimal design is as in Figure 2(b) with
a total cost of 22. Although this design also remains
operational for the aforementioned scenario, it leads to
a significant increase in the design cost. An increase in
the total design cost is a natural consequence of having
a robust design. We provide some experimental results
on this issue later in §5. However, this example shows
that the hose model can be more advantageous than
some other uncertainty definitions. The hose model
enables the transfer of unused capacity for a pairwise
demand to another demand that goes beyond its esti-
mation. Hence, capacities of edges for the hose model
can be less than required by the point-to-point pipes as
a result of statistical multiplexing.
The next proposition gives a formulation of NLP

under hose demand uncertainty.

Proposition 2.1. The projection of NLPGD onto the
space of �
�y� variables for the hose model �NLPhose� is as
follows:

min
∑
e∈E

∑
l∈L

pl
ey

l
e

s	t	
∑
i∈W

bi

e
i ≤∑

l∈L

Clyl
e ∀ e ∈ E� (20)

∑
e∈��S�

�
e
s�q� + 
e

t�q�� ≥ 1

∀ q ∈ Q�S ⊂ V � s�q� ∈ S� t�q� ∈ V \S� (21)

yl
e ≥ 0 and integer ∀ e ∈ E� l ∈ L�


e
i ≥ 0 ∀ i ∈ W� e ∈ E	

3. Polyhedral Analysis
In this section we present results on the facets of
the polyhedron associated with the network load-
ing problem under hose uncertainty NLPhose. In the
sequel, we assume that Cl is a positive integer for l ∈ L
and that the set L is ordered such that for l1 and l2 in
L such that l1 < l2 we have Cl1 < Cl2 . Let F = ��
�y� ∈
��W ��E�

+ ×��E��L�
+ : (20) and (21)� and P = conv�F �. Observe

that adding constraints


e
i ≤ 1 ∀ i ∈ W� e ∈ E (22)

does not change the validity of the model when the
costs are nonnegative (see Karaşan et al. 2005). Let
F ′ = F ∩��
�y� ∈��W ��E�

+ ×��E��L�
+ : (22)� and P ′ = conv�F ′�.

First, we investigate the dimension of the polyhedra
P and P ′.

The proofs of all the results presented in this section
as well as two lemmas are given in the Online Sup-
plement at http://joc.pubs.informs.org/ecompanion
.html.

Proposition 3.1. The dimension of P and P ′ is
��W � + �L���E�.
Proof. See the Online Supplement. �

3.1. Projection onto the Subspace of 

Let F
 = Proj
�F � = �
 ∈ ��W ��E�

+ : (21)� and F ′

 =

Proj
�F ′� = F
 ∩ �
 ∈ ��W ��E�
+ : (22)�. Now, we relate facet

defining inequalities of F
 and F ′

 with those of P

and P ′.

Proposition 3.2. Inequality �
 ≥ �0 is facet defining
for P (respectively, for P ′) if and only if it is facet defining
for F
 (respectively, for F ′


).

Proof. See the Online Supplement. �

3.2. Projection into the Subspace of �
e� ye�
For e ∈ E, define Fe = ��
e� ye� ∈ ��W �

+ ×��L�
+ : (20)�, Pe =

conv�Fe�, F ′
e = Fe ∩��
e, ye� ∈��W �

+ ×��L�
+ : (22)�, and P ′

e =
conv�F ′

e�. Observe that if ��S�\�e� �=  for every S ⊂ V
such that there exists q ∈ Q with s�q� ∈ S and t�q� ∈
V \S, then Fe = Proj�
e�ye�

�F � and F ′
e = Proj�
e�ye�

�F ′�. In
the following theorem, we investigate how the facet-
defining inequalities of Pe and P ′

e are related to those
of P and P ′.

Theorem 3.1. Let e ∈ E be such that ��S�\�e� �=  for
every S ⊂ V such that there exists q ∈ Q with s�q� ∈ S and
t�q� ∈ V \S. Inequality �
e + �ye ≥ � is facet defining for
Pe (respectively, for P ′

e) if and only if it is facet defining
for P (respectively, for P ′).

Proof. See the Online Supplement. �

3.3. Projection into the Subspace of Design
Variables Associated with the Edges of a Cut

For S ⊆ V , define b�S� = ∑
i∈S∩W bi and B�S� =

min�b�S�� b�V \S��. Notice that in the worst case all ter-
minals in S ⊂ V would want to use all of their band-
widths to exchange traffic with the nodes in V \S. As
a result, the worst-case traffic on the cut ��S� would
be the minimum of these requirements, i.e., B�S� (see
Gupta et al. 2001, Karaşan et al. 2005).
Let S ⊂ V be such that the subgraphs induced

by S and V \S are both connected. Let y��S� be the
restriction of the vector y to edges e ∈ ��S�, F �S� =
�y��S� ∈ ����S���L�

+ �
∑

l∈L

∑
e∈��S� Clyl

e ≥ B�S��, and P�S� =
conv�F �S��.

Proposition 3.3. Let S ⊂ V be such that the sub-
graphs induced by S and V \S are both connected and
B�S� > 0. F �S� = Projy��S�

�F � = Projy��S�
�F ′�.

Proof. See the Online Supplement. �
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Now, we can relate facet-defining inequalities of
P�S� to those of P .

Theorem 3.2. Let S ⊂ V be such that the subgraphs
induced by S and V \S are both connected and B�S� > 0. If
inequality

∑
l∈L

∑
e∈��S� �l

ey
l
e ≥ �0 is facet defining for P�S�,

and for each e′ ∈ ��S� there exists a vector y��S� ∈ F �S� such
that

∑
l∈L

∑
e∈��S� �l

ey
l
e = �0 and

∑
l∈L Clyl

e′ > B�S�, then the
inequality is facet defining for P .

Proof. See the Online Supplement. �

3.4. Cutset and Residual Capacity Inequalities
Now, we modify two well-known families of valid
inequalities for NLP to render them valid for our
problem. These inequalities are the cutset inequali-
ties and arc residual capacity inequalities (see, e.g.,
Magnanti et al. 1993). Both inequalities can be gen-
erated as mixed-integer rounding (MIR) inequalities.
Let X = ��x1�x2� ∈ �+ × �� x1 + x2 ≥ ��. The MIR
inequality x1 ≥ �� − �������� − x2� is valid for X (see,
e.g., Wolsey 1998, Cornuéjols 2008).
The special cases of the cutset and residual capacity

inequalities for the network loading problem under
hose uncertainty with a single-facility type are pre-
sented and used in Karaşan et al. (2005) to strengthen
the linear programming (LP) relaxation bound.
The set F �S� is an integer knapsack cover set. Its

convex hull is a special case of the single-commodity
multifacility cutset polyhedron studied in Atamtürk
(2002). Yaman (2007) gives a family of valid inequal-
ities called the “lifted rounding inequalities” for the
integer knapsack cover set. These inequalities general-
ize the cutset inequalities and are special cases of the
multifacility cutset inequalities of Atamtürk (2002). As
they are valid for P�S�, they are also valid for P and P ′.
For S ⊂ V and l ∈ L, let

Y l�S� = ∑
e∈��S�

yl
e�

r l�S� = b�S� −
⌊

b�S�

Cl

⌋
Cl�

and
Rl�S� = B�S� −

⌊
B�S�

Cl

⌋
Cl	

For l1 and l2 in L, let

g�l1� l2� = Cl1 −
⌊

Cl1

Cl2

⌋
Cl2 	

Proposition 3.4. For S ⊂ V and l∗ ∈ L such that
Rl∗�S� > 0, the cutset inequality

∑
l∈L� Cl<B�S�

(
Rl∗�S�

⌊
Cl

Cl∗

⌋
+min�g�l�l∗��Rl∗�S��

)
Y l�S�

+ ∑
l∈L� Cl≥B�S�

Rl∗�S�

⌈
B�S�

Cl∗

⌉
Y l�S�≥Rl∗�S�

⌈
B�S�

Cl∗

⌉
(23)

is valid for P and P ′.

Inequality (23) is obtained from the inequality
Y l∗�S� ≥ �B�S�/Cl∗� using sequence-independent lift-
ing in Yaman (2007). The same inequality can be
obtained as MIR inequality.
Yaman (2007) proves that if C1 = 1, then the cutset

inequality (23) for l∗ ∈ L such that Rl∗�S� > 0 is facet
defining for P�S�. Using Theorem 3.2, we can state the
following proposition.

Proposition 3.5. Let S ⊂ V be such that the sub-
graphs induced by S and V \S are both connected, and last
l∗ ∈ L be such that Rl∗�S� > 0. If C1 = 1, then the cutset
inequality (23) is facet defining for P .

Proof. See the Online Supplement. �

Notice that if C2� 	 	 	 �C �L� are divisible by C1, then
we can scale the bs values and the Cl values by divid-
ing with C1 so that C1 = 1. Moreover, if �L� = 1 and
R1�S� > 0, then the cutset inequality (23) is facet defin-
ing for P for S ⊂ V such that the subgraphs induced
by S and V \S are both connected.
Next, we generate residual capacity inequalities as

MIR inequalities.

Proposition 3.6. Let e ∈ E, l∗ ∈ L, and S ⊆ W be such
that r l∗�S� > 0. The residual capacity inequality

∑
l∈L

(
r l∗�S�

⌊
Cl

Cl∗

⌋
+min�g�l� l∗�� r l∗�S��

)
yl

e

+∑
i∈S

bi�1− 
e
i � ≥ r l∗�S�

⌈
b�S�

Cl∗

⌉
(24)

is valid for P ′.

Proof. See the Online Supplement. �

If �L� = 1, the residual capacity inequality becomes

r1�S�y1
e +∑

i∈S

bi�1− 
e
i � ≥ r1�S�

⌈
b�S�

C1

⌉
	 (25)

Magnanti et al. (1993) prove the following: if
�b�S�/C1� ≥ 2, then this inequality defines a facet of
P ′

e. If �b�S�/C1� = 1, then the inequality defines a facet
of P ′

e if �S� = 1. Using Theorem 3.1, we can prove the
following.

Corollary 3.1. Let e ∈ E be such that ��S ′�\�e� �= 
for every S ′ ⊂ V such that there exists q ∈ Q with s�q� ∈ S ′

and t�q� ∈ V \S ′. Suppose that �L� = 1 and let S ⊆ W be
such that r1�S� > 0. The residual capacity inequality (25)
defines a facet of P ′ if �b�S�/C1� ≥ 2 or if �b�S�/C1� = 1
and �S� = 1.
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4. Branch-and-Cut Algorithm
Because we have an exponential number of con-
straints (21) in NLPhose, we use a branch-and-cut
(B&C) algorithm, which starts with a larger feasible
set ��
�y� ∈��W ��E�

+ ×��E��L�
+ � �20�� and adds the violated

inequalities iteratively. In this section, we first explain
our separation algorithms for the feasibility cuts (21),
as well as the demand cutset (23) and residual capac-
ity (24) inequalities. Then, we briefly describe our
upper bounding procedure.

4.1. Separation of Feasibility Cuts
Inequalities (21) can be separated by solving mini-
mum cut problems. Given a pair �
̄� ȳ�, we construct
an auxiliary graph Ḡq = �V �E� for each commodity
q ∈ Q such that the capacity of each edge e ∈ E is set
to be 
̄e

s�q� + 
̄e
t�q�. If the capacity of the minimum cut

C�q� separating s�q� and t�q� is less than one, then we
have a violated inequality (21) for commodity q. Oth-
erwise, no inequality (21) is violated for q by the pair
�
̄� ȳ�. Hence, we add at most �Q� feasibility cuts at
each iteration.

4.2. Separation of Demand Cutset Inequalities
We have a heuristic separation algorithm for (23). For
each commodity q ∈ Q, we use the cut C�q� for which
a feasibility cut (21) is violated. If the pair �
̄� ȳ� also
violates a demand cutset inequality for C�q� and the
facility type l∗ ∈ L, then we add the corresponding
cut to the problem. Thus, we add at most �Q��L� such
inequalities at each iteration.

4.3. Separation of Residual Capacity Inequalities
We do not know any polynomial-time algorithm to
separate inequalities (24), but we can separate a
relaxed version of these inequalities in polynomial
time. Let e ∈ E, l∗ ∈ L, and S ⊆ W . Define the relaxed
residual capacity inequality as

∑
l∈L

(
Cl − �Cl∗ − r l∗�S��

⌊
Cl

Cl∗

⌋)
yl

e

+∑
i∈S

bi�1− 
e
i � ≥ r l∗�S�

⌈
b�S�

Cl∗

⌉
� (26)

which is valid for P ′ as it is implied by inequality (24).
Moreover, it is a MIR inequality.
For a given edge e ∈ E, a facility type l∗ ∈ L, and

a pair �
̄e� ȳe�, finding a violated relaxed residual
capacity inequality or showing that there is no such
inequality is equivalent to solving the problem

��e� l∗� = min
S⊆W

{∑
i∈S

bi�1− 
̄e
i � − r l∗�S�

·
(⌈

b�S�

Cl∗

⌉
−∑

l∈L

⌊
Cl

Cl∗

⌋
ȳl

e

)}
	

If
∑

l∈L�Cl − Cl∗�Cl/Cl∗��ȳl
e + ��e� l∗� ≥ 0, then �
̄e� ȳe�

satisfies all (26) for e ∈ E and l∗ ∈ L. Otherwise, we
have a violated relaxed residual capacity inequal-
ity defined by a minimizing set S. Since (26) is
a MIR inequality, if

∑
l∈L�Cl/Cl∗�ȳl

e ≥ �b�S�/Cl∗� or∑
l∈L�Cl/Cl∗�ȳl

e ≤ �b�S�/Cl∗� − 1, it cannot be vio-
lated. This is because it would be dominated by∑

i∈S bi�1− 
e
i � ≥ 0 and

∑
l∈L Clyl

e +∑
i∈S�1−
e

i �bi ≥ b�S�
otherwise. Then, using the arguments in Atamtürk
and Rajan (2002), we can show that the relaxed resid-
ual capacity inequalities can be separated in the fol-
lowing way. For each e ∈ E and l∗ ∈ L, we construct
the minimizing set

S�e� l∗� =
{

i ∈ W� 
̄e
i >

∑
l∈L

⌊
Cl

Cl∗

⌋
ȳl

e −
⌊∑

l∈L

⌊
Cl

Cl∗

⌋
ȳl

e

⌋}
�

and let

��S�e� l∗�� = ∑
i∈S�e� l∗�

bi�1− 
̄e
i � − r l∗�S�e� l∗��

·
(⌈

b�S�e� l∗��
Cl∗

⌉
−∑

l∈L

⌊
Cl

Cl∗

⌋
ȳl

e

)
	

Note that S�e� l∗� includes nodes with negative objec-
tive function coefficients in the separation problem
(Atamtürk and Rajan 2002). Consequently, (26) for
edge e ∈ E, facility type l∗ ∈ L, and the set S�e� l∗�
is violated if �∑l∈L�Cl/Cl∗�ȳl

e� < b�S�e� l∗��/Cl∗ <
�∑l∈L�Cl/Cl∗�ȳl

e� and
∑

l∈L�Cl − Cl∗�Cl/Cl∗��ȳl
e +

��S�e� l∗�� < 0, where the former condition ensures
that S�e� l∗� characterizes a feasible solution to the
separation problem. Otherwise, no inequality (26) for
this e ∈ E and l∗ ∈ L is violated. Hence, for a given
edge e ∈ E and facility type l∗ ∈ L, the separation of
the relaxed residual capacity inequalities can be done
in O��W �� time. This means that the complexity of the
overall algorithm is O��W ��E��L��.
We use Algorithm 1 to separate the relaxed resid-

ual capacity inequalities. Note that we solve the sep-
aration problem for the relaxed inequalities but add
the stronger ones in case of a violation. Another alter-
native is to use a hybrid separation method, where
for each edge e and facility type l∗, we check if any
strong residual capacity inequality is violated for the
set S�e� l∗�. We have implemented both methods and
observed that the former method is as efficient as
the latter one. Hence, we use the former method dis-
played in Algorithm 1 for the relaxed inequalities.

Algorithm 1 (Residual capacity inequality separation)

for all edge e ∈ E do
for all facility type l∗ ∈ L do

�Y l∗
e �=∑

l∈L

⌊
Cl

Cl∗

⌋
ȳl

e

S�e� l∗� �= �i ∈ W� 
̄e
i > �Y l∗

e − � �Y l∗
e ��
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��S�e� l∗�� = ∑
i∈S�e� l∗�

bi�1− 
̄e
i � − r l∗�S�e� l∗��

·
(⌈

b�S�e� l∗��
Cl∗

⌉
−∑

l∈L

⌊
Cl

Cl∗

⌋
ȳl

e

)

if � �Y l∗
e � <

b�S�e� l∗��
Cl∗ <

⌈ �Y l∗
e

⌉
and

∑
l∈L

(
Cl − Cl∗

⌊
Cl

Cl∗

⌋)
ȳl

e + ��S�e� l∗�� < 0 then

Add the violated residual capacity inequality∑
l∈L

(
r l∗�S�e� l∗��

⌊
Cl

Cl∗

⌋

+min�g�l� l∗�� r l∗�S�e� l∗���
)

yl
e

+ ∑
i∈S�e� l∗�

bi�1− 
e
i � ≥ r l∗�S�e� l∗��

⌈
b�S�e� l∗��

Cl∗

⌉
.

4.4. Heuristics
Given the difficulty of the problem, we expect it to
be useful to incorporate approximation heuristics into
our B&C algorithm. These algorithms yield easy-to-
compute upper bounds, useful especially for the large
instances that are relatively more difficult to solve.
We apply a simple rounding heuristic to get upper

bounds on the optimal solution. Thus, at each node
of the B&C tree, if we cannot find any violated
inequality, then we have a feasible solution for the LP
relaxation of the NLPhose problem. Let �
̄� ȳ� be the
current fractional solution. We simply generate a fea-
sible solution �
̄� ŷ� such that ŷl

e = �ȳl
e� for all e ∈ E

and l ∈ L. Bienstock et al. (1998) also use a similar
method and mention that it is efficient.
We have also adapted the approximation algorithm

of Gupta et al. (2001) for designing VPNs with contin-
uous capacity reservation to our problem. However,
based on some preliminary tests we chose to use the
rounding heuristic.

5. Experimental Results
In this section we report the results of a computational
study for NLPhose with a single facility and with two
facilities. Let NLPhose

GD be the NLPGD model for the hose
uncertainty definition, which we solve using ILOG
CPLEX. Then, we compare our B&C algorithm with
CPLEX on instances from the network design litera-
ture. The instances polska, dfn, newyork, france, janos,
atlanta, tai, nobel-eu, pioro, gui39, cost266, norway, and
sun are from the SND website (Zuse-Institute Berlin),
whereas the remaining seven instances are the ones
used in Altın et al. (2007) for a VPN design problem.
For the SND instances the average pairwise demand
estimates dq are available. Hence, to generate an ini-
tial hose polyhedron, we let the bandwidth of each
terminal node be the total demand incident to it; i.e.,
bi = ∑

q∈Q� s�q�=i or t�q�=i dq for all i ∈ W . Naturally, this

is an assumption we make to construct an initial hose
polyhedron. The choice of most effective bandwidth
values is beyond the scope of the current study. How-
ever, we discuss the sensitivity of the routing per-
formance to the choice of bandwidth values in §5.3.
Moreover, we compare the hose model and the BS
model in §5.1. For the latter model, we consider the
interval �dq/1	2�1	2dq for each commodity q ∈ Q.
We have used AMPL to model NLPhose

GD as well as
CPLEX 9.1 MIP solver to solve it. The B&C algorithm
is implemented in C using MINTO (Mixed INTeger
Optimizer; see Nemhauser et al. 1994) and CPLEX 9.1
as LP solver. We have set a two-hour time limit both
for AMPL and MINTO. The branching rule for the
B&C algorithm is to choose the integer variable with
fractional part closest to 0.5. Node selection is done
using best-bound search. We discuss our results for
single- and two-facility cases in §§5.1 and 5.2, respec-
tively. See also the Online Supplement for detailed
test results.

5.1. Single-Facility NLPhose
Here, we assume that there is only one type of facility
available with a capacity of C units. Then the demand
cutset inequalities (23) reduce to

Y 1�S� ≥
⌈

B�S�

C

⌉
∀S ⊂ V � (27)

which ensure that the total capacity across a cut is suffi-
cient to support the total demand between all terminal
pairs whose endpoints are on different shores of the
cut. Moreover, the residual capacity inequalities are

∑
i∈S∩W

bi

C
�1− 
e

i � ≥
(

b�S�

C
−
⌊

b�S�

C

⌋)(⌈
b�S�

C

⌉
− ye

)

∀S ⊂ V � e ∈ E	 (28)

Notice that the inequalities (24) and (26) are identi-
cal for the single-facility case. Thus, we implement an
exact separation algorithm for the residual capacity
inequalities (24).
First, we compare our B&C algorithm with solving

the single facility NLPhose
GD using CPLEX. We use the

demand cutset inequalities (27) and the arc residual
capacity inequalities (28) together with the feasibility
cuts (21) in our B&C algorithm.
We could solve 7 out of 18 instances to optimality

in two hours using both CPLEX and B&C. Figure 3(a)
shows the change in solution time as a result of using
our B&C algorithm rather than CPLEX to solve these
seven instances. We see that B&C yields significantly
shorter solution times in all these instances, which
grows as large as 99.7% for bhvdc. Moreover, we pro-
vide a comparison of termination gaps with CPLEX
and our B&C algorithm for the remaining 11 instances
in Figure 3(b).
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Figure 3 Comparison of Solution Times and Termination Gaps for the
Single-Facility Case

Even though CPLEX gives better upper bounds
than B&C in dfn, ny-cep2, and atlanta, the gaps at ter-
mination are better for the B&C algorithm in the first
two of these instances. On the other hand, B&C is
clearly superior for newyork, tai, janos, nobel-eu, and
sun. The most important observation here is the sig-
nificant degradation in the performance of CPLEX
relative to the B&C algorithm as the network size
increases. The instances tai, janos, nobel-eu, and sun
are very good examples of this behavior. Except tai,
all of the nodes are demand nodes in these instances,
and we observe that among such cases, only in dfn
and atlanta has CPLEX performed slightly better than
B&C. The upper bound of CPLEX is just 0	07% and
0	2% tighter than the one of B&C in dfn and atlanta,
respectively. On the other hand, the upper bounds
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Figure 4 Impact of Different Cuts

we obtain with B&C are 100% better than the bounds
with CPLEX in tai, janos, nobel-eu, and sun. Finally,
a comparison of the gaps at termination shows that
the B&C algorithm is clearly superior in 8 of the 11
instances with much lower gaps for tai, nobel-eu, and
sun, in addition to the zero gap for janos. In sum, B&C
is superior in terms of solution times or termination
gaps in 15 of the 18 instances.
We have also investigated the individual and joint

influence of the two types of cuts on the root relax-
ation solution qualities and the total solution times.
We consider the four cases F, F&D, F&R, and all,
where each capital letter shows which of the feasibil-
ity cuts (F ), demand cutset inequalities (D), and resid-
ual capacity inequalities (R) are used throughout the
B&C algorithm.
We have considered six instances that were solved

to optimality in relatively shorter times. In Figure 4,
we display the percentage of improvement for solu-
tion times and the relative change for root gaps when
we use each setting rather than F, e.g., the change
in solution time for F&D is ��time�F&D� − time�F ��/
time�F �� ∗ 100 and the change in root gap is
gap�F&D� − gap�F �. Figure 4 shows that the impact
of demand cutset inequalities both on root gaps and
solution times is significant. The residual capacity
inequalities also yield reasonable improvements in
root gaps. Although adding residual capacity and
demand cutset inequalities together does not improve
the root gaps, it improves the solution times. Aver-
age improvements in root gaps and solution times are
86% and 84.72%, respectively, for the setting all.
Next, we compare the design cost for the hose

model with the BS model for � = �0	1�Q��, � =
�0	15�Q��, and � = �0	25�Q��. We show the percentage
increase in design costs for the BS model, which is
measured as ��costBS − costhose�/costhose� × 100, in Fig-
ure 5. We see that the BS model leads to more-costly
designs with respect to the hose model as � , i.e., the
level of conservatism, increases. Average differences
are 0	36%, 4	83%, and 10	01%, respectively.
Finally, we consider the set of instances for which

we could solve both the deterministic and robust
problems in less than two hours, and we show the
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Figure 5 Increase in Cost if We Use the BS Model with Different �

Rather than the Hose Model

change in the optimal capacity installation costs in
Figure 6(a). The average increase in the total reserva-
tion cost as we shift to the robust counterpart from
the deterministic NLP is 17.62%. Although we have
to pay for the additional flexibility that the hose
model provides, we avoid overconservative designs
by exploiting the hose model. Suppose that we have
the bandwidth capacities for all nodes and we look for
a design that can support the worst case that can hap-
pen based on the given information. Clearly, the safest
approach would be to fix the demand to its worst-
case value as dq = min�bs�q�� bt�q�� for each q ∈ Q and
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(b) Ratio of the worst-case design cost to the hose design cost
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Figure 6 Hose Design Cost vs. the Deterministic and the Worst-Case
Design Costs

then solve (1)–(5). For the above instances, the cost of
this worst-case deterministic model is 6 to 25 times
larger than the cost with the hose model. We show
the magnitudes of increase in terms of the ratio of the
worst-case cost to the hose design cost in Figure 6(b).

5.2. Two-Facility NLPhose
In the two-facility case, we consider two types of facil-
ities, namely, low-capacity (LCF) and high-capacity
(HCF) facilities with transmission capacities of C1 and
C2 units, respectively. Naturally, the cost of installing
each facility is different and economies of scale pre-
vail; i.e., the cost of �C2/C1� LCFs is more than the cost
of one HCF. For S ⊂ V , the demand cutset inequalities
(23) reduce to the following inequalities:
• The LCF case, i.e., l∗ = 1, where the resulting

inequalities can be as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1�S�Y 1�S�+
(

R1�S�

⌊
C2

C1

⌋
+min�g�2�1��R1�S��

)

·Y 2�S�≥R1�S�

⌈
B�S�

C1

⌉
if C1�C2 <B�S��

Y 1�S�+Y 2�S�≥1 if C1�C2≥B�S��

Y 1�S�+
⌈

B�S�

C1

⌉
Y 2�S�≥

⌈
B�S�

C1

⌉

if C1 <B�S� and C2≥B�S�	

• The HCF case, i.e., l∗ = 2 where we can have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min�C1�R2�S��Y 1�S� + R2�S�Y 2�S�

≥ R2�S�

⌈
B�S�

C2

⌉
if C1�C2 < B�S��

Y 1�S� + Y 2�S� ≥ 1 if C1�C2 ≥ B�S��

C1Y 1�S� + �B�S��Y 2�S� ≥ �B�S��
if C1 < B�S� and

C2 ≥ B�S�	

The two types of residual capacity inequalities (24)
for each edge e ∈ E and set S ⊂ V are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1�S�y1
e +

(
r1�S�

⌊
C2

C1

⌋
+min�g�2�1�� r1�S��

)
y2

e

− ∑
i∈S∩W

bi

e
i ≥ r1�S�

⌈
b�S�

C1

⌉
− b�S� for l∗ = 1�

min�C1� r2�S��y1
e + r2�S�y2

e − ∑
i∈S∩W

bi

e
i

≥ r2�S�

⌈
b�S�

C2

⌉
− b�S� for l∗ = 2	

The number of residual capacity and demand cutset
inequalities are doubled as we move from the single-
facility case to the two-facility case. As a result, the
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LP models we solve at each iteration of the B&C algo-
rithm can rapidly get large. Therefore, we have tried
the following five different schemes for adding vio-
lated cuts:
• HA: add only HCF-type inequalities in all nodes

of the B&C tree;
• HR: add only HCF-type inequalities only at the

root node;
• GHA: add HCF-type inequalities gradually—i.e.,

add a violated HCF residual capacity inequality only
if no HCF demand cutset inequality is violated, in all
nodes of the B&C tree;
• GHR: gradually add HCF-type inequalities—i.e.,

add a violated HCF residual capacity inequality only
if no HCF demand cutset inequality is violated, only
at the root node of the B&C tree; and
• GAR: gradually add all valid inequalities—i.e.,

add violated LCF and HCF residual inequalities only
if no LCF or HCF demand cutset inequality is vio-
lated, at the root node.
We compared the performances of the five settings

in terms of the gaps at termination as shown in Fig-
ure 7. The instances for which the B&C algorithm
could not find a feasible solution within the two-hour
time limit are assigned a 105% gap. Furthermore, we
leave the bhv6c instance out of this analysis because
all schemes stopped with the same gap. Consequently,
we see that the average gaps at termination for these
11 instances are 32.6%, 38.5%, 31.1%, 31.2%, and 56.9%
for HA, HR, GHA, GHR, and GAR, respectively. The
average number of nodes in the B&C tree for these
five settings are 13,968, 11,769, 7,869, 8,903, and 8,629.
An important point to note here is that the number of
nodes is one for those instances terminated with no
feasible solution. Thus, even though the highest num-
ber of such cases are observed for GAR, the size of

120
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60

40

20
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)

polska dfn newyork atlanta tai nobel-eu

HA HR GHA GHR GAR

pioro norway cost266 gui39

Figure 7 Percent Gaps at Termination for Each Scheme

the B&C tree is smaller for GHA on average. In what
follows, we provide the results with GHA.
Initially, we consider the six instances, which we

could solve to optimality both with CPLEX and the
B&C algorithm. Figure 8(a) shows the change in solu-
tion times defined as ��time�B&C� − time�CPLEX��/
time�CPLEX�� ∗ 100. We see that B&C is faster than
CPLEX for all of these instances. CPLEX was faster in
only pacbell, which we do not show in Figure 8(a) in
order not to blur the figure. Although the percentage
change seems quite significant for this instance, the
difference is actually in seconds, and we could solve
it in less than one minute in both cases.
Next, we provide the test results for the remaining

11 instances in Figure 8(b). The termination gap for
the instances, for which we could not solve the LP
relaxation in two hours, is taken to be 105%.
We see that our B&C algorithm is superior to

CPLEX, especially for the large instances where all
nodes are demand nodes just like the single-facility
case. This is quite obvious especially for tai, nobel-eu,
pioro, and cost266 because the MIP solver could not
find even a feasible solution in two hours, whereas
the B&C algorithm successfully produced some upper
bounds. Specifically, the upper bounds for nobel-eu and
pioro are quite promising. Moreover, the NLP hose

GD prob-
lem could not be solved for newyork because of insuf-
ficient memory. In two cases, i.e., norway and gui, we
could not find any upper bound with either of the
methods. On the other hand, the B&C algorithm is bet-
ter in six of the remaining nine instances with much
lower gaps for dfn, tai, nobel-eu, pioro, and cost266.
A final analysis in Figure 9 is about the price of

robustness measured in terms of the percent change
in the final design cost for the two-facility case. The
average increase in the optimal reservation costs of
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Figure 9 Increase in Design Cost as a Result of Robustness

the six instances for which gaps could be calculated
is 18.86%.

5.3. Parametric Hose Case
In this section, we consider the metro instance and
analyze the sensitivity of the robust design to the
choice of bandwidth capacities. First, we generate 20
demand matrices d̃1� 	 	 	 � d̃20, where the demand d̃

j
q

for each q ∈ Q is normally distributed with mean
d̄q and standard deviation Kd̄q for K ∈ �0�1. Next,
for � ∈ �++, we let bi = �

∑
q∈Q� s�q�=i or t�q�=i d̄q for all

i ∈ V and solve the corresponding NLPGD to get the
optimal capacity configuration y���. Then, for each
j = 1� 	 	 	 �20, we determine the maximum total flow
F j ��� we can route given demand matrix d̃j and link
capacities y��� by solving a linear programming prob-
lem. We calculate the fraction of demand routed as
F j ���/

∑
q∈Q d̃

j
q and take the average over 20 demand
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Figure 10 Implications of the Bandwidth Definition on Routing
Performance and Design Cost

matrices to evaluate the performance of the optimal
hose design y��� for a given � .
We have performed several tests with K ∈

�0	25�0	33�0	5�0	75� and eight different values of � ∈
�0	25�1	125. Figure 10(a) shows the average percent-
age of traffic we could route under different hose def-
initions and K values.
As expected, Figure 10(a) shows that independent

of what K is, the traffic routing rate improves as we
consider a larger hose polyhedron, i.e., as � grows.
This is natural because a larger hose polyhedron
implies a more conservative design. On the other
hand, for a given � , the demand satisfaction rate is
negatively affected by demand deviations. However,
higher protection comes at a cost, and Figure 10(b)
shows how the total cost changes with � .
The proper choice of � is related to the accuracy

of the demand information as well as the trade-off
between the design cost and the service level. We
study the hose polyhedron for � = 1 for our tests in
§§5.1 and 5.2. The results above show that the average
routing rates of the corresponding robust design for
K ∈ �0	25�0	33�0	5�0	75� are 98	62%, 97	92%, 96	10%,
and 92	81%, respectively.

6. Conclusion
In this paper we studied the network loading problem
where the pairwise traffic demands are not assumed
to be known in advance. We used a polyhedral defi-
nition of traffic demands and sought to design a net-
work that is capable of supporting infinitely many
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nonsimultaneous demand realizations. Based on a
compact formulation and a decomposition property,
we gave a detailed polyhedral analysis for a specific
demand uncertainty description, the hose model. The
polyhedral analysis formed the basis of an efficient
B&C algorithm. Our computational results reveal that
projecting out the flow variables and the use of a
B&C algorithm is quite effective for both single- and
two-facility problem types. An important question is
whether similar developments can be expected for
uncertainty polyhedron descriptions other than the
hose model. We will answer this question in subse-
quent papers.
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