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A three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS is
presented in the finite deformation regime. Within a setting where the NURBS discretization of the
contact surface is inherited directly from the NURBS discretization of the volume, the contact integrals
are evaluated through a mortar approach where the geometrical and frictional contact constraints are
treated through a projection to control point quantities. The formulation delivers a non-negative pressure
distribution and minimally oscillatory local contact interactions with respect to alternative Lagrange
discretizations independent of the discretization order. These enable the achievement of improved
smoothness in global contact forces and moments through higher-order geometrical descriptions. It is
concluded that the presented mortar-based approach serves as a common basis for treating isogeometric
contact problems with varying orders of discretization throughout the contact surface and the volume.
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1. Introduction

Non-smooth, mostly C0-continuous, finite element discretiza-
tion techniques constitute the most widely utilized approach in
computational contact mechanics. It has been long recognized that
such non-smoothness leads not only to convergence problems in
iterative solution techniques but also to highly oscillatory global
contact interactions such as tangential forces and rotation moments
even when convergence is achieved. In order to alleviate some of
these undesirable observations, various geometrical smoothing
techniques have been developed based on Hermite, Bézier and
NURBS descriptions [18,12,19,61,20,42,62,35,56,39,36]. Therein,
the procedures operate on the contact surface only, leaving the
bulk descriptions of the interacting solids away from the contact
zone unchanged. Although surface smoothing leads to a consider-
able improvement of the contact force evolution, oscillations were
observed to remain due to the strong interactions of the volume
and surface discretizations, in particular at large deformations.

On the other hand, the robustness of contact computations also
depends on an accurate and smooth description of not only the glo-
bal but also the local contact interactions, i.e. the contact pressure
and the tangential tractions. Mortar-based approaches constitute
a method of consistently treating the contact interaction through
ll rights reserved.

).
an exact evaluation of the surface integrals contributing to the
weak formulation, combined with a discrete satisfaction of the
continuous contact constraints through projected quantities
[54,22,49,25,13,50,48,21,26,59]. Such methods can be pursued in
a purely penalty setting, possibly with Uzawa augmentations, in
a Lagrange multiplier setting, or through an augmented Lagrangian
approach [46]. For details and extensive references, the reader is
referred to Wriggers [60], Laursen [37], Laursen et al. [38]. Mortar
methods typically additionally deliver global algorithmic smoothing
effects through particular choices of projection formulations, such
as by defining nodally-averaged normals, but do not entirely elim-
inate the inherently geometrical effects. Moreover, it appears that a
combined global–local approach, i.e. a surface smoothing technique
combined with a mortar-based contact formulation, has not been
explicitly investigated in the literature.

A natural departure point to achieve a smooth surface descrip-
tion which can then be combined with mortar-based approaches is
an ideally exact characterization of the initial analysis geometry.
The need to combine exact geometrical descriptions with contact
constraints may arise in attempting to achieve convenient and the-
oretically robust parametrizations [33,34] or in attempting to vir-
tually manipulate such exact descriptions in the presence of
contact constraints [41,6]. Isogeometric analysis [27,9] is a compu-
tational mechanics technology which uses basis functions emanat-
ing from computer aided geometric design, such as B-Splines,
NURBS, T-splines or subdivision surfaces instead of traditional
C0-continuous Lagrange finite element interpolatory polynomials
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and provides a general framework towards this purpose. Extensive
investigations including fluid–solid interaction [3,2], the extended
finite element method [5] and electromagnetics [8] have addition-
ally demonstrated the ability of isogeometric analysis to provide
not only more precise geometric representations than traditional
finite elements but also efficient approaches to problems such as
phase-field descriptions [16,17] and rotationless thin shell formu-
lations [31,4]. These advantages are complemented by recent
developments that allow a local refinement of the geometry
description and consequently of the solution space through
T-splines [11,52,53] – see also Borden et al. [7] for an application.

In the original work which introduced isogeometric analysis
[27], it was suggested that smooth, compactly-supported basis
functions might improve the modeling of contact problems. With
a view towards this goal, a systematic mortar-based study of con-
tact problems with isogeometric analysis was initiated in Temizer
et al. [58] using NURBS discretizations. Qualitatively accurate
satisfaction of thermomechanical frictionless contact constraints
was observed even at coarse resolutions in two and three dimen-
sions. Moreover, the pressure distributions in the classical Hertz
contact problem were considerably smoother than those arising
from Lagrange discretizations. In particular, the oscillations that
were reported for the Hertz problem in Konyukhov and Schweizer-
hof [32] and subsequently in Franke et al. [15] for higher-order La-
grange discretizations were significantly alleviated with NURBS
discretizations. These efforts were simultaneously paralleled by
the approach reported in Lu [40] in a frictionless setting through
alternative robust contact treatments based on the works of Papad-
opoulos and co-workers [30,43,55]. Subsequently, a two-dimen-
sional mortar-based approach with friction was investigated in
De Lorenzis et al. [10] where higher-order NURBS discretizations
were observed to deliver smoother global interactions while ensur-
ing the local quality of the solution.

The present work is an extension of the recent developments in
Temizer et al. [58], De Lorenzis et al. [10]. The central contribution
is a three-dimensional mortar-based frictional contact treatment
in isogeometric analysis with NURBS in the finite deformation re-
gime. For this purpose, in Section 2 the continuum contact problem
is summarized and subsequently a mortar-based approach for
treating geometrical and frictional contact constraints is intro-
duced. Section 3 introduces the finite element description of the
surface geometry where a contact NURBS patch is directly inher-
ited from the volume NURBS patch without introducing an addi-
tional surface smoothing technique and thereby preserving the
consistency between the volume and surface discretizations. Possi-
ble approaches to enforcing contact constraints are additionally
discussed, among which projection to control point values in a
mortar setting appears as the natural choice. Extensive numerical
investigations are carried out in Section 4 in three main categories
of typical benchmark problems where (i) the high quality of the
local contact traction distributions are demonstrated for the con-
tact of a deformable body with a rigid surface, followed by (ii)
investigations where global contact variables such as forces and
moments are monitored in the contact of two deformable bodies
and it is shown that higher-order continuity on the surface as well
as in the volume is necessary for arbitrarily smooth interactions,
concluding by (iii) an industrially relevant example where the roll-
ing of a Grosch-wheel is analyzed. The results support and extend
the observations in Temizer et al. [58], De Lorenzis et al. [10] with
particular discussions on the guaranteed non-negativity of the
pressure distributions and the minimally oscillatory contact
interactions with respect to alternative Lagrange discretizations
independent of the order of the discretization. These findings
reinforce the advantageous conclusion that the presented
mortar-based approach serves as a common basis for treating
isogeometric contact analysis problems with varying orders of dis-
cretization throughout the contact surface and the volume.

2. Contact treatment

2.1. Continuum contact mechanics formulation

The emphasis of this work is on purely mechanical finite defor-
mation quasi-static frictional contact problems. Denoting the
reference and current configurations of a body B via Ro and R, re-
lated to each other by the motion x = v(X) that induces F = Grad[x],
the strong form of the linear momentum balance in referential
form is

Div½P� ¼ 0 in Ro ð2:1Þ
with the associated traction p = PN. On the non-overlapping
portions of the boundary @Ro ¼ @Rx

o [ @Rp
o [ @Rc

o, the boundary
conditions

x ¼ x̂ on @Rx
o and p ¼ p̂ on @Rp

o ð2:2Þ

are prescribed where p̂ is assumed to be deformation-independent.
The contact between two bodies Bð1Þ and Bð2Þ will eventually be

treated within a master/slave (or, mortar/non-mortar) setting
where Bð1Þ is the slave (non-mortar) side. In the continuum formu-
lation, the matching contact interface @Rc :¼ @Rð1Þ;c ¼ @Rð2Þ;c on
the deformed configuration is pulled back to @Rc

o :¼ @Rð1Þ;co

– @Rð2Þ;co . All contact integrals are subsequently evaluated on
@Rc

o. The weak form of the balance equation is then expressed as

dG :¼ �
X2

I¼1

Z
RðIÞo

dF � P dV þ
X2

I¼1

Z
@RðIÞ;po

dx � p̂dA

þ
Z
@Rc

o

ðdxð1Þ � dxð2ÞÞ � pdA ¼ 0 ð2:3Þ

where p :¼ p(1). The contact traction is decomposed as p = pNm � s
where m is the outward unit normal to @Rð2Þ;co . Using the standard
definition gN = �(x(1) � x(2)) � m for the normal gap, the contact con-
tribution to the weak form can be expressed as

dC :¼
Z
@Rc

o

ðdxð1Þ � dxð2ÞÞ � pdA ¼ �
Z
@Rc

o

ðdgN pN þ dnasaÞdA ð2:4Þ

under the standard assumption of an exact satisfaction of the
impenetrability condition gN = 0 to simplify the tangential contribu-
tion with na as the convected curvilinear coordinates on the master
surface and sa as the covariant components of the tangential trac-
tion. All contact variables are evaluated through the closest point
projection of a slave (integration) point to the master surface.

Karush–Kuhn–Tucker conditions for impenetrability con-
straints on @Rc are

gN 6 0; pN P 0; gN pN ¼ 0: ð2:5Þ

For the tangential contribution, the Coulomb slip criterion

Uðs; pNÞ :¼ ksk � l pN 6 0 ð2:6Þ

is assumed where ksk2 = sasa. Here and in the following, standard
notation associated with surface parametrization is employed: e.g.
aa :¼ @xð2Þ

@na are the covariant basis vectors on the master surface
which define the covariant metric components aab :¼ aa � ab whose
inverse delivers the contravariant metric components aab such that
sa = aabsb. During slip, the evolution law for the projection coordi-
nates is

_na ¼ _k
sa

ksk ð2:7Þ

with which the tangential constraints can be stated as

U 6 0; _k P 0; U _k ¼ 0: ð2:8Þ



1 The notation D(�) should not be confused with the linearization notation.
Linearization is not treated here.
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For details and extensive references on computational contact
mechanics, the reader is referred to the monographs Laursen [37],
Wriggers [60].

2.2. Mortar-based finite element discretization

The variations dgN and dna appearing in dC are purely kinematic
in nature. A contact treatment based on the mortar method defines
the evolution of the kinetic quantities pN and sa such that well-de-
fined pressure and frictional traction distributions are obtained
which satisfy the contact patch tests, in comparison to e.g. the
node-to-surface algorithms, while numerical robustness and
smoothly varying reaction forces that do not display surface lock-
ing are ensured, in comparison to e.g. a point-wise enforcement of
the contact constraints [44].

While mortar-based contact treatment has been extensively
investigated, the studies have predominantly been restricted to
linear and quadratic surface elements in the two-dimensional
setting and to bilinear/biquadratic quadrilateral and triangular sur-
face elements in three dimensions – see Section 1 for references. In
the context of isogeometric analysis, a primary goal is to treat all
orders of discretization through a single unified numerical frame-
work. In particular, segmentation of the contact interface for exact
numerical integration appears to be impractical for arbitrary
discretizations which may arise in geometrical modeling and
therefore will not be pursued. Consequently, the present study
builds on the mortar studies of linear elements and presents a for-
mulation that is subsequently applied without modification in all
analyses. While this choice may not be the most appropriate one
from a mathematical point of view, in particular for Lagrange basis
functions, it is highlighted that preserving flexibility in a unified
treatment of geometrical design and computational contact analy-
sis is of primary interest in the present work. In a two-dimensional
setting, this approach has already proved satisfactory as exten-
sively demonstrated with frictionless contact in Temizer et al.
[58] as well as in the presence of friction in De Lorenzis et al.
[10]. Therefore, all mortar integrals are evaluated through integra-
tion on the slave surface NURBS elements by evaluating the contact
variables at the closest point projection of the integration point to
the master surface. The order of integration is chosen to be suffi-
ciently high in order to minimize the error in the evaluation of
the integrals, following Fischer and Wriggers [13,14].

The presently employed mortar method closely follows earlier
works based on a penalty regularization of the contact constraints
supplemented by Uzawa augmentations. The formulation is
consistently linearized and implemented within an iterative New-
ton–Raphson procedure to achieve quadratic convergence.

2.2.1. Normal contribution
The slave surface is the integration domain for the weak form of

the contact contribution. On this surface, the discretization
xð1Þ :¼

P
IR

Ixð1Þ;I is employed while the master surface admits the
discretization xð2Þ :¼

P
JQ

Jxð2Þ;J . In general, these disretizations are
not interpolatory and the basis functions {RI,QJ} are rational poly-
nomials in the context of NURBS – see Section 3. The key ingredient
of a mortar-based method is the projection of kinematic quantities
to degrees of freedom. Using the notation hQi :¼

R
@Rc

o
QdA for a

generic quantity Q, the projection

�gI
N :¼ hRIgNi ð2:9Þ

for the normal part defines a regularized projected contact pressure
(�N: normal penalty parameter)

�pI
N ¼ �N�gI

N: ð2:10Þ

Note that it is not necessary to associate a unique normal with each
projection in the present formulation since the surface normal
information essentially appears in the projection integral – cf. Puso
and Laursen [49]. In a Lagrange multiplier setting, the contact con-
straints would be satisfied by the projected quantities which deter-
mine the active set:

�gI
N 6 0; �pI

N P 0; �gI
N �pI

N ¼ 0: ð2:11Þ

Algorithmically, the detection of contact/separation to update the
active set A is carried out via

Contact Status Update for I :

I R A then
�gI

N > 0 ! I 2 A
else ! I R A

�

I 2 A then
�pI

N 6 0 ! I R A
else ! I 2 A

�
8>>><
>>>:

ð2:12Þ

It is remarked that since (2.11) replaces (2.5), gN > 0 or pN < 0 is pos-
sible – see Section 4.2.

The local pressure is defined via a discretization as for all other
degrees of freedom on the slave surface via

pN ¼
X

I

RIpI
N ð2:13Þ

where the following discrete quantities are defined:

gI
N :¼

�gI
N

hRIi
! pI

N :¼
�pI

N

hRIi
� �NgI

N: ð2:14Þ

While the penalty regularization alone allows active set update by
monitoring �gI

N only, Uzawa augmentations will be pursued in the
next section such that the Lagrange multiplier solution is approxi-
mately captured. For this reason, the active set update still follows
algorithm (2.12).

The contact constraints are, in general, not satisfied by gI
N and

pI
N in a Lagrange multiplier setting [22,59], presently since the nor-

malizing term hRIi may be negative. This occurs in the case of
Lagrange elements of order greater than one. NURBS basis func-
tions, however, are non-negative pointwise and therefore the con-
straints may be stated in terms of either the projected or the
discrete quantities.

2.2.2. Tangential contribution
For the regularized treatment of the tangential part within the

standard framework where a stick predictor step is followed by
slip correction, the primary quantities employed are the projected
quantities. Since the emphasis of this work is on the use of NURBS
basis functions which are guaranteed to be non-negative, the final
formulation is presented in the following simplified version. In the
predictor step, a discrete incremental slip is defined1:

Dna;I :¼ hR
IDnai
hRIi

: ð2:15Þ

This definition delivers a trial update, for active set members {I, J},

sI;nþ1;tr
a ¼ sI;n

a þ �T

X
J

aIJ
abDnb;J ð2:16Þ

to the discrete contact traction component along each curvilinear
coordinate at a given Newton–Raphson iteration at the (n + 1)th
load step. Here, �T is the tangential penalty parameter and

aIJ
ab :¼ hR

IaabRJi
hRIihRJi

ð2:17Þ

is a discrete covariant metric. The metric is non-zero only for de-
grees of freedom {I, J} which belong to the same element and hence
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the implementation of Eq. (2.16) does not cause a significant com-
putational expense compared to alternative formulations.

The predictor step is followed by a check for slip

ksI;nþ1;trk � l �pI
N 6 0 ð2:18Þ

where, using discrete contravariant metric components mab,IJ which
are defined by the inverse components of mIJ

ab with respect to a and b,

mIJ
ab ¼

aIJ
ab

hRIRJi
! ksI;nþ1;trk2 :¼ sI;nþ1;tr

a mab;IIsI;nþ1;tr
b : ð2:19Þ

If the slip criterion is not violated, sI;nþ1
a ¼ sI;nþ1;tr

a . Otherwise,

sI
a :¼ sI;nþ1;tr

a

ksI;nþ1;trk ! sI;nþ1
a ¼ l�pI

NsI
a: ð2:20Þ

For numerical robustness and accuracy, the penalty regularization
is complemented by Uzawa augmentations which update the
normal and tangential tractions to convergence at each load step
– see also Section 4.1. For this purpose, the replacements
sI;n

a  sI;ðkÞ
a and sI;nþ1;tr

a  sI;ðkþ1Þ;tr
a are substituted in the update

(2.16) where k indexes the Uzawa augmentations at the (n + 1)th
load step. Subsequently, the same predictor–corrector scheme is
pursued for the augmented tangential tractions. The augmentation
for the normal contribution reads

pI;ðkþ1Þ
N ¼ pI;ðkÞ

N þ �NgI;ðkþ1Þ
N : ð2:21Þ

Subsequently, using Eq. (2.14), �pI;ðkþ1Þ
N ¼ pI;ðkþ1Þ

N hRIi is employed to
check for contact loss. The active set is updated before the augmen-
tation of the tangential tractions in order to ensure the consistency
of the updated tangential tractions with respect to the slip criterion
employing the augmented pressures.

The details of the complete mortar formulation, together with
its variational basis in a more general context and comparisons
with alternative approaches, will be presented elsewhere [57].

3. Isogeometric treatment with NURBS

3.1. Geometric description

The central ingredient of an isogeometric contact treatment is
to pursue a NURBS discretization of the contact surface that is
inherited in a straightforward fashion from the NURBS discretiza-
tion of the volume [58]. In contrast to earlier surface smoothing
techniques, this approach directly delivers a consistent treatment
of volumetric and contact analysis. The NURBS-based isogeometric
discretization is briefly recalled here only for the contact surface
description. The reader is referred to Piegl and Tiller [45] and
Cottrell et al. [9] for further details and extensive references.

Along each surface coordinate na, an open non-uniform knot
vector

Na ¼ na
0; . . . ; na

pa|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
paþ1 equal terms

; na
paþ1; . . . ; na

na
; na

naþ1; . . . ; na
ma|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

paþ1 equal terms

8>><
>>:

9>>=
>>; ð3:1Þ

is constructed for the geometric description where ma = na + pa + 1,
pa is the polynomial order of the accompanying B-spline basis func-
tions, na

j is the jth knot and na + 1 would be the number of accom-
panying control points in a one-dimensional setting. Using a N1 and
a N2, the rational B-spline (NURBS) basis functions Rd1d2 P 0 are
defined as

Rd1d2
ðn1; n2Þ ¼ wd1d2

Wðn1; n2Þ
B1

d1
ðn1Þ B2

d2
ðn2Þ ð3:2Þ

with Ba
da

as a nonrational B-spline basis function. The normalizing
weight W is given in terms of the weights wd1d2 > 0 and Ba

da
via
Wðn1; n2Þ ¼
Xn1

d1¼0

Xn2

d2¼0

wd1d2
B1

d1
ðn1Þ B2

d2
ðn2Þ: ð3:3Þ

The contact surface is then parametrized by

Sðn1; n2Þ ¼
Xn1

d1¼0

Xn2

d2¼0

Rd1d2
ðn1; n2ÞPd1d2

ð3:4Þ

where Pd1d2 are the control points. All the geometry information is
inherited from the volume by evaluating its parametrization on
the contact surfaces [58]. The knot vectors together with the asso-
ciated control points and the accompanying weights constitute a
contact patch.

In the finite element setting, all degrees of freedom are discret-
ized via the same NURBS basis functions that are used for the
geometric description, including the discretized mortar quantity
pN. In the following sections, the order of the NURBS parametriza-
tion will be denoted by N p, while the order of Lagrange polynomi-
als employed will be denoted by Lp. It is noted that, in order to
obtain a refined volume parametrization from which the contact
surface parametrization is inherited, the k-refinement procedure
is employed where order elevation precedes knot refinement [9].
In this setting, a NURBS volume/contact element corresponds to a
region bounded by unique knot entries and acts as a convenient
integration domain.

The implementation of frictional contact with two deformable
bodies demands the calculation of the derivatives of the basis func-
tions up to order three. First derivatives are standard and already
necessary for the volumetric analysis. An explicit expression for
the second-order derivatives which are required for the lineariza-
tion of dgN has been provided in Temizer et al. [58]. The third-order
derivatives required for the linearization of dna can be obtained in a
similar fashion.

3.2. Enforcing contact constraints

In order to enforce the normal and tangential contact con-
straints in the context of isogeometric analysis, several possible
algorithms are briefly reviewed below.

1. Collocation at Unique Knot Entries: Constraints may be enforced
by a (point) collocation approach at the physical points associ-
ated with the unique knot entries, which also form the vertices
of the isogeometric contact elements, in the same spirit as the
classical node-to-surface (NTS) algorithm. The transfer of
frictional history variables and the augmentations would also
be associated with these collocation points. However, in gen-
eral, the number of unique knot entries is less than the number
of degrees of freedom which describe the contact surface. In
other words, in the context of a simple example, the pointwise
penetration of a NURBS surface with a rigid one may be varied
by moving the control points while simultaneously satisfying
such constraints. Consequently, one would obtain an undercon-
strained formulation (with respect to the mortar-KTS
algorithm).

2. KTS Algorithm: A direct integration of the contact contribution
(2.4) to the weak form by enforcing the constraints at the phys-
ical points of the quadrature points (which can be associated
with virtual knots) leads to a straightforward scheme which
has the advantage that the contact surface can be qualitatively
satisfactorily captured even with a low number of elements,
contrary to all other possibilities. This approach was called
the knot-to-surface (KTS) algorithm in Temizer et al. [58] and
was demonstrated for finite deformation thermomechanical
contact problems without friction. Also shown in this work
was that this approach is overconstrained and therefore not



Table 1
The default number of Gauss–Legendre integration points employed in each direction.

N 2 N 3 N 4 L1 L2 L3 L4

Volume element 4 6 6 2 4 4 6
Contact element 6 6 6 4 4 9 12
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acceptable if a robust formulation with accurate tractions is
desired – a fact that is well-known from standard contact
elements. These observations were further demonstrated in
the two-dimensional frictional isogeometric setting in De
Lorenzis et al. [10].

3. Collocation at Special Abscissae: The direct analog of the classical
NTS algorithm in an isogeometric setting requires the same
number of collocation points as the unknowns. One such possi-
ble option might be to employ the physical points associated
with Greville abscissae of the knot vector [29]. See Politis
et al. [47] for an application to isogeometric analysis in the con-
text of the boundary element method and Aurrichio et al. [1] for
further applications in addition to the use of Demko abscissae.
Such possibilities are not investigated in this work since they
would carry the known disadvantages of the NTS algorithm to
the isogeometric setting. Nevertheless, these might potentially
be more practical and time-efficient in situations, such as
impact problems, where the additional cost associated with
the evaluation of mortar integrals could be unacceptable.
Within this algorithm, the constraints would be checked and
the augmentations would be conducted as in algorithm 1.

4. Mortar-KTS Algorithm: The approach that combines the robust
mortar-based contact treatment with isogeometric analysis is
the mortar-KTS algorithm [58]. Similar to the KTS algorithm, this
is not a collocation approach since the weak form of the contact
constraints is evaluated exactly via integration. However, in a
frictionless setting, a mortar projection to control pressures
pI

N

� �
is employed to obtain the correct number of constraints.

In the frictional setting, a mortar projection for both normal
and tangential control tractions is employed [10]. It is high-
lighted that the projected normal gap �gI

N ¼ hR
IgNi, or more

appropriately gI
N for the correct dimension, is not associated

with the physical normal gap corresponding to the control point
I in general. Now, since this gap is enforced to zero by the for-
mulation, one could pursue elementary arguments, e.g. through
the mean value theorem for integrals, to conclude that there
exists a knot value in [0,1], say na,I, in the span of RI such that
the normal gap of its physical point is zero. A similar argument
applies to the tangential (elastic) gaps. Overall, there is a correct
number of such points – cf. collocation at special abscissae.
However, these knot values would evolve with the solution
and therefore are not of practical use in enforcing the
constraints, which would make the algorithm an equivalent of
the NTS-type approach. It is sufficient and more practical to
track the control values.

In view of its demonstrated advantages, the approach that is
employed in this work is algorithm 4 in the context of the mortar
treatment summarized in Section 2.2. A full investigation of algo-
rithms 1 and 3 as well as their comparison with the present choice
remains an issue open to further investigation.

4. Numerical investigations

In this section, various aspects of the introduced mortar-based
algorithm will be demonstrated in the finite deformation regime
with rigid and deformable master bodies. Although three-dimen-
sional mortar-based frictionless contact using NURBS basis func-
tions has not been explicitly treated earlier, all of the examples
presented will include friction. However, some of the observations,
such as the smoothness in the contact pressure distribution, could
also be shown without friction.

The investigations are grouped into three major categories
based on various standard benchmark problems of computational
contact mechanics. In Section 4.2, the local quality of the solution,
namely the pressure and the tangential traction distributions, is
demonstrated. The global quality of the solution is analyzed in Sec-
tion 4.3 with a large rotational sliding problem and in Section 4.4
with a large tangential sliding one. Finally, an industrially relevant
case is considered in Section 4.5 in the context of a rolling Grosch
wheel.

4.1. Modeling and discretization parameters

For the bulk modeling, a classical Neo-Hookean type material
model with volumetric-deviatoric decoupling will be employed
based on the strain energy function (J = det[F] and C = FTF)

W ¼ K1

2
ðln JÞ2 þK2

2
ðJ�2=3tr½C� � 3Þ: ð4:1Þ

In all of the investigations, the bulk and shear moduli {K1,K2} cor-
respond to the choices of a Young’s modulus E = 10 and a Poisson’s
ratio m = 0.3.

For the contact computations, the friction coefficient is set to
l = 0.3 unless otherwise noted. The base values of the penalty
parameters in all computations are �N = 100 and �T = 10 which
are multiplied by the largest diagonal entry of the volumetric stiff-
ness matrix associated with the deformable bodies at the first
Newton–Raphson iteration of the first Uzawa augmentation, but
subsequently kept constant at this value through each load step,
before being transferred to the contact computations. These
choices already deliver a qualitatively satisfactory solution with a
very small penetration even at large normal and tangential loads.
Uzawa iterations additionally augment the multipliers to conver-
gence to within a tolerance of TOL. Denoting the vector of all
discrete augmentation variables pI;ðkþ1Þ

N and sI;ðkþ1Þ
a (see Section

2.2.2) by {k}(k+1), the criterion for convergence is

kfkgðkþ1Þ � fkgðkÞk
kfkgðkÞk

6 Tol: ð4:2Þ

The results with the given base values of �N and �T together with
TOL = 0.01 are quantitatively in very good agreement with the case
of TOL = 0.001, below which only negligible changes are observed
in the solution if any. The larger tolerance is therefore chosen for
numerical efficiency. An exact linearization of the presented mortar
approach has been implemented to additionally ensure iterative
efficiency.

It is recalled that the augmentation convergence is affected by
the penalty parameters not only in terms of the number of itera-
tions to convergence but also in terms of the final solution quality.
For instance, alternative choices of �N = 10 and �T = 1 as base values
deliver inferior results at TOL = 0.01 and the number of iterations is
larger for a high quality solution that requires TOL = 0.001. On the
other hand, too high a penalty parameter causes well-known con-
vergence difficulties at large penetrations already without friction,
as was recently further investigated in Zavarise et al. [63]. For this
reason, all simulations in the present study have been run with a
load step size adaptivity option. However, a step size reduction
was needed only a few times overall for the simulations presented.
Consequently, it can be stated that the simulations were very
stable and in many instances larger load steps could be taken
although this would now introduce an error due to the tangential
traction component update.



Fig. 1. An example solution to the contact traction quality investigation of Section 4.2 is shown based on an N 2-discretization. In this and similar figures, the black squares
indicate the physical positions of the unique knot entries and the red spheres denote the control point locations. In the interface gap plot, only half of the contact zone when
viewed from below is shown. A representative dimension of the deformable body is the width Lo = 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Contact pressure PRS � pN distributions are shown for the problem described in Fig. 1 for NURBS ðN pÞ and Lagrange ðLpÞ basis functions of order p. The reference
solutions are computed with the discretization shown therein. The gray areas in the Lp-discretizations indicate negative pressure zones. The spheres correspond to pI

N . The
height of the points for L4 have been scaled by 0.4 in comparison to the other figures.
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The order p of NURBS ðN pÞ and Lagrange ðLpÞ discretizations
will be denoted explicitly in all examples. The default number of
integration points employed for each discretization type along
each direction is provided in Table 1. See Hughes et al. [28] for a
recent discussion of efficient quadrature schemes appropriate for
isogeometric analysis. Presently, a significantly increasing number
with increasing order is chosen for Lp-discretizations because the
number of NURBS elements does not change during order elevation
whereas it is reduced for Lagrange discretizations. The stated num-
ber of elements in the following investigations are valid for all N p
and L1. Only the discretization resolution and the order of the
bodies in the plane of contact have been varied in the investiga-
tions. The discretization in the direction perpendicular to the plane
of contact will be denoted explicitly and it has been verified that it
does not influence the conclusions drawn.

4.2. Local quality: contact tractions

In the first example, where a deformable body is pressed onto a
rigid surface under displacement control at the top surface at five



Fig. 3. The tangential traction component TAU1 � s1/l for the analysis of Fig. 2 is shown for NURBS ðN pÞ and Lagrange ðLpÞ basis functions of order p. The second component
displays identical variations in the other direction. The spheres correspond to sI

1=l.
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load steps through 0.3 units, the local quality of the solution is
investigated by monitoring the contact pressure pN and the tangen-
tial traction component s1. The problem geometry is shown2 in
Fig. 1 discretized at a reference resolution with N 2 where 24
elements are employed in each lateral direction. For the coarse res-
olution computations, 12 elements are employed in each lateral
direction. In the vertical direction, 6 elements are employed together
with an N 2-discretization for N p and an L1-discretization for Lp

investigations. Fig. 1 also displays the gap distribution within the
contact zone. In comparison to a representative dimension Lo of
the deformable body, the gap magnitude is seen to be Oð10�3LoÞ
which additionally verifies the quantitative accuracy of the chosen
augmentation tolerance. It has been verified that the changes in
the results are negligible when the tolerance is decreased to
TOL = 0.001.

The contact pressure distributions for various coarse discretiza-
tions are compared with reference N 2 and L1 solutions in Fig. 2.
Two major observations are that (i) N p-discretizations deliver a
2 The exact geometrical description requires the complete knot vectors and
weights. In the following, since slightly more or less deformation does not affect the
conclusions drawn and the order of magnitude of the deformations are apparent in
the figures, only representative dimensions of the problem and the boundary
conditions are supplied.
non-negative pressure distribution and (ii) increasing the order p
does not deteriorate (in fact improves as to be demonstrated in
the following sections) the quality of the solution where the distri-
butions remain minimally oscillatory even at this coarse discretiza-
tion although the span of each basis function moves well beyond
the contact zone. The former observation is guaranteed through
the employed mortar approach due to the non-negativeness
of the NURBS basis functions – see Section 2.2.1. The latter observa-
tion is significant since it demonstrates that the summarized
mortar-based contact treatment is uniformly applicable to all N p-
discretizations while ensuring a reliable and robust solution. This
is of critical importance since a major goal of isogeometric analysis
is a unified treatment of design and analysis. From this point of
view, it would not be advantageous to employ a modified special
contact treatment technique for each order and clearly this is not
necessary. In the case of Lp-discretizations, neither observation
holds. In particular, the oscillatory response at coarse discretiza-
tions has been observed earlier in various settings [32,15,58]. While
a pN P 0 requirement, although physically sound, may not be
deemed critical and even restrictive since the contact constraints
are satisfied only by the projected quantities, the need for an expli-
cit treatment of higher-order Lp-discretizations is clear and has
been pursued mostly for the case of L2 [24,14,55,50]. Nevertheless,
in all upcoming investigations a common treatment of all



Fig. 4. Simulation instances from the investigation of Section 4.3 are shown at a fine N 2-discretization with seven elements in each lateral direction and five in the vertical
direction for both the slave and the master body. The large compressive and shear deformations are clearly observed. Here, STR � kPk. The lower (master) body has dimensions
1.5 � 1.5 � 0.75 and the initial gap between the bodies is approximately 0.025 units.

Fig. 5. The tangential traction component TAU1 � s1/l distribution evolution and the final pressure PRS � pN distribution are shown for the problem of Fig. 4.
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Lp-discretizations will be pursued. It is remarked, however, that the
goal of the present work is to demonstrate the uniformly high solu-
tion quality for the mortar-based N p-discretizations rather than
highlight a need for improved Lp-discretizations.
The uniformly high solution quality on a common mortar-based
contact treatment with NURBS is additionally observed for the tan-
gential tractions as summarized in Fig. 3. It is noted that while a
comparison with approximate analytical solutions is not possible



Fig. 6. The results from differentN p-discretizations of Section 4.3 at the standard discretization are compared with a referenceN 4 result as well as with alternative choices of
numerical parameters.

Fig. 7. Simulation instances from the investigation of Section 4.4 are shown at a fine N 2-discretization where large deformations are clearly observed. Here, DEF � F33. The
lower (master) body has dimensions 3 � 1.5 � 0.75 and the initial gap between the bodies is approximately 0.04 units.
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Fig. 8. The contact pressure (PRS � pN) and tangential traction component (TAU1 � s1/l, TAU2 � s2/l) evolutions are shown for the analysis of Fig. 7. It is noted that the scaled
tangential components can exceed the pressure. This is because the metric components are involved in the mortar projections and only the projected quantities are
guaranteed to satisfy the slip criterion.
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due to significantly large deformations, the distributions closely
resemble the classical results from the analysis of the frictional
contact of dissimilar materials under a normal load [23]. Again,
N p results match the reference solutions accurately whereas a sig-
nificant deterioration is observed for Lp>1. The observation that L1

is the most robust among all Lagrange discretization on the basis of
the present mortar approach will be observed in the upcoming
investigations as well. The increase in the number of control points
with order elevation has not been addressed here but will be de-
noted in the following sections where a comparison among differ-
ent N p results will be made.

4.3. Global quality I: twisting moment

In this and the following section, the global quality of the solu-
tion is additionally monitored. Presently, the problem setup is
summarized in Fig. 4, where half of the geometry is additionally
shown to highlight large deformations. The smaller (slave) body
top surface is displaced onto the larger (master) body, with equal
material properties, in 10 steps of a compression stage through
0.45 units and subsequently rotated through 180� in 40 steps of
a twisting stage. In all examples, the master body is held fixed at
the bottom surface. While the contact pressure remains approxi-
mately constant throughout the twisting stage, the tangential trac-
tions evolve considerably as shown in Fig. 5. The low-valued
tractions at the end of the compression stage is due to the fact that
the materials are similar. On the other hand, the high tractions and
pressures observed at the leading edge during twisting, with
respect to rotation, of the contact zone is due to the fold-in ten-
dency that would be more significant at higher friction coefficients.
Due to the non-smoothness of Lagrange polynomials, a special
modification of the closest-point projection algorithm is required
to achieve convergence, in particular at large deformations, such
as extending elements beyond their discretization boundaries –
see e.g. Laursen [37]. On the other hand, such a treatment is not
necessary in the case of NURBS basis functions due to the C1-con-
tinuity of the surface. Consequently, only NURBS discretizations
will be employed.



Fig. 9. The results of Section 4.4 are summarized. On the left-hand side, order elevation is carried out, which results in an increase in the number of control points. The effects
of smoothness were isolated on the right-hand side, where the N 5 result acts as a reference and the following N 2 cases were considered: (A) 15 master elements along the
dragging direction and (B) 20 elements, both having more degrees of freedom than the N 5-discretization, hence highlighting that higher smoothness is advantageous. In
investigation (C) 10 elements were used but with the top surface displaced by 0.4 units instead of the standard 0.5 and in (D) by 0.3 units. This is to demonstrate that the
response is smoother under lower pressures, however the oscillations remain.
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The global solution quality is monitored through the twisting
moment applied. The lateral resolution of the master body dictates
the solution quality. The slave body in all directions and the
vertical direction of the master body are discretized with three
N 2 elements while five N p elements are employed for each lateral
direction of the master, p being a variable. This is the standard dis-
cretization. A reference N 4-discretization of the master with eight
elements along each lateral direction will be employed for compar-
ison for each choice of p. The results are summarized in Fig. 6. It is
noted that the moment will not be a constant due to the compara-
ble size of the master to the slave. The major observation is that the
results get smoother and approach the reference solution as p in-
creases. This observation is affected by two factors: (i) increasing
Cp�1-continuity provided by N p basis functions and (ii) increasing
number of degrees of freedom through an increase in the number
of control points. In order to isolate these effects, the N 2 result is
compared with the N 4 one at a coarse discretization with three
elements per lateral direction of the master such that both discret-
izations yield the same number of control points. While the mo-
ment evolutions are similar, N 4 delivers a slightly smoother
response. This is alternatively observed by comparing the fine
N 2-discretization (Fig. 4) result with the standard N 5 response,
both with the same number of control points. While both solutions
are close to the reference solution, the N 2 result is slightly more
oscillatory. This observation demonstrates the advantage of order
elevation, which will be further supported and clarified in the next
section. Clearly, the possibility of a uniform mortar-based treat-
ment of all orders enables this conclusion.

In closing, it is remarked that alternative choices of the default
parameters lead to only negligible changes in the results, as
demonstrated in Fig. 6 for N 2. A larger number of contact element
integration points (ten instead of six), more load steps (15 normal
and 60 tangential) or a smaller augmentation stopping criterion
tolerance (TOL = 0.001) are seen to match the default response.
Therefore, neither the numerical error in the evaluation of the
mortar integrals, nor the integration error associated with the up-
date of the tangential traction components, nor the deviation of the
contact tractions from the values of a Lagrange multiplier imple-
mentation influence the accuracy or the reliability of the results.

4.4. Global quality II: dragging force

As a second investigation of the global solution quality, the clas-
sical ironing example is chosen as shown in Fig. 7 and analyzed
again only with N p-discretizations. The smaller (slave) body top
surface is displaced onto the larger (master) body, with equal
material properties, through 0.5 units in 10 steps of a compression
stage and subsequently moved through the length of the master in
40 steps of a dragging stage through 1.8 units. The friction coeffi-
cient is reduced to l = 0.1 to avoid the physical fold-in effect at
the leading contact edge during dragging. The geometry of the
slave surface edges is varied with respect to the former example
for the same reason, by slightly elevating the corners. The evolu-
tions of pN and sa are shown in Fig. 8 where the high values of
pN and s1 are observed near the leading edge, while s2 rapidly
relaxes to zero during dragging. All distributions are observed to
be remarkably smooth even at this relatively coarse discretization.

The global solution quality is monitored through the dragging
force applied. The lateral resolution of the master body dictates
the solution quality. The dragging direction of the master body is
discretized via ten N p elements while all other directions are dis-
cretized via N 2. The number of elements for the vertical directions
are chosen to be three and the lateral directions of the slave and
the thickness direction of the master have five elements. The
results are summarized in Fig. 9 where the oscillations in the drag-
ging force are easily observed. Clearly, C1-continuity is not suffi-
cient for a smooth response. Earlier investigations also show that
the algorithmic smoothing on C0-discretizations of the contact
interface through a mortar-based approach [49,59] or employing
surface smoothing techniques [56,39] do not eliminate these oscil-
lations. This was recently further discussed via a two-dimensional
frictional treatment of isogeometric contact analysis in Lorenzis
et al. [10]. The source for the oscillations is the strong interaction
between the slave body and the boundary layer of the master
surface in the vicinity of the contact zone that is significantly
deformed. In this strong interaction between the contact and vol-
ume discretizations, the master body is able to conform to the
deformations imposed by the slave only to the extent of flexibility
that is provided by the discretization. This flexibility increases with
increasing the continuity to Cp�1 with N p-discretizations. Conse-
quently a smoother force response is expected with increasing p.
This is clearly observed in Fig. 9. Here, every other node of intersec-
tion for all orders corresponds to where the slave slides out of the
span of one master basis function and into another one. A similar
interpretation also holds for the earlier example of Section 4.3.

Since increasing p additionally increases the number of control
points, in Fig. 9 the reference solution is taken to be N 5 with 770
control points and the N 2-discretization is refined at two stages:
the first with 15 elements on the master along the dragging direc-
tion (840 control points) and the second with 20 elements (1015



Fig. 11. A close-up of the contact zone approximately midway through the rolling stage. All bodies are shown as semi-transparent to display the contact interface. It is
recalled that the mortar contact constraints do not enforce null gaps for the control points, which is clear in these snapshots.

Fig. 10. Simulation instances from the problem of Section 4.5 with an N 2-discretization (STR � kPk). The initial gap between the tire and the surface is zero.
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control points). Although both N 2-discretizations have more
degrees of freedom, with the finer resolution oscillations having
a larger frequency but a smaller amplitude as expected, the re-
sponse of the N 5-discretization is clearly significantly smoother.
It is noted, as shown in the same figure, that while the magnitude
of the oscillations decreases with decreasing normal force, the rel-
ative amplitude may be significant. These observations reinforce
the observations regarding the advantages of increasing continuity
that is possible using NURBS.

4.5. Case study: tire traction

As a last example, an industrially relevant case is investigated
by analyzing the rolling motion of a Grosch-wheel by using both
N p- and Lp-discretizations. In all cases, the thickness and width
directions are discretized with four N 1 � L1 elements while the
angular direction discretization is varied. Here, the inner rim of
the wheel (undeformed inner/outer radius of 0.25/0.5 units) is
compressed onto a rigid track in 10 load steps through a distance
of 0.1 units and subsequently rotated through 270� while being
displaced horizontally such that the overall motion of the center
would correspond to the rolling of a rigid tire about a radius of
0.47 – see Fig. 10.

The friction coefficient is chosen as l = 0.1 to minimize an effect
that is shown in Fig. 11. Since the rotation and displacement do not
conform to each other as they would in pure rolling, there is a sig-
nificant rotation torque applied to the tire which induces ripples
through the contact interface at the leading and trailing edges of
the contact zone. These are almost non-visible in N p discretiza-
tions but become amplified for high Lp-discretizations as shown
in Fig. 11. As a result, oscillations in the applied torque are moni-
tored as displayed in Fig. 12. The nature, in terms of frequency
and magnitude, of these oscillations is similar for allN p-discretiza-
tions and therefore only the N 2 result is shown. The oscillations
are again associated with switches in basis function spans, as in
Sections 4.3 and 4.4. On the other hand, the magnitude of the oscil-
lations strongly increase with increasing order of Lagrange discret-
izations although the number of nodes remains constant. However,
since order elevation increases the number of control points in the
case of NURBS, all Lp-discretizations are redesigned so as to match
exactly the number of degrees of freedom for a comparison N pþ1

case. Fig. 12 shows that while the Lp results are now closer to
the reference N 2 result in the mean, the oscillations and the devi-
ation from the reference result clearly still increase with increasing
Lagrange discretization order. Consequently, while N p-discretiza-
tions deliver a similar or better performance with increasing order
on a common mortar-based contact treatment in all examples both
at the local and global level, such a common approach does not
hold for Lp discretizations.

It is remarked that in this example the tire rotates through three
lines along the thickness direction where only C0-continuity is en-
sured due to the initial description of the geometry. However,
these points are not discernible in the global torque plots. While
a detailed analysis of regions of lower continuity in NURBS discret-
izations is left as a topic for future investigation, in particular for
the case of two deformable bodies, it appears that a small number
of such regions does not have significant unfavorable effects. In
general, this is an issue where mortar approaches for NURBS may
benefit from the algorithmic smoothing ideas that have been
developed for mortar-based Lagrange discretizations [49].



Fig. 12. The results from the analysis of Fig. 10 are summarized. Since all N p results are similar, only the N 2 result is shown. In the left-hand figure, only the discretization
order is varied. In the right-hand figure, the number of control points of Lp discretizations match the number of control points of the N pþ1 discretization, in order to isolate
order effects (as in Fig. 9). It is remarked that decreasing the augmentation tolerance or increasing the integration order has been tested for Lp and these have been verified
not to influence the results.
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5. Conclusion

In order to further address the need for contact treatment in
isogeometric analysis with NURBS, a three-dimensional frictional
mortar-based approach was presented as an extension to recent
work on two- and three-dimensional frictionless thermomechani-
cal contact [58] and two-dimensional frictional contact [10]. The
central ingredient of the mortar-based approach is the enforce-
ment of the contact constraints through projections to control
point quantities in order to avoid a potentially under- or overcon-
strained formulation.

It was demonstrated that the presented approach delivers ro-
bust local results even at coarse resolutions of the contact interface
with smooth pressure and tangential traction distributions. In par-
ticular, the pressure distribution is guaranteed to be non-negative
and the traction distributions remain minimally oscillatory with
respect to alternative Lagrange discretizations. These observations
reinforce the advantageous result that the presented mortar-based
approach serves as a common basis for treating isogeometric contact
analysis problems with varying orders of discretization throughout
the contact surface and the volume. Conversely, the same common
basis does not appear to deliver satisfactory results for Lagrange
discretizations, which display an increasingly oscillatory behavior
with higher orders, in particular at coarse resolutions.

At the global level, convergence problems associated with the
closest-point projection algorithm of contact are naturally avoided
due to the guaranteed C1-continuity of the NURBS-based contact
surface description that is inherited directly from the volume
description in various standard benchmark problems of computa-
tional contact mechanics. Additionally, the advantage of order
elevation was demonstrated where increasing continuity leads to
smoother evolutions of sample global measures, such as the
applied tangential force or the twisting moment. In problems
governed by strong interactions between the contact and volume
discretizations, C1-continuity alone is not sufficient and higher-or-
der continuity is needed to allow the deforming bodies to better
conform to each other’s geometry. The present capabilities may
also help alleviate the oscillatory response in closely related inter-
face mechanics problems such as peeling computations [51].

From a design point of view, a single NURBS patch or a simple
combination of multiple NURBS patches may not describe a geom-
etry accurately or may do so in a nonoptimal fashion with an
initially high number of control points. From an analysis point of
view, accuracy of the contact response at the local and/or global le-
vel is strongly governed by the boundary layers of the deformable
bodies in the vicinity of the contact zone only and hence it is not
numerically favorable to refine the geometry in regions away from
this zone as well. Both of these cases call for the ability of locally
controlled knot refinement and order elevation. Such a framework
is provided through T-splines as remarked in the introduction.
Ongoing research in this area is delivering novel technologies that
have potential application in the efficient and reliable treatment of
contact problems on a common basis. Such capabilities may also
help further improve the traction distributions by resolving the
edge of the contact zone [15].

References

[1] F. Aurrichio, L. Beiraõ Da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric
collocation methods, Math. Models Methods Appl. Sci. 20 (2010)
2075–2107.

[2] Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent Taylor–Couette
flow using isogeometric analysis and the residual-based variational multiscale
method, J. Comput. Phys. 229 (2010) 3402–3414.

[3] Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational
multiscale modeling of wall-bounded turbulent flows with weakly enforced
boundary conditions on unstretched meshes, Comput. Methods Appl. Mech.
Engrg. 199 (2010) 780–790.

[4] D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation rotation-
free, isogeometric shell, Int. J. Numer. Methods Engrg. 200 (2011) 1367–1878.

[5] D.J. Benson, Y. Bazilevs, E.D. Luycker, M.-C. Hsu, M. Scott, T.J.R. Hughes, T.
Belytschko, A generalized finite element formulation for arbitrary basis
functions: from isogeometric analysis to XFEM, Int. J. Numer. Methods
Engrg. 83 (2010) 765–785.

[6] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, S. Weghorst, Real-time finite
element modeling for surgery simulation: an application to virtual suturing,
IEEE Trans. Visualiz. Comput. Graph. 10 (2004) 314–325.

[7] M.J. Borden, C.V. Verhoosel, M.A. Scott , T.J.R. Hughes, C.M. Landis, A phase-field
description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg.,
submitted for publication.

[8] A. Buffa, G. Sangalli, R. Vazquez, Isogeometric analysis in electromagnetics: B-
splines approximation, Comput. Methods Appl. Mech. Engrg. 199 (2010)
1143–1152.

[9] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis, Wiley, 2009.
[10] L. De Lorenzis, _I. Temizer, P. Wriggers, G. Zavarise, A large deformation

frictional contact formulation using NURBS-based isogeometric analysis, Int. J.
Numer. Methods. Engrg. (2011). online – doi:10.1002/nme.3159.

[11] M.R. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-
refinement with T-splines, Comput. Methods Appl. Mech. Engrg. 199 (2010)
264–275.

[12] A.L. Eterovic, K.J. Bathe, An interface interpolation scheme for quadratic
convergence in the finite element analysis of contact problems, Computational
Methods in Nonlinear Mechanics, Springer-Verlag, Berlin, New York, 1991, pp.
703–715.

[13] K.A. Fischer, P. Wriggers, Frictionless 2D contact formulations for finite
deformations based on the mortar method, Comput. Mech. 36 (2005)
226–244.

[14] K.A. Fischer, P. Wriggers, Mortar based frictional contact formulation for
higher order interpolations using the moving friction cone, Comput. Methods
Appl. Mech. Engrg. 195 (2006) 5020–5036.



128 _I. Temizer et al. / Comput. Methods Appl. Mech. Engrg. 209–212 (2012) 115–128
[15] D. Franke, A. Düster, V. Nübel, E. Rank, A comparison of the h-, p-, hp-, and rp-
version of the FEM for the solution of the 2D Hertzian contact problem,
Comput. Mech. 45 (2010) 513–522.

[16] H. Gomez, V.M. Calo, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of the
Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg. 197
(2008) 4333–4352.

[17] H. Gomez, T.J.R. Hughes, X. Nogueira, V.M. Calo, Isogeometric analysis of the
isothermal Navier–Stokes–Korteweg equations, Comput. Methods Appl. Mech.
Engrg. 199 (2010) 1828–1840.

[18] E. Hansson, A. Klarbring, Rigid contact modelled by CAD surface, Engrg.
Comput. 7 (1990) 344–348.

[19] J.-H. Heegaard, A. Curnier, An augmented Lagrange method for discrete large-
slip contact problems, Int. J. Numer. Methods Engrg. 36 (1993) 569–593.

[20] A. Heege, P. Alart, A frictional contact element for strongly curved contact
problems, Int. J. Numer. Methods Engrg. 39 (1996) 165–184.

[21] C. Hesch, P. Betsch, A mortar method for energy-momentum conserving
schemes in frictionless dynamic contact problems, Int. J. Numer. Meth. Engrg.
77 (2009) 1468–1500.

[22] P. Hild, Numerical implementation of two nonconforming finite element
methods for unilateral contact, Comput. Methods Appl. Mech. Engrg. 184
(2000) 99–123.

[23] D.A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts, Butterworth
Heinemann, Oxford, 1993.

[24] S. Hüeber, M. Mair, B.I. Wohlmuth, A priori error estimates and an inexact
primal–dual active set strategy for linear and quadratic finite elements applied
to multibody contact problems, Appl. Numer. Math. 54 (2005) 555576.

[25] S. Hüeber, B.I. Wohlmuth, A primal-dual active set strategy for non-linear
multibody contact problems, Comput. Methods Appl. Mech. Engrg. 194 (2005)
3147–3166.

[26] S. Hüeber, B.I. Wohlmuth, Thermo-mechanical contact problems on non-
matching meshes, Comput. Methods Appl. Mech. Engrg. 198 (2009) 1338–1350.

[27] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement, Comput. Methods
Appl. Mech. Engrg. 194 (2005) 4135–4195.

[28] T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based
isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 199 (2010) 301–
313.

[29] R.W. Johnson, Higher order B-spline collocation at the Greville abscissae, Appl.
Numer. Math. 52 (2005) 63–75.

[30] R.E. Jones, P. Papadopoulos, A novel three-dimensional contact finite element
based on smooth pressure interpolations, Int. J. Numer. Methods. Engrg. 51
(2001) 791–811.

[31] J. Kiendl, K. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with
Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg. 198 (2009)
3902–3914.

[32] A. Konyukhov, K. Schweizerhof, Incorporation of contact for high-order finite
elements in covariant form, Comput. Methods Appl. Mech. Engrg. 198 (2009)
12131223.

[33] A. Konyukhov, K. Schweizerhof, Geometrically exact covariant approach for
contact between curves, Comput. Methods Appl. Mech. Engrg. 199 (2010)
2510–2531.

[34] A. Konyukhov, K. Schweizerhof, Geometrically exact theory for contact
interactions of 1D manifolds. Algorithmic implementation with various finite
element models, Comput. Methods Appl. Mech. Engrg. 205–208C (2012)
130–138.

[35] L. Krstulovic-Opara, P. Wriggers, J. Korelc, A C1-continuous formulation for 3D
finite deformation frictional contact, Computational Mechanics 29 (2002) 27–42.

[36] R.L. Landon, M.W. Hast, S.J. Piazza, Robust contact modeling using trimmed
nurbs surfaces for dynamic simulations of articular contact, Comput. Methods
Appl. Mech. Engrg. 198 (2009) 23392346.

[37] T.A. Laursen, Computational Contact and Impact Mechanics, 1st ed., Springer,
Berlin Heidelberg New York, 2003. corr. 2nd printing.

[38] T.A. Laursen, M.A. Puso, J. Sanders, Mortar contact formulations for
deformabledeformable contact: past contributions and new extensions for
enriched and embedded interface formulations, Comput. Methods Appl. Mech.
Engrg. 205–208C (2012) 3–15.

[39] J. Lengiewicz, J. Korelc, S. Stupkiewicz, Automation of finite element
formulations for large deformation contact problems, International Journal
for Numerical Methods in Engineering 85 (2011) 1252–1279.
[40] J. Lu, Isogeometric contact analysis: Geometric basis and formulation of
frictionless contact, Comput. Methods Appl. Mech. Engrg. 200:726 (2011) 741.

[41] D.D. Nelson, E. Cohen, Optimization-based virtual surface contact
manipulation at force control rates, in: VR ’00 Proceedings of the IEEE
Virtual Reality 2000 Conference, 2000, p.37.

[42] V. Padmanabhan, T.A. Laursen, A framework for development of surface
smoothing procedures in large deformation frictional contact analysis, Finite
Elements in Analysis and Design 37 (2001) 173–198.

[43] J.M.S.P. Papadopoulos, An analysis of dual formulations for the finite element
solution of two-body contact problems, Computer Methods in Applied
Mechanics and Engineering 194 (2005) 27342780.

[44] P. Papadopoulos, J.M. Solberg, A Lagrange multiplier method for the finite
element solution of frictionless contact problems, Math. Comput. Model. 28
(1998) 373–384.

[45] L. Piegl, W. Tiller, The NURBS Book, 2nd ed., Springer, Berlin Heidelberg New
York, 1996.

[46] G. Pietrzak, A. Curnier, Large deformation frictional contact mechanics:
continuum formulation and augmented Lagrangean treatment, Computer
Methods in Applied Mechanics and Engineering 177 (1999) 351–381.

[47] C. Politis, A.I. Ginnis, P.D. Kaklis, K. Belibassakis, C. Feurer, An isogeometric
BEM for exterior potential-flow problems in the plane, in: 2009 SIAM/ACM
Joint Conference on Geometric and Physical Modeling (SPM 09), San Francisco,
CA, 2009, pp. 349–354.

[48] A. Popp, M.W. Gee, W.A. Wall, A finite deformation mortar contact formulation
using a primal-dual active set strategy, Int. J. Numer. Meth. Engng. 79 (2009)
1354–1391.

[49] M.A. Puso, T.A. Laursen, A mortar segment-to-segment frictional contact
method for large deformations, Comput. Methods Appl. Mech. Engrg. 193
(2004) 4891–4913.

[50] M.A. Puso, T.A. Laursen, J. Solberg, A segment-to-segment mortar contact
method for quadratic elements and large deformations, Comput. Methods
Appl. Mech. Engrg. 197 (2008) 555–566.

[51] R.A. Sauer, Enriched contact finite elements for stable peeling computations,
International Journal for Numerical Methods in Engineering 87 (2011) 593–
616.

[52] M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes,
Isogeometric finite element data structures based on Bézier extraction of T-
splines, Int. J. Numer. Meth. Engrg. (2011). online – doi: 10.1002/nme.3167.

[53] M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of analysis-
suitable T-splines, Comput. Methods Appl. Mech. Engrg., submitted for
publication.

[54] J.C. Simo, P. Wriggers, R.L. Taylor, A perturbed lagrangian formulation for the
finite element solution of contact problems, Comput. Methods Appl. Mech.
Engrg. 50 (1985) 163–180.

[55] J.M. Solberg, R.E. Jones, P. Papadopoulos, A family of simple two-pass dual
formulations for the finite element solution of contact problems, Computer
Methods in Applied Mechanics and Engineering 196 (2007) 782–802.

[56] M. Stadler, G.A. Holzapfel, J. Korelc, Cn continuous modelling of smooth contact
surfaces using NURBS and application to 2D problems, Int. J. Numer. Meth.
Engng. 57 (2003) 2177–2203.

[57] _I. Temizer, A mixed formulation of mortar-based frictionless contact, Comput.
Methods Appl. Mech. Engrg., submitted for publication.

[58] _I. Temizer, P. Wriggers, T.J.R. Hughes, Contact treatment in isogeometric
analysis with NURBS, Comput. Methods Appl. Mech. Engrg. 200 (2011)
1100–1112.

[59] M. Tur, F.J. Fuenmayor, P. Wriggers, A mortar-based frictional contact
formulation for large deformations using Lagrange multipliers, Comput.
Methods Appl. Mech. Engrg. 198 (2009) 2860–2873.

[60] P. Wriggers, Computational Contact Mechanics, 2nd ed., Springer, Berlin
Heidelberg New York, 2006.

[61] P. Wriggers, M. Imhof, On the treatment of nonlinear unilateral contact
problems, Archive of Applied Mechanics 63 (1993) 116–129.

[62] P. Wriggers, L. Krstulovic-Opara, J. Korelc, Smooth C1- interpolations for two-
dimensional frictional contact problems, International Journal for Numerical
Methods in Engineering 51 (2001) 1469–1495.

[63] G. Zavarise L. De Lorenzis R.L. Taylor, A non-consistent start-up procedure for
contact problems with large load-steps, Comput. Methods Appl. Mech. Engrg.
205–208C (2012) 91–109.


	Three-dimensional mortar-based frictional contact treatment in isogeometric  analysis with NURBS
	1 Introduction
	2 Contact treatment
	2.1 Continuum contact mechanics formulation
	2.2 Mortar-based finite element discretization
	2.2.1 Normal contribution
	2.2.2 Tangential contribution


	3 Isogeometric treatment with NURBS
	3.1 Geometric description
	3.2 Enforcing contact constraints

	4 Numerical investigations
	4.1 Modeling and discretization parameters
	4.2 Local quality: contact tractions
	4.3 Global quality I: twisting moment
	4.4 Global quality II: dragging force
	4.5 Case study: tire traction

	5 Conclusion
	References


